AIRBUS FLY-BY-WIRE:
A PROCESS TOWARD TOTAL DEPENDABILITY

PASCAL TRAVERSE, ISABELLE LACAZE, JEAN SOUYRIS
Airbus, 316, route de Bayonne, 31060 Toulouse, France

Keywords: dependability, safety, human factors, fly-by-wire, flight controls

Abstract
This paper deals with the digital electrical flight control system of the Airbus airplanes. This system is built to very stringent dependability requirements both in terms of safety (the systems must not output erroneous signals) and availability. System safety and availability principles are presented with an emphasis on their evolution, on future challenges and on pilot aids.

1 Introduction

1.1 Background
The first electrical flight control system (a.k.a. Fly-by-Wire, FbW) for a civil aircraft was designed by Aerospatiale and installed on Concorde. This is an analogue, full-authority system for all control surfaces and copies the stick commands onto the control surfaces while adding stabilizing terms. A mechanical back-up system is provided on the three axes.
The first generation of electrical flight control systems with digital technology appeared on several civil aircraft at the start of the 1980's including the Airbus A310. These systems control the slats, flaps and spoilers. These systems have very stringent safety requirements (in the sense that the runaway of these control surfaces is generally classified as Catastrophic and must then be extremely improbable). However, loss of a function is permitted, as the only consequences are a supportable increase in the crew's workload.
The Airbus A320 was certified and entered into service in the first quarter of 1988. It is the first example of a second generation of civil electrical flight control aircraft, which is now a full family (A318, A319, A320, A321, A330, A340). The distinctive feature of these aircraft is that high-level control laws in normal operation control all control surfaces electrically and that the system is designed to be available under all circumstances.

This family of airplane has accrued a large and satisfactory service experience with more than 10000 pilots operating a Fly-by-Wire Airbus, and more than 40 million flight hours. Nevertheless, system architecture is permanently challenged to take benefit of technical progress and of this large in-service experience. Indeed, on top of the architecture level reached by A340[1], A340-600, A380, and A400M are going steps further. The A340-600 is the first significant change compared to the A320/A330/A340 baseline. It entered into service mid of 2002, introducing structural modes control, a full rudder electrical control and integration of autopilot inner loop with manual control laws. The full rudder electrical control is now part of all A330 and A340 definition. A380 and A400M will be the first in-service aircraft with electrical actuation of control surfaces (a.k.a. Power-by-Wire). Additionally, new avionics principles are applied and a full autopilot and manual control integration is performed[2].

A350 baseline is A380 functions and system. Other architectures are possible[3]. The family of architectures we have designed has the merit of
having been built step-by-step, together with our products development and experience.

1.2 Fly-By-Wire Principle

On a conventional airplane, the pilot orders are transmitted to the actuators by an arrangement of mechanical components. In addition, computers are modifying pilot feels on the controls, and autopilot computers are able to control servo actuators that move the whole mechanical control chain.

The Airbus flight control surfaces are all electrically controlled, and hydraulically or electrically activated.

The side-sticks are used to fly the aircraft in pitch and roll (and indirectly through turn coordination in yaw). The flight controls computers interpret the pilot inputs. Then, they move the surfaces (through actuators) as necessary to achieve the desired flight path modification. In autopilot mode, the flight controls computers take their orders from the autopilot computers. With this respect, the flight controls are composed of five to seven computers, and the autopilot of two.

The aircraft response to surfaces movement is fed back to both autopilot and flight controls computers through specific sensors (Air Data and Inertial Reference Units - ADIRU, accelerometers, rate-gyro).

1.3 On Failure and Dependability

Flight control systems are built to very stringent dependability requirements both in terms of safety (the system must not output erroneous signals) and availability. Most, but not all, of these requirements are directly coming from Aviation Authorities (FAA, EASA, etc. refer to FAR/JAR 25\[4\]).

Remaining of the paper is structured around threat to safety and availability of the system\[5\], namely:

- Failures caused by physical faults such as electrical short-circuit, or mechanical rupture
- Design and manufacturing error
- Particular risks such as engine rotor burst
- Mishap at Man-Machine Interface

Interestingly, means against these threats to dependability are valuable protection against malicious faults and attacks, on top of classical security measures.

For each of these threats, the applicable airworthiness requirements are summarized; the solutions used on Airbus Fly-by-Wire are described, along with challenges to these solutions and future trends.

The paper focuses on piloting aids, summarizing other threats. More details can be found in \[2\].

2 Systems Failures due to Physical Faults

FAR/JAR 25.1309 that requires demonstrating that any combination of failures with catastrophic consequence is Extremely Improbable typically addresses failures. "Extremely Improbable" is translated in qualitative requirements (see § 3 to 5) and to a 10^{-9} probability per flight hours. Specifically for flight controls, FAR/JAR 25.671 requires that a catastrophic consequence must not be due to a single failure or a combination of a single failure with a hidden one (unless very stringent maintenance requirement on this failure) or a control surface jam or a pilot control jam. This qualitative requirement is on top of the probabilistic assessment.

To deal with the safety issue (the system must not output erroneous signals), the basic building blocks are the fail-safe command and monitoring computers. These computers have stringent safety requirements and are functionally composed of a command channel and a monitoring channel.

To ensure a sufficient availability level, a high level of redundancy is built into the system.

2.1 Command and Monitoring Computers

2.1.1 Computer Architecture

Functionally, the computers have a command channel and a monitoring channel (see Fig. 1a/ Fig. 1b). The command channel ensures the
function allocated to the computer (for example, control of a moving surface). The monitoring channel ensures that the command channel operates correctly. This type of computer has already been used for the autopilot computers of Concorde, and the Airbus aircraft.

Two types of computers are used in the A320 flight control system: the ELAC's (ELevator and Aileron Computers) and the SEC's (Spoiler and Elevator Computers). Two types of computers are also used on the other FbW Airbus, named differently: the PRIM's (primary computers) and the SEC's (secondary computers). Although these computers are different, the basic safety principles are similar and described in this part of the paper.

Each channel (Fig. 1a/Fig. 1b) includes one or more processors, associated memories, input/output circuits, a power supply unit and specific software. When the results of one of these two channels diverges significantly, the channel or channels which detected this failure cut the links between the computer and the exterior. The system is designed so that the computer outputs are then in a dependable state (signal interrupt via relays).

2.1.2 Redundancy
The redundancy aspect is handled at system level. This paragraph only deals with the computer constraints making system reconfiguration possible. The functions of the system are divided out between all the computers so that each one is permanently active at least on one subassembly of its functions. For any given function, one computer is active the others are in standby ("hot spares"). As soon as the active computer interrupts its operation, one of the standby computers almost instantly changes to active mode without a jerk or with a limited jerk on the control surfaces. Typically, duplex computers are designed so that they permanently transmit healthy signals and so that the signals are interrupted at the same time as the "functional" outputs (to an actuator for example) following the detection of a failure.
2.2 Components Redundancy

![Fig. 2. A340-600 System Architecture](image)

2.2.1 Computers
The computers and actuators are redundant. This is illustrated by the A340-600 pitch control (Fig. 2, left and right elevator, plus Trimable Horizontal Stabilizer - THS). Four command and monitoring computers are used, one is sufficient to control the aircraft. In normal operation, one of the computers (PRIM1) controls the pitch, with one servocontrol pressurized by the Green hydraulic for the left elevator, one pressurized by the Green hydraulic on the right elevator, and by electric motor No. 1 for the THS. The other computers control the other control surfaces. If PRIM1 or one of the actuators that it controls fails, PRIM2 takes over (with the servocontrols pressurized by the Blue hydraulic on left elevator, yellow on right side, and with THS motor No. 2). Following same failure method, PRIM2 can hand over control to SEC1. Likewise, pitch control can be passed from one SEC to the other depending on the number of control surfaces that one of these computers can handle. Note that 3 computers would be sufficient to meet the safety objectives. The additional computer is fully justified by operational constraints: it is desirable to be able to tolerate a take-off with one computer failed. This defines the Minimum Equipment List (MEL).

2.2.2 Reconfiguration of Flight Control Laws and Flight Envelope Protections
Note that the laws are robust as designed with a sufficient stability margin\(^6\)-\(^{11}\). Also, if the input vector of the system is far outside the maximum certified envelope, only a simple law, using the position of the sticks and the position of the control surfaces at input, is activated (this law is similar to the type of control available on a conventional aircraft).

The laws must be reconfigured if certain sensors are lost (in particular, the ADIRU’s). The crew is clearly warned about the status of the control law. If the three ADIRU’s are available (normal case), the pilot has full authority within a safe flight envelope. This safe flight envelope is provided by protections included in the control laws, by addition of protection orders to the pilot orders. Flight control is in G-load factor mode.

If only one ADIRU is available, it is partially monitored by comparison with other independent information sources (in particular, an accelerometer). In this case, the safe flight envelope is provided by warnings, as on a conventional aircraft. Flight control is still in G-load factor mode. If all ADIRU’s are lost, the flight envelope protections are also lost and the flight control law is in a degraded mode: direct mode. This law has gains, which are a function of the aircraft configuration (the position of the slats and the flaps), and allows here again flight control similar to that of a conventional aircraft.

2.3 Challenges and Trends
On computer side, there is no major change in sight, apart from physically cutting a COM/MON computer into two units. This coupled with an increase self-test capability could provide a reduction of spare needs. This will be applied on A380/A400M/A350 PRIM. Another trend is to design fully portable software. This could be used to get exactly the same software on simulators as on airplane.

In term of communications between computers, a step has been done on A380, A400M and A350 by using a deterministic Ethernet network, for non-critical data and functions. Next step could be to use more smart actuators, and thus a digital network between them and computers.
AIRBUS FLY-BY-WIRE:

3 Design and Manufacturing Errors

These errors are addressed by FAR/JAR 25.1309 that mandates to follow a stringent development process, based on following guidelines:

- ARP4754/ED7913\(^\text{[12]}\) for aircraft system development
- DO 178/ED1214\(^\text{[13]}\) for software development
- DO 254/ED8015\(^\text{[14]}\) for hardware development

There is no clear requirement that a design must be design-fault-tolerant, except if the applicant wishes to reduce its development assurance effort.

On Airbus EFCS, both ways are used:

- Error-avoidance with a stringent development process
- Error-tolerance as well.

3.1 Error Avoidance

Aviation guidelines are applied, with the highest level of Development Assurance Level (level A). A340-600 EFCS is even likely to be the first system to be certified according to ARP 4754 level A.

3.1.1 On Computer Functional Specification

The specification of a computer includes, on the one hand, an "equipment and software development" technical specification used to design the hardware and, in part, the software, and, on the other hand, an "equipment functional specification" which accurately specifies the functions implemented by the software.

This functional specification is a key element in the Fly-by-Wire development process. It is designed by engineers skilled in automatic control and aircraft system sciences and used by software engineers. Although system and software engineers are knowledgeable in each other field, and are working in the same company with the same objective, it is mandatory that the functional specification be non-ambiguous for each discipline. It is written using a graphic computer-assisted method.

Specification language is named SCADE\(^\text{[15]}\), a derivative of a previous one: SAO. All of the computer functions are specified with this method: flight control laws, monitoring of data, actuators, slaving of control surfaces, reconfigurations, etc. Timing of these functions is very simple. Scheduling of operations is fixed and run continuously at a fixed period. One of the benefits of this method is that each symbol used has a formal definition with strict rules governing its interconnections. The specification is under the control of a configuration management tool and its syntax is partially checked automatically.

Hence, validation and verification activities are addressed in this paper in three steps: system architecture and integration, computer functional specification, computer software.

For the translation of functional specification into software, the use of automatic programming tools is becoming widespread. This tendency appeared on the A320 and since A340-600 both PRIM and SEC are programmed automatically for a significant part. Such a tool has as input the functional specification sheets, and a library of software packages, one package for each symbol utilized. The automatic programming tool links together the symbol packages.

The use of such tools has a positive impact on safety. An automatic tool ensures that a modification to the specification will be coded without stress even if this modification is to be embodied rapidly (situation encountered during the flight test phase for example). Also, automatic programming, through the use of a formal specification language, allows onboard code from one aircraft program to be used on another. Note that the functional specification validation tools (simulators) use an automatic programming tool. This tool has parts in common with the automatic programming tool used to generate codes for the flight control computers. This increases the validation power of the simulations.
3.1.2 System Architecture and Integration V&V

The system validation and verification proceeds through several different steps:

- Peer review of the specifications, and their justification. This is done with the light of the lessons learned by scrutinizing incidents that occur in airline service.
- Analysis, most notably the System Safety Assessment which, for a given failure condition, checks that the monitoring and reconfiguration logics allow to fulfill the quantitative and qualitative objectives, but also analysis of system performances, and integration with the structure.
- Tests with a simulated system, taking credit to the automatic coding of the functional specification, with a coupling with a rigid aircraft model.
- Test of equipment on a partial test-bench, with input simulation and observation of internal variables (for computers).
- Tests on iron bird and flight simulator. The iron bird is a test bench with all the system equipment, installed and powered as on aircraft. The flight simulator is another test bench with an aircraft cockpit, flight controls computers, and coupled with a rigid aircraft model. The iron bird and the flight simulator are coupled for some tests.
- Flight-tests, on up to four aircraft, fitted with a "heavy" flight test instrumentation. More than 10000 flight controls parameters are permanently monitored and recorded.

The working method for these tests is twofold. A deterministic way is used, based on a test program, with a test report answering. In addition, credit is taken of the daily use of these test facilities for work on other systems, for demonstration, or test engineer and pilot activity. If the behavior of the system is not found satisfactory, a Problem Report is raised, registered and investigated.

3.1.3 Verification and Validation of Functional Specifications

Certain functional specification verification activities are performed on data processing tools. For example, the syntax of the specification can be checked automatically. A configuration management tool is also available and used.

The specification is validated mainly by rereading (in particular, during the safety analysis), by analysis and by ground or flight tests (see § 3.1.2). Analyses are more or less aided by tools, and address topics such as uncertainties propagation and timing for robustness. Our target is validation at earliest possible stage. To achieve this, various simulation tools exist and this because the specifications were written in a formal language making the specification executable.

This makes it possible to simulate the complete flight control system: computers, actuators, sensors, and aircraft returns (OCASIME tool). It is also possible to inject with this tool some stimuli on data that would not be reachable on the real computer. The signals to be observed can be selected arbitrarily and are not limited to the inputs/outputs of a specification sheet. The test scenarios thus generated can be recorded and rerun later on the next version of the specification, for example. A global non-regression test is in place, allowing for each new standard of computer specification, to compare the test results of the previous version, and of the new version. This comparison allows detecting modification errors.

Also, the part of the specification that describes the flight control laws can be simulated in real time (same Ocasime tool) by accepting inputs from a real sidestick controller (in fact, simpler than an aircraft stick), and from the other aircraft controls. The results are provided on a simulated Aircraft Primary Flight Display for global acceptance, and in more detailed forms, for deep analysis.

Ocasime tool is coupled to an aerodynamic model of the aircraft.

Test scenarios are defined based on the functional objectives of the specification, including robustness and limit tests. Some
formal proofs are performed too, but still on a very limited basis.

3.1.4 Challenges and Trends
With respect to error-avoidance we are faced with the challenge to get the system right the first time. This leads more and more to move V&V upstream and to partially automate it. We have also an opportunity that is the level of formalism of functional specification language. This should make more way to prove formally properties of the system, to better integrate design and safety processes[16] and to measure the structural coverage of the tests performed.

3.2 Error Tolerance

3.2.1 Dissimilarity
The flight control system was subjected to a very stringent design and manufacturing process and we can reasonably estimate that its safety level is compatible with its safety objectives. An additional protection has nevertheless been provided which consists in using two different types of computers: for example, A380's PRIM on Power PC and the SEC on Share processor. Automatic coding tools are different too. Functional specification and hence the software are different too; ELAC and PRIM run the elaborate functions while SEC is simpler (less functions like flight envelope protections, autopilot on A380, less stringent passenger comfort requirements on control laws and monitorings) and thus more robust.

Within a computer, COM and MON hardware are basically of a same design, but with different software.

3.2.2 Challenges and trends
A challenge to error tolerance is the reduction of electronic component suppliers: it becomes more and more likely that if two design teams (one for PRIM, one for SEC) choose independently their components, they will end up with some in common. Hence, we have moved from this kind of "random" dissimilarity to a managed one, such that both computer design teams decide in common to take different components.

In-service experience has shown that PRIM/SEC dissimilarity is fully justified. Indeed, two cases shown that this dissimilarity is providing a benefit on system availability. During one A320 flight, both ELAC were lost following an air conditioning failure and the subsequent abnormal temperature rise. It appears that a batch of these computers was fitted with a component whose temperature operating range did not match exactly the specified range. During one A340 flight, a very peculiar hardware failure of a single component trapped all three PRIM logic temporarily (reset was effective).

4. Particular Risks

Particular risks are spread within FAR/JAR. ARP 4761[17] tends to regroup most of them. Basically, the concern with this type of event is that it can affect several redundancies in a single occurrence.

Airbus addresses this concern by building a robust system and qualifying its components accordingly (against vibration, temperature…). Additionally, emphasis is put on separating physically the system resources, segregating them, and by providing an ultimate back-up redundant to the EFCS.

5. Human Factor in Flight Control Development

Since Human Factor is identified as important as a contributive factor in accidents and incidents[18], Airbus flight control system takes it into account in its process development.

This issue is extensively addressed by the aviation regulation with respect to aircraft stability and control and related issues (warning, piloting aid). Maintainability is also addressed in broad terms.
5.1 Human Factor in Design Development

The automation in Airbus fly-by-wire contributes to safety enhancement by reducing the crew workload, the fatigue, and providing situation awareness and a better survivability to extreme situations, not to mention better robustness to crew error.

5.1.1 Comfort

One of the constraints to optimize the control laws is the crew and passengers comfort, in order not to have too much oscillations or excessive G-load factor variation\(^7\)\(^{-11}\). This optimization contributes to mitigate crew fatigue\(^{19}\).

5.1.2 Situation Awareness

The Airbus flight control system provides also information to the crew, in order to increase his situation awareness to an adequate level. On top of this information, the aircraft systems can provide warnings, with aural and visual cues or semi automatic control (see § 5.1.4).

The information displayed on PFD/FMA/ECAM/ND (such as which AP mode is engaged or the stall speed indication on speed scale or the status of flight control on ECAM page) provide tools to the crew to interpret the situation and to maintain him in the automation loop (crew is not excluded of the aircraft control and have all the elements to judge the situation and to react properly).

Another level of information is the warnings (visual or audio). As far as possible, the situation awareness is the first level of safety, before the second level with cautions or warnings.

Flight control system provides the necessary information to the Flight Warning Computer. For instance, the T.O. CONFIG memos allow checking the good configuration of the aircraft before take-off (spoiler retracted, flap/slat in take-off configuration, etc.).

Several avionic equipments are already dedicated to flight envelope protection, providing information to the crew as:

- Audio alert on Traffic Collision Avoidance System (TCAS) in case of collision risk with another A/C, on Terrain Avoidance Warning System (TAWS) in case of terrain collision risk but also in case of too excessive sink rate.
- Situation awareness on meteorological radar with the display of storming area on Navigation Display.

Current research is focusing on approach and landing: to be able to warn the crew that an approach presents some risk. Typical risks under studies are to approach with too high energy (with the risk to get out of the landing strip) or with too much roll and yaw activity.

5.1.3 Reconfiguration

The auto-diagnostic of a failure and the automatic reconfiguration after this failure (see paragraph 2.2.) contributes to reduce the crew workload.

For instance, in case of a servo-control control loss, the failure is automatically detected by monitoring of discrepancy between feedback loop and command loop. Then, the redundant servo-control of the impacted surface takes over from the failed one, with a totally transparency for crew (but the information are available on crew request, through ECAM for example).

5.1.4 Specific Flight Envelope Protection

The flight envelope protections are a third level of safety. They could be semi automatic or fully automated.

The electrical flight control system contributes also to the safety enhancement of the aircraft through the set of protections\(^7\),\(^{20}\), which is an integral part of the flight control laws. For
instance, a protection, called high angle-of-attack, prevents the aircraft from stalling.

Structure protections are provided during normal flying (extreme G-load factor, excessive speed). Airbrakes are also set to 0° in case the pilot commands full thrust on the engines or flight a high angle of attack regime.

These protections lighten the pilot's workload, in particular, during avoidance manoeuvres whether for an obstacle (near miss) or windshear. A pilot who must avoid another aircraft can concentrate on the path to be followed without worrying about the structural limits of the aircraft or a possible stall. The improvement process is on-going. Next aircraft will introduce a specific auto-pilot mode that automatically performs the avoidance maneuver which is needed in case of a collision risk with another aircraft[21].

5.2 Human Factor in Maintainability

Electrical flight control system uses sensors all over the aircraft and inside the actuators. As a side effect, most system failures are readily detectable and a rather precise diagnostic can be done. Thus, hundreds of precise maintenance messages are targeting the exact Line Replaceable Unit. An aid for the check operation sequencing to perform is proposed through ECAM. This contributes to decision-making in case of a failure; by crew if a dispatch is proposed in MEL document, by maintenance team in the other case. The flight control system is designed to propose the maximum of availability.

5.3 Human Factor in Certification

The aviation rules (in particular FAR/JAR 25.1302) have been reviewed for A380 to put emphasis on the human error impact in system failure. Through this new rule, the flight control design will be demonstrated to be adequate to the effects of crew errors, to the workload, and to provide an adequate feedback to the crew on aircraft situation.

That means that the flight control design, the interface with crew, the procedures in case of failure (Flight Crew Operating Manual - FCOM) and the training are adapted:

- not to increase the crew workload,
- to check the perfect adequate wording of procedures (no ambiguity),
- to provide safety barriers which prevent a single human error to transform a minor or major failure into catastrophic failure.

5.4 Challenges and Trends

A difficulty has been to fine-tune all the failure detection mechanism. A basic Airbus fly-by-wire choice is to prefer immediate failure detection by on-line monitorings to off-line tests during scheduled maintenance. This reduces the level of hidden failure when the aircraft is dispatched. Unfortunately, this can be a burden to the operator when such a monitoring is too "talkative". Challenge is thus to get that all these monitorings be perfectly matured when the airplane enters into service.

The trend is also to more integrate the system, to have more interaction with avionics systems and all surveillance systems. For instance, flight control system could automatically react to a collision risk, better control could be provided on ground[10].

On certification point of view, the Human Factor Working Groups have also proposed some recommendations on Airworthiness rules FAR/JAR 25.1301 and 25.1302, specifically on:
- Error-tolerance:
 The objective is to explicitly address design-related pilot error, to make errors detectable and reversible. The error effects must be apparent for flight crew.
• Error-avoidance:
This rule would formally address design characteristics that lead to or contribute to error. For instance, the controls and system logic required for flight crew tasks must be provided in accessible usable and unambiguous form and must not induced pilot error. The integration within systems must also be addressed. Airbus cockpits are already designed this way; the new rule adds formalism in the exercise.

6. Conclusion

Experience has shown that Airbus fly-by-wire is safe, with margins. Research has also shown that new technologies can be both cost effective and providing additional safety margins. Such technical improvements, when mature, are incorporated in aircraft design.

References

