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Abstract

The optimization of complex structures involving
many design variables and constraints can be per-
formed using a multi-level approach: a structure
consisting of several components is optimized as
a whole (global) and on the component level (lo-
cal). Earlier work [1], [2], [3], described a multi-
level technique developed for the optimization
the Airbus A380 vertical tail plane. In this ap-
plication, a global model is used to calculate the
loads on each of the components. These com-
ponents are then optimized using the prescribed
loads, followed by a new global calculation to
update the loads. The component optimization
strategy is based on Neural Networks (NN) and
Genetic Algorithms (GA).

This paper describes a strategy that makes
this global-local optimization method possible
for problems in structural dynamics. It is estab-
lished that a parametrization of the component in-
teractions (e.g. component loads) is problematic
due to frequency dependence. Hence, a modified
method is proposed in which the speed of Com-
ponent Mode Synthesis (CMS) is used to avoid
this parametrization. The effectiveness of this
method is demonstrated in a test case concerning
the placement of sensor and actuator locations in
Active Structural Acoustic Control (ASAC). Spe-
cial attention is paid to the behavior of the opti-
mization strategy.

1 Introduction

1.1 Global-local strategy

The global-local strategy discussed in this paper
consists of astructure evaluation, where a global
model is evaluated to calculate the interactions
between the components, and acomponent op-
timization where the components are optimized
separately while taking into account the interac-
tions (see figure 1). Together, these two steps
are named astructure iteration. As the name
suggests, the results of the component optimiza-
tion are subjected to a structure evaluation again,
making this an iterative process.

In earlier research, this strategy has been ap-
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Fig. 1 Global-local strategy.l: interactions,x:
design variables
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plied to a weight minimization for the carbon fi-
bre re-enforced panels of the Airbus A380 verti-
cal tail plane. In that case, the interactions cal-
culated during the structure evaluation consist of
boundary forces. In the component optimization,
each panel is optimized for minimum weight sub-
ject to static strength and buckling constraints,
while taking into account the boundary forces
calculated during the structure evaluation. A Fi-
nite Element (FE) model is used to calculate the
static stress and buckling load.

The component optimization strategy has
been developed to be efficient in a global-local
setting: as the global-local strategy converges,
the interactions between the components change
ever more slightly from one structure evaluation
to the next. Hence, the efficiency of the com-
ponent optimization benefits if the information
from FE calculations performed in earlier struc-
ture iterations is maintained. An approximate
model (or response surface) is used to interpolate
between FE results of both the current and ear-
lier structure iterations. This approximate model
consists of a Neural Network (NN) architecture
known as a backpropagating feedforward net-
work. In order to find the global minimum in
the NN approximation, a genetic algorithm (GA)
is applied. Although the GA requires a relatively
large number of function evaluations to converge,
the time needed to find the optimum is small be-
cause a function evaluation of the NN requires
very little computational effort. The optimal re-
sult obtained with the GA is subjected to FE anal-
ysis and the FE result is incorporated in the NN
approximation. This leads to a new optimum in
the approximate model (see figure 2). Again, this
optimum is identified using the GA and subjected
to FE analysis. This iterative process is contin-
ued until convergence is reached. Finally, it is
noted that unconditionally evaluating the global
optimum of the Neural Network can cause the
optimization to stagnate. Hence, some heuristi-
cal selection methods are applied to recognize or
avoid this stagnation.

design variables

FE results

Neural 
Network

FE 
Simulation

optimum

Genetic
Algroritm

Fig. 2 Component optimization (without selec-
tion method)

1.2 Active Structural Acoustic Control

In this paper, the optimization strategy is ap-
plied to problems in structural dynamics. The
test case involves a noise reduction strategy re-
ferred to as Active Structural Acoustic Control
(ASAC) [5], which is applicable when the source
of noise is a vibrating plate-like structure such
as an aircraft trim panel. In ASAC, sensors and
actuators are connected to the noise source such
that shape and amplitude of flexure can be con-
trolled to minimize sound radiation. Generally,
several sensors and actuators are placed on the
noise source. Simple design rules for placing the
sensor-actuator pairs exist, but these have a num-
ber of distinct drawbacks [5]. Hence, a numerical
optimizer is applied to select the sensor and actu-
ator locations.

As a test problem, we use a structure consist-
ing of three rectangular aluminium plates, sep-
arated by transverse stiffeners (see figure 3(a)).
The disturbance is generated by a rectangular
patch of piëzoelectric material placed on the mid-
dle plate. On the other two plates, a sensor-
actuator pair is placed to reduce the noise. The
actuators are piëzoelectric patches and the sen-
sors are accelerometers placed on the center of
each actuator. The plate is placed in an infinite
baffle – an acoustically hard surface that does not
vibrate – which means the Rayleigh integral can
be used for acoustical calculations. The reader is
referred to [4] for the exact properties of the test
problem.
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(a) global design of the test problem (b) Global-local problem.
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Dashed: remaining structure.

Fig. 3 The test problem: global design and global-local structure.

The optimization problem consists of finding
locations for the sensor-actuator pairs that min-
imize radiated sound power under a broadband
disturbance in a frequency range that includes the
first nine eigenfrequencies of the plate. In the
global-local setting, the structure has two compo-
nents consisting of a plate and a sensor-actuator
pair (see figure 3(b)). The two plates that are
not part of componenti are called theremaining
structure of componenti.

2 Convergence and optimality

The behavior of the global-local optimization
strategy depends strongly on the relations be-
tween the objective functions of the components.
Here, we give a brief summary of a theoretical
study with respect to this behavior. The problem
definition is as follows. Let the design variables
of componenti at the beginning of structure iter-
ationk be denoted as a vector:xk

i ∈ R
ni, whereni

is the number of design variables of this compo-
nent. The design variables of the global problem
can then be defined as the concatenation of all

vectorsxk
i :
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wherexk ∈ R
n is the vector of design variables in

the global problem in iterationk, N is the number
of components andn = ∑N

i=1ni is the number of
design variables in the global problem.

Next, the component objective functions are
defined. Instead of using an explicit parametriza-
tion of the interactions between the components,
such as the boundary forces, each component ob-
jective function is defined to depend explicitly on
the design variables of all components:

fi : R
n → R ≡ fi(
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) = fi(x) (2)

Where fi is the objective function of component
i. It is recalled that the component objective
function may differ from one component to the
next. For example, each component optimization
problem may be the minimization of the radiated
sound power of that component only.
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2.1 Convergence

In order to study the convergence of the optimiza-
tion strategy, the concept of a component opti-
mization is formalized. Since each component is
optimized while leaving the interactions (e.g. the
boundary forces) unchanged, this can be modeled
as an optimization of each component while leav-
ing the design variables of the other components
constant. The result of this optimization for com-
ponenti can be written as follows:

gi(xk) = argmin
x̂i
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Where argmin denotes the argument of the mini-
mum: the design variables for belonging to opti-
mal result. ˆxi is a dummy variable needed to find
the minimum. The functiongi : R

n →R
ni = gi(x)

is named the component optimization function.
The result of a structure iteration is a vector con-
taining the results of all component optimiza-
tions:

g(xk) ≡
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Whereg : R
n →R

n = g(x) is named thestructure
iteration operator. The global designg(x) is used
to calculate the interactions between the com-
ponents that are subsequently used in the com-
ponent optimization. These interactions are not
modeled. Hence, the design variables themselves
are used as input for the next structure iteration:

xk+1 = g(xk) (5)

It can be seen that the result in the next structure
iteration is simply a function of the current re-
sult. Convergence to a pointx⋆ ∈R

n occurs when
results in the vicinity ofx⋆ are attracted to that

point. Assuming that the functiong(x) is suffi-
ciently smooth, we may linearize equation 5 near
the pointx⋆:

xk+1 ≈ g(x⋆)+Dx⋆g· (xk −x⋆) (6)

WhereDx⋆g ∈ R
n×n is the Jacobian (derivative

matrix) ofg on the pointx⋆. It can be proven that
convergence occurs if and only if:

g(x⋆) = x⋆ (7)

ρ(Dx⋆g) < 1 (8)

Whereρ(A) denotes thespectral radius of the
matrix A, which is equal to its largest eigenvalue
in absolute value. In current problem, it is a mea-
sure for the interdependency of the location of the
optima for different components. If there is no
interdependency, then the spectral radius is equal
to zero and convergence occurs in a single struc-
ture iteration for the linearized problem. If the
interdependency is very strong, then the spectral
radius is large and the optimization does not con-
verge. The reader is referred to [4] for more a
more detailed model and a discussion about its
use in theory and practice.

2.2 Optimality

Each component optimization minimizes the ob-
jective function of that component. Any harm
done to the other components is not taken into
account. Hence, a combination of designs that
are each optimal from a component point of view
are not necessarily an optimum from a global per-
spective. The mechanism of components improv-
ing themselves by harming each-other is exem-
plified in the famousprisoner’s dilemma, which
is commonly used in introductions to game the-
ory.

Consider the case where the optimization has
converged to a pointx⋆. Since the optimization
has converged, each of the component objective
functions have a global optimum in this point.
Naturally, the optimization can only have con-
verged to an optimum from a global point of view
if x⋆ is that optimum. Hence, the global-local
strategy can not converge to an optimum from
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a global perspective unless the optimum in the
component objective functions coincides with the
optimum from a global point of view.

In case the global objective function is de-
fined as the sum of the component objective func-
tions, a sufficient condition can be derived for
the component objective functions [4]. For min-
imization problems, a converged result is guar-
anteed to be an optimum from a global point of
view if for each componenti:

‖Dxifi‖
2
2 ≥−Dxif

T
i

N

∑
j=1
j 6=i

Dxif j (9)

WhereDxif j ∈ R
ni is the gradient of component

j with respect to design variables of component
i. In this equation, the left hand side indicates the
improvement done to componenti for an incre-
mental step in the steepest descent direction of
the objective function of componenti. The right
hand side denotes any harm done to the other
components for this step. If the improvement al-
ways outweighs the harm, then a converged result
is guaranteed to be a minimum.

Two cases are discussed where component
objective functions trivially comply with equa-
tion 9. First, a structure is optimized where there
are no interactions between the components. In
that case,

Dxif j = 0 ∀ i, j (10)

such that the inequality is guaranteed to hold.
Second, all components share the same objective
function. Hence,

Dxifi = Dxif j ∀ i, j (11)

Hence, inequality 9 simplifies to:

‖Dxifi‖
2
2 ≥−(N −1) · ‖Dxifi‖

2
2 (12)

with N the number of components. This inequal-
ity holds for any objective function.

Based on the above theory, it is concluded
that an optimization technique where the com-
ponent objective functions are local, such as the
sound power radiated by one of the three plates,

is insufficient in the current global-local setting.
Instead, the sound power radiated by the entire
structure is to be minimized in the component op-
timizations. With equation 12, a converged solu-
tion is then guaranteed to be at least a local mini-
mum.

3 Parametrization of interactions

The NN serves as an approximate model which
interpolates FE results from all structure itera-
tions and also from different components within
the structure. In order to interpolate between
these results the approximate model must have
three sets of quantities as input (see figure 4).

• Design variables, such as the thickness of
the carbon fibre re-enforced panel.

• Interactions, such as the boundary forces
in the static optimization.

• Fixed parameters. These quantities al-
low the approximate model to interpolate
between results of different components.
By definition, they remain unchanged be-
tween structure iterations, but differ from
one component to the next. An example of
these quantities is the length and the width
of a panel.

Design variables

Interactions

Fixed parameters

Approximate
Model Cost

Fig. 4 Input and output of the approximate model.

Although this manner of interpolation is efficient
for problems in statics a direct generalization to
problems in dynamics is difficult. In many nu-
merical strategies, the broadband response of a
structure is obtained from harmonic calculations
at a large number of frequency steps. Although
it is possible to parameterize the interactions for
one frequency at a time, using the Neural Net-
work to approximate the solution at each fre-
quency step is not feasible because training a
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Neural Network with FE results of a large num-
ber of frequencies would require an unacceptable
amount of time. Hence, an approach is needed
where the parameterization of the interactions in-
cludes the frequency dependence. The approxi-
mate model must then be able to predict the way
resonance frequencies are influenced by the loca-
tion of the actuators and the degree of damping
introduced by the control system. Although such
parameterizations exist, the number of parame-
ters needed is invariably larger than the number
of dynamic modes taken into account. In prac-
tical problems, this leads to dozens of input pa-
rameters. It is expected that the number of FE
simulations needed to obtain an accurate fit is so
large that interpolation would be a burden instead
of a benefit. Hence, a different approach is taken.

4 CMS-based optimization

In the proposed approach, the parametrization
problem is avoided rather than solved. This is
achieved by applying Component Mode Synthe-
sis (CMS) [6]. CMS consists of two steps.

• Model reduction. Based on a FE model of a
component or a remaining structure, a sys-
tem of equations is generated that approxi-
mates the dynamical behavior predicted by
the FE model, but with a very small num-
ber of degrees of freedom (DOF).

• Synthesis. Several reduced models are
combined and the dynamical behavior of
the structure as a whole is calculated. In
the implementation of CMS for acousti-
cal problems, it is convenient to include an
acoustical calculation in this step, such that
the result of synthesis is the total radiated
sound power in a given frequency range.

It is convenient to explain these CMS based
optimization strategies for the optimization of
one component (i) and place them in the context
of a global problem later. A simple way to ap-
ply CMS to such a component optimization is as
follows (see figure 5). Prior to the optimization,
a large number of reduced models is generated

for componenti, each with different design vari-
ables. In order to optimize this component, a re-
duced model of its remaining structure is gener-
ated and the synthesis process is applied to calcu-
late the cost of each combination of a component
model with the remaining structure. In this sim-
ple example, the synthesis result with the small-
est cost is treated as optimal.

reduced
remaining
structure
model

optimum

costcost

synthesis
reduced 

component 
models

Fig. 5 CMS-based component optimization (ex-
ample)

This approach is well-suited for global-local
optimization. The optimization is started by as-
signing an some initial value to the design all
variables of all components. Based on these de-
sign variables, FE models are generated for the
remaining structures belonging to each compo-
nent. Each component is then optimized by com-
bining reduced models, which leads to new ’opti-
mal’ design variables for all components. Based
on these designs, new FE models of the remain-
ing structures are generated and a new compo-
nent optimization is performed. This process is
repeated until convergence.

It is clear that the parametrization of interac-
tions is avoided in this technique. Instead, the
component cost is re-evaluated each time the re-
maining structure changes. The computational
cost of this strategy is quite acceptable because
the amount of time and memory needed for the
calculation of the component cost from two re-
duced models is very low.

Obviously, the component optimization strat-
egy in this example must be refined in order to
be practical. In essence, this is achieved by in-
terpolating the component results and iteratively
refining this approximation. In order to optimize
one component (i), the following steps are taken.
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Fig. 6 CMS-based component optimization (pro-
posed strategy)

Prior to the optimization, a small number of re-
duced models is generated for componenti, each
with different design variables. A reduced model
of the remaining structure is generated and com-
ponent optimization (see figure 6) begins. The
reduced model of the remaining structure is syn-
thesized with each available reduced component
model. Based on the results, a NN-based approx-
imate model is generated and the GA is used to
find the optimal result in the approximate model.
This ’optimal’ design is subjected to model re-
duction and synthesis leading to the component
cost. The approximate model is improved with
this information and the GA is used to find the
new minimum. This process is repeated until the
optimum has been found.

An efficient global-local strategy is obtained
by storing all reduced component models for use
in the next component optimization. After the
first component optimization, the second struc-
ture evaluation begins. This consists of generat-
ing a new reduced model of the remaining struc-
ture based on the optimal component designs (see
figure 7). The synthesis process is then per-
formed to combine this new reduced model with
all available component models (see figure 6).
Only this new data is used in the approximate
model for this iteration: the approximate model

Model 
Reduction

reduced 
component 

models

design variables

reduced
remaining
structure
model

Component 
optimization

Fig. 7 CMS-based global-local strategy (for each
component)

of the previous iteration is discarded. Again, the
approximate model is iteratively improved. Af-
ter component optimization has converged, a new
structure evaluation begins. This iterative process
is continued until convergence.

In conclusion, the NN may be thought of as
a local model that predicts global quantities. In-
stead of interpolating between the results of ear-
lier structure iterations, the approximate models
are discarded after each structure iteration. How-
ever, at the beginning of a new structure itera-
tion the approximate models are brought up-to-
date with information of all reduced component
models available, which includes the component
design that was optimal in the previous structure
iteration. Due to the speed of CMS, synthesizing
all component models with the remaining struc-
ture requires less time than neural network train-
ing for the resulting data set.

5 Optimization results

The test problem introduced in section 1.2 is used
to demonstrate the properties of the CMS based
global-local optimization strategy. Two cases are
presented. First, we present the result of an opti-
mization where the excitation is broadband. Sec-
ond: the convergence of the optimizer is studied
in the case of a harmonic excitation. It will be-
come clear that a large subset of all possible con-
figurations can be characterized as optimal for
engineering purposes. In order to test the effec-
tiveness of the optimizer, both the design vari-

7



J.W. WIND

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25
 

x1

x2

y1

y2

C
oo

rd
in

at
e

[m
]

Structure iteration number
0 5 10 15 20

68.2

68.4

68.6

68.8

69
 

S
ou

nd
P

ow
er

[d
B

]

Structure iteration number

Fig. 8 Results of broadband optimization. From left to right: Initial configuration, design variables,
radiated sound power and result (solid line) superimposed on reference (dash-dot).

ables and the accompanying cost must converge
to the reference result. Hence, a difference of
0.1dB can be a large difference for the test re-
sult even though this difference is negligible in
practice.

5.1 Broadband excitation

The results of an optimization under a broadband
disturbance and a simple feedback control system
are given in figure 8. The optimization is started
with an initial configuration given on the left.
In the second figure, the results the global-local
optimization are displayed. Note that the con-
vergence of the component optimizations them-
selves are not depicted. The results are depicted
for component 1: the bottom plate. The figure
gives the optimal values of the design variables:
x1 andy1, and the design variables of component
2 (x2, y2) for which this result has been achieved.
Note thatx2 and y2 are in fact the result of the
optimization of component 2 in the preceding it-
eration.

Initially, the x1 andx2 alternate between two
values independently, but after iteration 11, the
result has converged. In the third figure, the
cost of the optimization result of component 1 is
given. The radiated sound power does not change
noticeably as the design variablesx1 andx2 alter-
nate between low and high values. This can be
explained using a picture of the objective func-
tion of component 1 (see figure 10): there are two
optima with a negligible difference in cost. From

this and other results it is also found that the opti-
mal value for the design variables of component
1 are almost independent of the design variables
of component 2 which explains the fact that the
radiated sound power has converged after the first
iteration.

68.5

69

69.5

Fig. 10 objective function of component 1: radi-
ated sound power (dB)

In order to obtain a reference result, the
NN-based optimization strategy used for compo-
nent optimization is applied to the structure as a
whole. This reference is the mirror-image of the
result of global-local optimization (dashed in fig-
ure 8). However, the global-local strategy outper-
formed the reference result with 68.24dB versus
68.4dB. A comment on the sub-optimal result of
the reference is given in section 5.3.
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Fig. 9 Results of harmonic optimization. From left to right: Initial configuration, design variables,
radiated sound power and result.

5.2 Harmonic excitation

The optimization is repeated for the same struc-
ture under a harmonic excitation and feed-
forward control. Results are given in figure 9,
where the radiated sound power is scaled to an
excitation of one Volt. In this case, the opti-
mal configurations are slightly more interdepen-
dent, which leads to a more gradual convergence.
From the reference optimization, it is known that
there is a vertical axis of symmetry in the objec-
tive function, leading to two minima in the objec-
tive function with a negligible difference in cost.
The global-local optimization converged to one
of these configurations and the (scaled) radiated
sound power is -29.9dB, equal to the reference
result.

Other results have indicated that the opti-
mization can converge to the other optimum or
not converge at all, depending on the initial de-
sign. Small deviations in the results of the ear-
lier iterations also have a strong impact on the
behavior in later iterations. Since each compo-
nent optimization minimizes theglobal radiated
sound power, a converged result is always at least
a local optimum.

5.3 NN approximation

The reference result of the optimization under a
broadband disturbance was found to be slightly
worse than the result of global-local optimiza-
tion. Although this NN-based optimization was
continued for a large number of iterations, results

in the vicinity of the true optimum were never
evaluated. This is an indication that the optimiza-
tion strategy is inefficient. Indeed, in some test-
cases, all of the tested NN-based strategies were
outperformed by a simple heuristic strategy that
does not make use of any interpolation. The in-
efficiency is caused by the fact that an unneces-
sarily large data set is needed for an accurate in-
terpolation. It is concluded that the NN interpo-
lation technique must be further refined in order
to be competitive for optimization purposes.

6 Conclusions

• A global-local optimization method for
problems in structural dynamics has been
proposed. The effectiveness of this method
has been demonstrated for a test case in
Active Structural Acoustic Control

• The objective functions and constraints on
the component level must be chosen with
some care because, in general, the opti-
mization will converge to a sub-optimal re-
sult. A good choice is the case where all
components optimize the same (global) ob-
jective function and only side constraints
are present. In this case, a converged result
is guaranteed to be at least a local optimum.

7 Recommendations

• The NN-based approximate model must be
further refined in order to be competitive.
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• Both the theory and the optimization
method can be modified to include con-
straints on a global level.
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