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Abstract  

A Response Surface Methodology (RSM) for 
Aerodynamic Shape Optimization (ASO) using 
the compressible Reynolds-Averaged Navier-
Stokes (RANS) equations is implemented and 
tested. The quadratic polynomials which cancel 
the second-order cross items are employed to 
construct RS model. This approach improves on 
the efficiency of using the RSM for high-
dimensional design optimization problems. By 
using present method the aerodynamic 
performance of the transonic airfoil and wing 
are greatly improved. Successful design results 
confirm validity and efficiency of the present 
design method. 

1   Introduction 
Aerodynamic Shape Optimization (ASO) 

technology based on Computational Fluid 
Dynamics (CFD) becomes a very active object 
in the CFD field. Among several design 
optimization methods applicable to 
aerodynamic design problems, the 
approximation optimization methods have been 
widely used due to their advantages. First, these 
methods can be effectively applied to 
Multidisciplinary Design Optimization (MDO), 
and the computational costs are acceptable in 
spite of the high-fidelity analysis tools are used. 
A second advantage of using these methods 
during optimization process is that they can be 
used with optimization algorithms which do not 
rely on the computation of sensitivity 
derivatives and can find a solution near the 
global optimum. 

One of the most common methods for 
building an approximate model is Response 

Surface Methodology (RSM) in which a 
polynomial function of varying order (usually a 
quadratic function) is fitted to a number of 
sample data points using least squares 
regression. This method has achieved popularity 
since it provides an explicit function 
representation of the sampled data, and is both 
computationally cheap to run and easy to use. [1, 
2, 3] 

However, if the full quadratic polynomials 
are employed to construct RS models for ASO 
problem, the number of function evaluations 
(CFD analysis, in our cases) required for a RS 
model increase with the square of the number of 
design variables, seriously preventing their use 
in high-dimensional design optimization 
especially using high-fidelity analysis tools. 
And for ASO problem of transonic airfoil and 
wing, only small number design variables are 
not enough. How to solve this dilemma? A 
modified RSM that requires fewer functional 
evaluations must be developed if the 
approximation method is to be used in an ASO 
problem.  

In this research, a modified RSM that 
propose modification to the RS model which 
cancel the second-order cross items of the full 
quadratic is developed to greatly reduce the 
computational cost, and approximate the 
original function without significantly 
sacrificing the accuracy of the approximation 
when the design spaces are carefully selected. 

In common, during the preliminary design 
phase, numerical optimization starts with an 
existing design, and the goal is to redesign and 
improve aerodynamic performance. The 
geometric change between initial and optimized 
shape are very small [4], but the difference in 
the performance can be substantial. So small 
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design space is enough for ASO problem. And 
the accuracy of linear RS approximation model 
can be insured. Some numerical optimization 
examples including drag minimization for 
transonic airfoil and wing are performed to 
verify the effectiveness of present method.  

2  Flow Analysis  
In flow field calculation the compressible 

Reynolds-Averaged Navier-Stokes equations 
are used as governing equations. The 3-D N-S 
equations in Cartesian coordinates )( 321 x,x,x  

can be written in the conservation form as 
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and ρ  is the density, )( 321 u,u,u are the 
Cartesian velocity components, p , E , H  is the 
pressure, total energy and total enthalpy 
respectively, ijδ  is the Kronecker delta function. 
and ijσ  is the component of stress tensor. 

In computational space, the Navier-Stokes 
equations can be written as 
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transformation Jacobian. 
   In optimization process the wing section shape 
varies continuously and a lot of iteration of field 
solution is required. So a fast, robust and high 
qualitative grid generation method is essential. 
An improved transfinite interpolation grid 
generation method, in which the orthogonality 
control and elliptic smooth are added, is used. 

The grid topology for flow field calculation is C 
grids for 2-D and C-H grids for 3-D. Fig.1 gives 
the 2D and 3D grids. 
 

 
(a) Two dimension C-grid (321×65) 

 

 
(b) Three dimension C-H grid （209×49×49） 

Fig. 1 Computation grid 
 
  Jameson’s cell central finite volume method 

[5] is used for the space discretization in the 
inviscid flux term Fi ; A central difference 
method is adopted for viscous flux term  Fvi, 
and Baldwin-Lomax turbulence model [6] is 
used to calculate the turbulent viscosity, and 
artificial dissipation terms are added to prevent 
oscillation. For temporal discretization, a five 
step Runge-Kutta explicit time stepping scheme 
is used. In order to accelerate the convergence, 
local time stepping, implicit residual smooth 
and multigrid technical are used. 

In order to validate the code of RANS flow 
solver, the flow field of ONERA M6 wing is 
calculated at Ma=0.839, Re=11.72×106, α=3.06°. 
The grid number is 209×49×49. Fig.2 gives 
the comparison of the calculated and the 
experimental pressure distributions on two span-
wise positions. The agreement is very good.  
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(a) η = 0.65 
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(b) η = 0.90 

Fig. 2 Pressure distribution of ONERA M6 wing 

3 Design Variables 
In optimization design the shape geometry is 

modified adding a linear combination of Hicks 
and Henne shape functions [1] as follows:   
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where x is the chordwise coordinate and 10 ≤≤ x , 
xk represents the location of the maximum bk, 
Fig.3 shows the shape of these functions. They 
are added to an initial airfoil shape to form a 
new shape. The weight bk of these shape 
functions are then the design variables. For 3-D 
problem, along the wing span-wise direction 5 
sections are chosen as control sections in which 

the tip section is fixed.  In each of them shape 
functions are added to form new wing.  
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Fig. 3 The Hicks-Henne shape functions 

4 Response Surface Methodology 
  Response Surface Methodology (RSM) is a 
collection of statistical and mathematical 
techniques for using to obtain a relationship 
between a specified dependent variable (the 
response) and a number of independent 
variables (the predictor variables) [7].  The 
model used to describe the relationship between 
the response and the predictor variables is 
known as the response model and may be 
written in general as follows:     

ε+= ),,,( 21 vnxxxfy L
 (7) 

In common ε is treated as statistical error, 
often assuming it to have a normal distribution 
with mean zero. 1x ， 2x ， 3x , …, 

vnx are the design 

variables. The form of the true response function 
f is unknown and perhaps very complicated, 
usually assumed as a second-order polynomial: 
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where nv is the number of the design variables, 
ns is the number of the sample points.  The 
number of the terms in second-order polynomial 
is 2/)2)(1( ++= vvrc nnn .  

The model in terms of the observations, 
equation (8) may be written in matrix notation 
as: 

εXcy +=
 

(9) 
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where 
T][ sn321 y,,y,y,y K=y ， T][

rcn21 c,,c,c K=c  
and X is the ns × nrc  matric, as follow: 
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The regression coefficient c can be 
determined using the least-square fitting.  

YXXXc TT 1)( −=  (10) 

As a selection technique of sample points, the 
D-optimality condition is used. The D-
optimality criterion states that the ns sample 
points to be chosen are that maximize the 
determinant XX T , therefore minimize the 

determinant of the covariance matric of c: 
12 )(),cov( −= XXT

ji cc σ  (11) 

It is known to be sufficient to construct a 
response model with ns of 1.5~3 times nrc [1]. In 
Ref.1 121 experiments are selected when nv is 
10, and 201 sample points are selected when nv 
is 12. The number of sample evaluations 
required for a full quadratic polynomials RS 
model increase with the square of the number of 
design variables, seriously preventing their use 
in high-dimensional design optimization 
especially using RANS equations for complex 
3-D problem.  In this study, the design variables 
is 26 (2-D) and 24 (3-D), so about 500 sample 
points are need. The computational cost is can’t   
be affordable in a single PC. 

In contrast, the propose modification to the 
RS models which cancel the second-order cross 
items of the full quadratic polynomials as follow: 
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Then the relation of the ns and nv become 
linearity. The computational cost for construct 
the RS models can greatly be reduced and   
acceptable, and can approximate the original 
function, without significantly sacrificing the 
accuracy of the approximation in small design 
space. If the design space is large, the step-wise 

technology can be used until the design 
requirement is achieved. 
    The final models determined are evaluated by 
calculating some statistic measures such as: the 
coefficient of multiple determination 2R , the 
adjusted R-square 2

aR  and root mean square 
error RMSE% . These terms may be defined as: 
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  After construct the RS models, an appropriate 
optimization algorithm should be chosen. In this 
study, the BOX complex shape method [10] is 
used. Fig.4 shows the design cycle using RSM.  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Design cycle 
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5 Numerical result and discussion  

The present method is applied to a drag 
minimization problem of 2-D and 3-D 
geometrics under transonic flow conditions. 

5.1 2-D Case  
RAE2822 is selected as the baseline airfoil 

of the design study. The design condition is 
imposed as Mach number 0.73 at an angle of 
attack of 2.70 degrees and the Reynolds number 
is 6.5 million. The computational grid system is 
321×65 C-type, as showing in Fig.1 (a). The 
cost function for the airfoil optimization design 
of drag minimization under the aerodynamic 
character such as lift and moment coefficients 
and geometric constraints as shown: 

dCI =  (18) 
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where Cl0, Cd0, Cm0, A0 are the initial lift, drag, 
moment coefficient and area. 13 Hick-Henne 
functions are respectively used to modify the 
upper and lower surface of airfoil. The total 
number of design variables is 26. 
  80 sample points are selected using D- 
optimality criterion. After two design cycle the 
drag is reduced to 80% of initial value. The 
aerodynamic performances and geometric 
parameters are show in Table.1. The Cp 
distributions of RAE 2822 and designed airfoil 
are displayed in Fig.4. A shock-free airfoil can 
be obtained after the design optimization and 
constraints can be satisfied. The fitting quality 
of RS model is show in Table.2. These statistic 
measures R2 and 2

aR  for Cl, Cd, Cm models are 
larger than 0.95 and RMSE% are less than 1.2%, 
the response surface models which construct 
using equation (12) are fitted successfully. 
Therefore the models are sufficient to model the 

cost function and constraints for this 2-D 
transonic viscous flow problem.  

Table.1 Airfoil performances comparison 
 Cl Cd Cm A 

RAE2822 0.7638 0.01780 -0.09313 0.0777 
Design 

(Predict) 0.7630 0.01401 -0.08995  
Design 
(CFD) 0.7613 0.01423 -0.09004 0.0781 

Change(%) -0.3 -20.1 +3.3 +0.5 
Error(%) 0.2 1.5 0.0  

 
Table2  Fitting quality 

 R2 2
aR  RMSE% 

Cl 0.986 0.959 0.86 

Cd 0.983 0.951 1.17 

Cm 0.999 0.995 0.11 
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(a)  Airfoil shape 
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(b) Computation pressure  

Fig. 4 The comparison of airfoil shape and pressure distribution 
for RAE2822 airfoil (initial) and design airfoil  

5.2 3-D Case 
The test problem is a drag minimization of 

ONEAR M6 wing with lift coefficient and 
geometric constraints. The flow condition is 
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Mach number 0.839 at an angle of attack of 3.09 
degrees and the Reynolds number is 11.72 
million. The computational grid system is 
209×49×49 CH-type, as showing in Fig.1 (b). 
For this case, the aerodynamic cost function and 
constraints are equation (18) and (19). 

Along the wing span-wise direction 5 
sections are selected as control sections in 
which tip section is fixed. In each of them six 
design variables are used to modify the upper 
surface while the lower surface vary in the same 
manner [8] and the section area can be kept 
constant.  

80 sample points are selected using D- 
optimality criterion. After two design cycle the 
drag is reduced to 90% of initial value. The 
aerodynamic performances and geometric 
parameters are show in Table.3. Fig.5 illustrates 
the contour comparison of pressure on wing 
upper surface for design and initial case. Fig.6 
illustrates the comparison of section pressure of 
design and initial wing. The strong λ-shape 
shock waves are smeared through the design 
optimization and constraints can be satisfied. 
But the change of the shape is very small.  The 
fitting quality of RS model is show in Table.4. 
These statistic measures R2 and 2

aR  for Cl, Cd 
models are larger than 0.96 and RMSE% are 
less than 1.2%, the response surface models 
which construct using equation (12) are fitted 
successfully. Therefore the models are sufficient 
to model the cost function and constraints for 
this 3-D transonic viscous flow problem.  
 

Table.3 Wing performances comparison 
 CL CD 

ONEAR 
M6 0.2674 0.01855 

Design 
(Predict) 0.2672 0.01658 
Design 
(CFD) 0.2668 0.01668 

Change(%) -0.2 -10.0 
Error(%) 0.1 0.6 

 
Table4  Fitting quality 

 R2 2
aR  RMSE% 

CL 0.994 0.976 0.74 

CD 0.986 0.967 1.14 

Initial
Design

 
Fig. 5 Contour comparison of pressure on wing upper surface 

for optimum and initial case  
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(a) η = 0.31 
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(b) η = 0.51 

Fig. 6 The comparison of section shape and pressure distribution 
for ONERA M6 wing (initial) and design wing 

6 Conclusions 
  In this study, a way to improve the efficientcy 
of RSM by using quadratics without second-
order cross items as RS models are proposed 
and its applicability in high-dimensional 2-D 
and 3-D transonic ASO problem successfully. It 
is demonstrated that: 
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1、The aerodynamic performance of transonic 
airfoil and wing can be greatly improved 
with multi-constrains by using the present 
method. 

2、The accuracy of RS models are good enough 
for design variables as many as about 26 in 
small design space ASO problem. 

3、The computation costs are acceptable even 
in a single PC. So it is suitable for high-
dimensional MDO problem using high-
fidelity analysis tools.  
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