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Abstract  

A time-accurate, fully implicit preconditioning 
method is developed and applied to solve a 
variety of steady and unsteady viscous flow 
problems. The space discretizaition is 
performed by employing a finite-volume cell- 
centred scheme and using a central difference 
with nearly 2nd-order accuracy. The time 
marching is based on a dual-time stepping 
method proposed by Jameson. LU-SGS (Lower-
Upper Symmetric-Gauss-Seidel) implicit scheme 
within the framework of FAS (Full 
Approximation Scheme) multigrid method is 
applied to implement sub-iterations. A low-
speed matrix preconditioning is utilized to 
improve the efficiency and accuracy of 
simulating incompressible flows or low-speed 
flow regions in compressible flows. In order to 
obtain time-accurate solutions, only the pseudo-
time derivatives are preconditioned. Moreover, 
the original LU-SGS scheme and multigrid 
method are revised according to the 
preconditioned governing equations.   The 
numerical examples show that the fully implicit 
preconditioning method is very efficient and 
robust for solving both 2-D and 3-D, steady and 
unsteady flow problems, especially for 
incompressible flow problems. 

1 Introduction 
Over the past two decades, time-marching 
algorithms have been widely used for 
compressible flow simulations. However, it is 
proved by practice that these “standard” 

numerical schemes for the compressible 
equations are not efficient for incompressible 
flows, and do not converge to the solution of the 
incompressible equations as the Mach number 
approaches zero [1]. The difficult in solving 
compressible equations for low Mach number 
flows are closely related to the stiffness of 
systems caused by large disparity of the 
different eigenvalues.  To overcome the above 
difficult, several methods have been developed 
for solving nearly incompressible flow problems. 
Among them, pseudo-compressibility [2] method 
and preconditioning method [1, 3-11] may be the 
most popularly used approaches. Due to the 
assumption of incompressibility, pseudo-
compressibility can only be used for low-speed 
flow simulation, whereas preconditioning 
method is appropriate for both compressible and 
incompressible flows. The development of 
preconditioning method is motivated by two 
main considerations. First, the actual flow can 
contain both compressible and incompressible 
flows simultaneously. Second, it is preferable to 
develop such a method that is suit for flows at 
all flow regimes.  

Several inviscid and viscous 
preconditioning methods have been available in 
the past two decades. Early studies of 
preconditioning for low Mach-number flows 
were reported by Briley et al. [3]

, and D.Choi and 
Merkle [4], and also by Merkle and Y.-H. Choi [5]. 
Turkel [6] published a review of preconditioning 
methods for convection-dominated flow 
problems and developed a two-parameter 
preconditioner. Van Leer and Lee [7] proposed a 
matrix preconditioning for an explicit scheme to 
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remove stiffness of Euler Equations at all flow 
regimes. More recently, Y. -H, Choi and Merkle 

[8] proposed a matrix preconditioning method 
for viscous flows and successfully applied to 2-
D low Reynolds number flows. Turkel [9, 10, 11] 
developed a generalization of Turkel’s [6] and 
Choi-Merkle’s preconditioners for compressible 
equations. In Ref. [10], Turkel’s preconditioner 
was successfully applied to inviscid and viscous 
flows over 2-D airfoils and 3-D wing using 
explicit Runge-Kutta scheme. More recently, 
Muradogly and Caughey [12] proposed a three-
parameter preconditioner to accelerate the 
convergence to steady-state solutions of Euler 
equations at all speed. Another kind of 
preconditioning method, namely Block-
Jacobian preconditioning method, was reported 
by Allmaras [13], Pierce and Giles [14] et al. it was 
used to damp the high-frequency error and 
accelerate the calculation speed of Navier-
Stokes equations. However, Block-Jacobian 
preconditioning method does nothing to remove 
the stiffness of the systems for low Mach 
numbers. Among the available preconditioning 
methods mentioned above, Choi-Merkle‘s and 
Turkel’s preconditioning methods seem to be 
appropriate for low Mach number, viscous 
flows. Hence, Both Choi-Merkle and Turkel’s 
preconditioners are considered in this paper. 

Nowadays, one of the challenges for 
developing preconditioning method is 
associated with the calculation of time-
dependent flows. In Ref [15, 16], The Turkel’s 
preconditioner, incorporated with dual-time 
stepping method, was extended to solve 
unsteady flows with explicit Runge-Kutta 
scheme. In present work, Turkel’s and Choi-
Merkle’s preconditioning methods are 
combined with LU-SGS [17] (Lower-Upper 
Symmetric-Gauss-Seidel) implicit scheme and 
dual-time method, resulting in a fully implicit 
preconditioning method for steady and unsteady 
flow problems. A FAS (Full Approximation 
Scheme) multigrid method is also utilized to 
accelerate the convergence. A variety of 2-D 
and 3-D steady and unsteady flows are 
simulated with Mach number from 510−  though 
0.84. The effect of local preconditioning on 
convergence rate and accuracy is investigated. 

The present method is expected to use as an 
efficient and robust tool for aerodynamic 
optimization design of airfoil and wing. 

2 Computational Methods 

2.1 Governing Equations  
After introduced pseudo-time derivative and its 
matrix preconditioning, the non-dimensional 
form of the three-dimensional compressible 
Navier-Stokes equations can be written as 
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where，τ denotes pseudo time; for steady flows, 
α is set to be 0 , while for unsteady flowsα is 
taken as 1  ； P  is preconditioning Matrix(or 
preconditioner) and will take on various forms 
depending on the different choices. When P  is 
identity matrix, Eq. (1) recovers to the non-
preconditioned form. The additional vectors in 
Eq. (1) are: 
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where, Ewvu ,,,,ρ denote density, components of 
velocity vector, total energy per unit mass, 
respectively. Pressure and temperature are given 
by the equation of state for perfect gas: 
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where γ  is ratio of specific heat and is taken as 
1.4 for air. The viscous shear stresses and the 
heat fluxes are of the form 
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where k is the coefficient of thermal 
conductivity and is determined by using the 
assumption of constant Prandtl number. The 
bulk viscosity λ  is taken to be 3/2μ−  according 
to Stokes’s hypothesis. For turbulent flows, the 
total viscosity μ  calculated as 

tl u+= μμ                           (5) 
where lμ is molecular viscosity calculated by 
Sutherland law, and eddy viscosity tμ  is 
determined by turbulence model. Then, Eq. (1) 
can be called preconditioned Reynolds averaged 
Navier-Stokes equations. Spalart-Allmaras one-
equation turbulence model [18] is used for all the 
calculations of the present work. 

For the unsteady calculation using dual-
time method, a sub-iteration procedure for 
pseudo-time is performed at each physical time 
step. At the convergence of sub-iterations 

(
τ∂

∂W approachs zero), the influence of 

preconditioning will be removed. Then the time-
accurate solution can be correctly obtained.  

Rather than using conservative 
variables { }T,,,, Ewvu ρρρρρ=W , primitive 
variables { }T,,,, Twvup=Q  are frequently used 
for viscous flows, especially for low-Mach 
number flows. Then Eq.(1) can be written as 
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where, 
Q
WPΓ
∂
∂

=  represents preconditioning 

matrix for primitive variables. Note that, In 
Eq.(6), the flux terms keep the form of 
conservation law, then the shock wave occurred  
in transonic flow can be correctly captured.  

2.2 Preconditioning Matrix  

The proconditioner which is a generlization of 
preconditioners given by Turkel[6] and by Choi 
and Merkle[8] is considered here. It corresponds 
to the dependent variables { }T

0 ,,,, Swvup=W  
with ρdcdpdS 2−= . This general preconditioner 
reported by Turkel[9] takes the form 
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where δ and ε are free parameters; c is local 
sound speed; rMaβ is associated with local Mach 
number. If 0=δ , Eq.(7) corresponds to Turkel’s 
preconditioner ; if 0,1 == εδ  , Eq.(7) becomes 
the Choi-Merkle’ preconditioner . For the 
preconditioner indicated by Eq.(7), the 
correspondent form of Γ in Eq.(6) is 
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According to present authors’ experience, when 
local Mach number is larger than 0.6, the effect 
of preconditioning can be gradually removed. 
For transonic flows, the local Mach number of 
the most flow region is larger than 0.6, whereas 
a small flow region (such as the flow in the 
boundary layer or near the stagnation points) is 
incompressible. It is preferable to switch on 
preconditioning in these low-speed regions and 
to smoothly reduce the effect of preconditioning 
outside these regions. On the other hand, the 
preconditioner has singularity as local Mach 
number approach zero near the stagnation point 
and in the boundary layer. Based on the above 
considerations, a control technique upon 22

rMaβ  
proposed by Turkel[9] is used as  
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（9） 
where ∞V is the velocity of free stream; 21 , KK  
are free parameters. 1K  is typically 1.0-1.1, and 

2K  is typically 0.5-1.0. From Eq.(9), it is shown 
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that 22
rMaβ returns to the non-preconditioned 

value “1” when the local mach number Ma is 
larger than 0Ma . In this study, 0.121 == KK  and 

6.00 =Ma are used for all the computations.  
To demonstrate the effect of 

preconditioning on the characteristic systems of 
governing equations in curvilinear coordinates, 
the Condition Number [1] (CN) is used to 
quantitively denote the eigenvalue stiffness. It is 
defined as 

5~1, == i
Min
Max
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i
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λ           （10） 

where iλ is the eigenvalue of Jacobian matrix.  
For Choi-Merkle preconditioner 

with 0,1 == εδ , the eigenvalues of the 
preconditioned systems in ξ  direction are  
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Note that condition numbers is proved to be 
nearly 2.6 as Ma approaches zero 

For Turkel preconditioner with 0=δ , the 
eigenvalues of the preconditioned systems in ξ  
direction are 
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When 0→Ma ， ]4)1()1[(5.0 2

5,4 +−±−≈ εελ ξq , 
the condition numbers for 0=ε and 1=ε are 
proved to be nearly 2.6 and 1 respectively. The 
computing experience suggests that 0=ε is 
relatively more efficient in actual application. 
Hence, 0=ε  is used in this paper. Then the 
condition number of using Turkel 
preconditioner is the same as that of using Choi-
Merkle preconditioner .  

For non-preconditioned systems, condition 
number is infinite if 0→aM . From the above 
discussion, it is clearly shown that both the 
Choi-Merkle and Turkel preconditioner can be 

used to the effectively eliminate eigenvalue 
stiffness of governing equations as 0→aM .  

2.3 Spatial Discretization 
A finite volume cell- centred scheme on 
structured grids and a central difference with 
nearly 2nd-order accuracy are used for the space 
discretization. 

The governing equations are applied to an 
arbitrary control volume denoted by V . After 
utilizing Gauss’s law, Eq.(1) becomes  
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where  H and vH denote inviscid and viscous 
flux vector, respectively. Let bq  denote the 
velocity vector of the boundary of control 
volume. The following equations is valid 
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Substituting Eq.(14) into Eq.(13) yields 
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The flow variables are defined at center of the 
cell denoted by ),,( kji , and then the semi-
discrete form of governing equations can be 
written as 

 0GGW
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here, kji ,,G and v

kji ,,G are， respectively, the net 
convective and viscous flux out of the cell. A 
artificial dispassion term are introduced into 
Eq.(16) which becomes  
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The details of ijkD  can be found in Ref [10] and 
Ref. [19]. 

2.4 Fully Implicit Dual Time Stepping with 
LU-SGS Sub-iteration  

 For unsteady flow calculation using dual-time 
stepping method, an explicit scheme such as 
Runge-Kutta scheme is usually used to perform 
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the sub-iterations. Then the pseudo-time step 
τΔ  will be restricted because of stability. In 

addition, τΔ is also restricted by physical time 
step tΔ . In this paper, a LU-SGS implicit sub-
iteration is implemented, which results in very 
efficient method due to the large pseudo-time 
step τΔ out of the restriction of stability and 
physical time step tΔ . The dual-time method 
with LU-SGS sub-iteration is also modified in 
this paper according to the introducing of 
preconditioning method. Although an explicit 
treatment is applied to viscous terms as well as 
preconditioning matrix in this paper, the present 
scheme is fully implicit, which will be discussed 
later.  

The physical time derivative in Eq.(17) is 
replaced by a backward difference formula(BDF) 
with 2nd-order accuracy. After some 
rearrangement, Eq.(17) becomes 
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 Then, the pseudo time derivative in above 
equation is replaced by a backward first-order 
difference as  
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where the subscript “ n ”. and “ m ”.denote 
the physical time level and pseudo-time level, 
respectively. Note that kji

v
kji ,,,, , DG and 1

,,
−

kjiΓ  are 
treated explicitly in Eq.(19). Let A , B and C be 
the Jacobian matrices of the convective normal 
components at the cell interfaces along the 

−− ji , and −k directions, respectively. The 
convective flux 1

,,
+m

kjiG can then be linearized 
about the time level “ m ”. After dropping terms 
of the second and higher order, this yields 
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Substitute Eq.(20) into Eq.(19), one obtains 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

Δ

+−
−

=Δ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++

Δ
+

Δ
−−+

−

−
++

)
2

43
2

3(

,,

1
,,

1
,,,,,,,,

1
,,1

,,

1
,,

1
,,

1
,,

m
kji

n
kji

n
kji

n
kji

n
kji

m
kji

n
kjim

kji

mm
kji

n
kji

n
kji

R
t

VVV
t

VV

WWW
Γ

QCBAΓI

α

δδδα
τ ζηξ

 (21) 
where, m
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,, QQQ Δ−Δ=Δ +  ; I is identity matrix; 

ζηξ δδδ ,, denote the spatial operators along the 
−− ji , and k directions, respectively; 
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kjiR ,,,,,,,, DGG −−=  is the flux residual 

vector for grid cell ),,( kji .Let ∞→Δτ ， the 
Eq.(20) becomes  
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is defined as “preconditioned unsteady residual”. 

Referencing the Jameson and Yoon’s 
derivation [17] for LU operator and Jacobian 
splitting, the dual-time-stepping scheme may be 
written as follows: 
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The Jacobian matrix in i-direction is obtained 
by following splitting: 

2
~AA

A
r±

=± ， )max( ~~ AA λ≥r AΓA 1~, −=    (24) 

where Ar~ is the eigenvalue of A~ .   Similar 
procedurse are applied for Jacobian matrices 
B and C . 

The initial values for sub-iteration are 
taken as n
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the sequence of iterations ...3,2,1,,, =mm
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unsteady residual” m
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Substituting 1
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equations and setting α equal to 1 leads to a 
fully second-order implicit scheme in time for 
the governing equations, 
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The following points should be highlighted 
here for the above scheme: 1) the 
preconditioning procedure does not affect the 
time-accurate solution of governing equations; 
2) the viscous terms are no longer time lagged 
as indicated by Eq. (26); 3) though the sub-
iteration in pseudo-time, the linearization and 
factorization errors go to zero, and second-
order time-accurate solution can be obtained.  

2.5 Multigrid Method 
LU-SGS Method has good damping 
characteristics for high-wave-number error. 
Effective removal of low-wave-number error is 
accomplished by using a FAS multigrid scheme 
developed by Jameson [20]. A coarser grid is 
created by removing every other grid line from 
the finer grid, essentially doubling the grid 
spacing in each direction. The multigrid cycle 
begins by iterating a fixed number of LU-SGS 
sweeping. Then the solution is restricted to 
coarse grid using a restrict operator. The 
residual m

kjiR*
,,  of fine grid is also restricted for 

calculating a forcing function that drives the 
solution on coarse grid. The forcing function is 
defined as the difference between the restricted 
fine-grid residuals and coarse-grid residuals of 
the first LU-SGS sweeping. The procedure is 
then repeated recursively. Once the coarsest grid 
is reached, an interpolation operator 
accomplishes the corrections procedure. The 
restriction and interpolation operators of the 
multigrid cycle are both based on volume-
weighted averaging and trilinear(bilinear in 2D) 
interpolation, respectively. Computational 
experience suggests that the performance of this 
multigrid algorithm highly dependents on the 

number of iterations on each level and the type 
of multigrid cycle (such as “V” cycle or “W” 
cycle etc.). In present work, a 3-level V-cycle 
multigrid method is implemented as a simple 
but effective tool for accelerating the 
convergence of sub-iteration at each physical 
time step. At each multigrid cycle, the number 
of LU-SGS sweeping for each level is 5, 10 and 
15, respectively. It is shown by computing 
practice that “5-10-15 V” cycle provides a 
relatively efficient and robust way for a wide 
variety of flow simulations. 

2.6 Turbulence model 
SA one-equation turbulence model is used to 
calculate the eddy viscosity tμ . The turbulence 
equation is solved with such a numerical 
procedure that is similar to that of solving the 
governing equations. Note that the turbulence 
equation is only solved on the finest grid, and 
the eddy viscosity tμ  on the coarse grid is 
“fixed”. 

2.7 Boundary Conditions 
On solid surfaces, the no-slip condition is 
imposed by setting the velocity components u , v  
and w  to zero. The normal momentum relation 
is used to specify the pressure gradient in the 
first cell off the wall; for high Reynolds number 
flows, the normal pressure gradient may be 
approximately set to zero. The far-field 
boundary conditions are treated by simplified 
boundary conditions proposed in Ref. [10]. 
Computing experience suggests that it is nearly 
identically efficient compared with the 
characteristic boundary condition based on the 
preconditioned systems. 

3 Numerical Examples 

A variety of 2-D and 3-D steady and unsteady 
flows are simulated with Mach number from 

510−  to 0.84. The effect of local preconditioning 
on convergence rate and accuracy is 
investigated. The computing practice in this 
paper shows that little difference exits between 
turkel’s[6] and Choi-Merkle’s [8] preconditioners. 
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Therefore, they will not be distinguished in the 
following investigation. 

For the simulation of all the steady-state 
flows, tΔ is set to be infinite as the time-
marching scheme used in this study is 
unconditional stable. For all the unsteady 
computation,   about 72 physical steps are used 
in one period（ 72/periodt =Δ  ）. Starting from 
the corresponding steady-state solution, the 
unsteady calculation usually takes 2-3 periods to 
reach fully periodic solution.  

All the structured grids are generated with 
algebraic method based on transfinite 
interpolation [21] and elliptical smoothing 
technique. The grids have the first near-surface 
grid point below y+ = 0.7 to ensure the sublayer 
of the turbulent shear flow is sufficiently 
resolved. The first grid point is specified based 
on the relationship between y+, Reynolds 
number, and the skin-friction for a flat plate 
boundary layer. For turbulent flow, this 
relationship is Re2/fcyy ⋅Δ=+ ,where 

)Re06.0(ln/455.0 2
xfc =  and yΔ is the distance for 

the first grid point away from the airfoil surface. 

3.1 Examples of Steady-State Flows 

3.1.1 Flows over NACA0012 Airfoil 
The simulation of flows over NACA0012 airfoil 
is taken as the first example to demonstrate the 
effect of preconditioning, with Mach number 
ranging from ultra low speed to transonic flow 
regimes. The chord Reynolds number is 1.85 
million, and the angle of attack is 3.590. A C 
Type grid (See Fig.1) consists of 265 × 65 
points is used for these computations.  

 
Fig.1 Room in view of C-type grid of NACA0012 airfoil 

Fig.2 shows the comparison of 
convergence rates for low-Mach number flows 
with and without preconditioning. It is shown 
that the convergence rates are markedly 
improved by using preconditioning method. For 
the calculation without preconditioning, the 
convergence remarkably slows down as Mach 
number decreases. The residual stalls after 
dropping about 3.0 orders in magnitude 
for 01.0≤Ma . With preconditioning the 
convergence rate is nearly independent with 
Mach number for low-Mach number flows. The 
convergence histories of continuity equation for 
ultra-low-Mach-number flows with 
preconditioning are shown in Fig.3. It is shown 
that the residual is reduced until the limit of 
machine error is arrived. 
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Fig.2 Effect of preconditioning on convergence rate for Mach 

number from 0.01 though 0.3 
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Fig.3 Convergence history of calculation with 

preconditioning for ultra low Mach number flows 
The effect of preconditioning on 

convergence rate for subsonic and transonic 
flows is shown in Fig.4. 5.0=Ma represents 
subsonic flow regime and 7.0=Ma denotes 
transonic flow regime with moderate shock 
wave in the flow field. As illustrated in Fig.4, 
the convengence rate is significantly improved 
when the preconditioning is imposed.  
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Multigrid Cycles
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Fig.4 Effect of preconditioning on convergence rate for subsonic 

and transonic flows 
Fig.5 and Fig.6 show the computed 

pressure distribution with and without 
preconditioning, respectively. The results are 
also compared with experimental data and the 
agreement is very well. One can also find out 
that the accuracy of solution for 1.0≤Ma  
seems to be improved by preconditioning. 
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Fig.5 Comparison of computed pressure distribution and 

experimental data (with preconditioning) 
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Fig.6 Comparison of computed pressure distribution and 

experimental data (without preconditioning) 
The first example, corresponding to steady-

state flows over NACA0012, shows that the 
present fully implicit preconditioning method 
can be used to effectively accelerate the 
convergence and improve the accuracy of 

simulating low speed, subsonic and transonic 
flows.  

3.1.2 Flows over ONERA M6 Wing 
Incompressible and transonic viscous flows over 
the ONERA M6 wing are employed as the 
second test case. The Reynolds number based 
on mean aerodynamic chord is 11.7 million, and 
the angle of attack is 3.060. A C-H Type grid 
(See Fig.7 and Fig.8) consists of 209×49×49 
points is used for these computations.  

 
Fig.7 Schematics of C-H type grid for viscous flow over M6 

wing 

 
Fig.8 Schematics of C-type grid for root section of M6 wing 

The effect of preconditioning for 
incompressible flows is indicated in Fig.9. It is 
shown that the convergence is dramatically 
improved. Fig.10 gives the comparison of 
pressure distributions with and without 
preconditioning at 80% span location. One can 
see that the pressure distribution near the 
trailing edge is more smooth,  with  
preconditioning switching on . 
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Fig.9 Effect of preconditioning on convergence rate 
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Fig.10 Comparison of pressure distributions for M6 wing with 

Ma=0.1 at 80% span location 
Fig.11-13 shows the case for transonic 

flow simulation ( 84.0=Ma ). This is a well-
known benchmark for transonic flow over wing. 
Fig.11 indicates the comparison of the 
convergence histories with and without 
preconditioning. The convergence rate is 
significantly improved by using the 
preconditioning method. Fig.12-13 
demonstrates the comparison of pressure 
distribution at two typical span locations. The 
results computed by preconditioning are in good 
agreement with experimental data and that of 
the non-preconditioning, which validate the 
developed method for transonic flows. 
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Fig.11 Effect of preconditioning on convergence rate  

for M6 wing at 84.0=Ma  
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Fig.12 Comparison of pressure distributions at 80% span 

location for M6 wing at 84.0=Ma  
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Fig.13 Comparison of pressure distributions at 95% span 

location for M6 wing at 84.0=Ma  
The example, corresponds to flows over 

ONERA M6 wing, indicate that the present 
fully implicit method can be used to accelerate 
the convergence for simulating 3D the low-
Mach number and transonic viscous flows. 

3.2 Example of Unsteady-State Flows 
The unsteady flows over a pitching NACA0012 
airfoil are considered as the test case. A C-type 
grid (See Fig.1) consists of 265×65 points is 
used for these computations. The chord 
Reynolds number is taken as 5.5 million. The 
reduce frequency is difined as k=ωc/2V∞(ω is 
angular frequency, c is the chord length of 
airfoil, and V∞ is the speed of free stream) 

The results for a low-Mach number case 
are illustrated in figures from 14 to 18. The 
airfoil is in oscillating with 
α=0.0160+2.510sin(ωt) and 01.0=Ma . The 
reduce frequency equals to 0.0814. A fixed 5 
sub-iterations is performed. The whole 
calculation is terminated at the end of 3 periods 
of physical time. The effect of preconditioning, 
shown in Fig.14, indicates that the convergence 
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rate of sub-iteration is dramatically improved. 
Comparison of convergence histories of lift, 
moment and drag coefficient with and without 
preconditioning is respectively  shown in 
Fig.15，Fig16 and Fig.17. Dramatic difference 
between the results with and without 
preconditioning is indicated. With 
preconditioning, the full periodic solutions for 
lift, moment and drag coefficient are obtained 
within 3 periods In contrast, the solutions 
without preconditioning seem to be not periodic 
at the end of 3 periods. Furthermore, when 
taking insight into Fig.18, one can find out that 
the pressure distribution with preconditioning is 
qualitatively more reasonable and more correct 
than that without preconditioning.  One can 
conclude, from the above discussion, that 
preconditioning can be used to improve both the 
efficiency and accuracy for low-Mach-number, 
unsteady flows     
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Fig.14 Effect of preconditioning on convergence rate of sub-

iteration 
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Fig.15 Comparison of convergence histories of lift coefficient 

with and without preconditioning 
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Fig.16 Comparison of convergence histories of lift coefficient 

with and without preconditioning 
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Fig.17 Comparison of convergence histories of drag coefficient 

with and without preconditioning 
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Fig.18 Comparison of pressure distribution with and without 

preconditioning ( 02.526=α ) 
The results for a transonic number case are 

illustrated in figures from 19 to 23. The airfoil is 
in oscillating with α=0.0160+2.510sin(ωt), 

0.755=Ma and the reduce frequency equals to 
0.0814. The convergence histories for lift, 
moment, and drag coefficient are receptively 
shown in Fig.19, Fig.20 and Fig.21. One can 
conclude that 2 sub-iterations are sufficient to 
obtain fully periodic solution within 3 periods. 
The convergence histories of lift ring and 
moment ring using 2 sub-iterations are 
illustrated in Fig.22 and Fig.23, respectively. 
The computed results using present method are 
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compared with experimental date and good 
agreement is achieved. The computation for 3 
periods takes about 11 minutes of CPU time on 
a Pentium IV 2.4G computer, which indicates 
that the present method is very efficient.  
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Fig.19 Convergence history of lift coefficient for different 

number of sub-iterations 
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Fig.20 Convergence history of moment coefficient for different 

number of sub-iterations 
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Fig.21 Convergence history of drag coefficient for different 

number of sub-iterations 
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Fig.22. Convergence history of lift ring and comparison with 

experimental data  
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Fig.23. Convergence history of moment-ring and comparison 

with experimental data  
 

The example, corresponding to flows over 
a pitching NACA0012, suggests that the present 
fully implicit preconditioning method is 
efficient and robust for simulation of unsteady 
flows with Mach number from low-speed to 
transonic regimes. 

4 Conclusions 
A time-accurate, fully implicit preconditioning 
method is developed for solving compressible 
Navier-Stokes equations. A Dual-time method 
with LU-SGS implicit sub-iteration is used for 
time-dependent flow problems. Low speed 
preconditioning is imposed on the pseudo-time 
derivatives of governing equations. The original 
LU-SGS method for non-preconditioning 
systems is revised according to preconditioned 
governing equations. At the convergence of sub-
iterations, the effect of preconditioning is 
removed, and the second-order time accuracy is 
obtained. The present method is successfully 
applied to a variety of 2D and 3D, steady and 
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unsteady viscous flows. It is can be concluded 
that: 1) present method can be used to improve 
the convergence rate for steady-state flows from 
ultra low mach number to transonic regimes;2)  
The present method is validated to be efficient 
and robust for time-dependent simulations of 
low-speed and transonic unsteady-state flows    
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