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Abstract

At present dual time methods with explicit
inner iteration scheme have been adopted by the
most of unsteady flow simulations based on
Euler equations or Navier-Stokes equations. A
disadvantage of the methods is that the
computation efficiency is not enough to calculate
the complex unsteady flows. In this paper a full
implicit dual time method with implicit pseudo-
time scheme by using moving chimera grids is
developed for computation of complex unsteady
flows. In the method a high efficient implicit LU-
SSOR method is adopted for the inner iteration
computation.

The numerical tests of the unsteady flow
simulation based on Navier-Stokes equations for
forward flight of rotary wings show that the
computation results is in agreement with
experiment and the method is very efficient for
computation of complex unsteady flows.

1  Introduction
Various methods have been developed for

helicopter rotor problems based on potential,
Euler and Navier-Stokes equations respectively.
The classical lifting-line or lifting-surface theory
based on potential equation has advantage of
being a quick, simple method and works well if
the nonlinear effects are negligible. And in this
case theoretical vorticity cannot occur in a
potential flow field except as discrete embedded
filaments or sheets. The methods based on Euler
equation provide proper modeling of vorticity

transport, but the omission of viscosity means
that there is still no built in mechanism for
diffusion of the vortex wake. In addition, Euler
equations are also inadequate when large scale
separation or other significant viscous effects
exist. Navier-Stokes Simulations for many
complex aerodynamic problems have been made
great progress, but their use in helicopter rotor
analysis has been limited. Because the flow
about helicopter rotor in forward flight is a kind
of complex unsteady viscous flow, the numerical
simulation based on Navier-Stokes equations are
prohibitively expensive for use in practical
engineering application. Typical flow solvers for
unsteady flow computation employ dual time
method. In this method Navier-Stokes equations
are discretized with implicit method and then the
discretized equation can be treated as a steady
state problem to be solved explicitly by a
pseudo-time. In order to achieve convergence
within each physical time step, these dual time
stepping schemes require a substantial number of
pseudo-time steps. Another disadvantage of the
dual time stepping method is that there are no
available error estimates for time accuracy
available, unless the inner iterations are fully
converged.

In order to simulate the full unsteady
viscous flows about helicopter rotors for
engineering use, the efficiency of the underlying
numerical algorithms needs to be improved. In
this paper an improved dual time stepping
method with implicit inner iteration scheme is
developed. In the method a Newton-like inner
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iterations based on LU-SSOR Scheme are
adopted.

The moving overset grid method[1] is
employed to account the relative motion among
the blades which are rotating, cyclic pitching and
cyclic flapping. To build the connection among
the overset grids quickly, a highly automatic and
very efficient method based on Hole Map and
Inverse Map is implemented.

2  Full Implicit Dual Time Method
By using finite volume method, in cell (i,j,k)

Navier-Stokes equations can be discretized as
following.
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The equation (5) is a inner iteration scheme,
τ  is a fictitious time. Generally the equation (5)
is solved by using explicit method, for example,
Runge-Kutta method with second order in time.
In the present paper we use following implicit
scheme to solve the equation (5),
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In order to linearize the equation (6), we use
the Taylor’s expansion and obtain the following
expression approximately
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and m is a number for representation of the
pseudo-time level, when ∞→m , 11)(
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Using equation (7) the equation (6) can be
rewriten as
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Because we only need to obtain the steady
state solution of equation (8), we can get the
following Newton inner iteration equation by
letting ∞→∆τ .
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In order to solve the equation (9), we use

LU-SSOR implicit scheme, which does not need
to solve inverse matrix.

3 Results
The full implicit dual time method has been

applied to the numerical simulation of the flow
about helicopter rotor in forward flight using
Navier-Stokes equations with Baldwin-Lomax
turbulence model. A model helicopter rotor was
used for the computation, which was studied
experimentally by caradonna [9] they tested a stiff,
two-bladed untwisted rotor with constant chord
and an NACA 0012 profile. The figure 1a shows
the moving chimera grid system for hover flight.
The figure 1b shows the moving chimera grid
system for the computation in forward flight case.
The grid system for forward flight consists of
blade grids, background grids and the transition
grids. The total number of grid points (including
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all two blades) is 2049792. The time step ( t∆ )
taken in the calculation corresponds to an
azimuth angle step of 0.03 degrees.

In the first test case advance ratio 20.0=µ ,
tip Mach number 8.0=tipM , pitch angle °= 0θ ,

Renolds number 61089.2Re ×= . The
computation results are given in Fig.2. The
computation results show good agreement with
the experiment data.

In the second case, advance ratio 15.0=µ ,
tip Mach number Mtip=0.671, the Reynolds
number 6100.3Re ×= , pitch angle

)(sin23.3)(cos11.18)( ttt ψψθ −°+°= , ψ is
azimuth angle. Figure 3 shows profile pressure
distributions of the rotor at radial location
r/R=0.89 and the azimuth angle ψ =0º , 90º ,
135º, 180º, 270º, 315º respectively. Figure 4
shows pressure contours on the upper surface of
the rotor at ψ =135º, 180º. Figure 5 shows the
thrust coefficient of the rotor as a function of
azimuth ψ . From the Figure 5 it is can be seen
that the history of thrust coefficient computation
shows that the periodic solutions are obtained in
third revolution of the rotor. Figures 6a-6b show
vorticity contours of the rotor at ψ =90º, 180º.

References
[1] Yang, A.M. and Qiao, Z.D. Numerical Simulation of

Unsteady Flow Around a Helicopter Rotor in
Forward Flight Using Moving Overset Grids. ACTA

AERODYNAMICA SINICA, pp.427-433,Vol.18,
No.4, 2000

[2] Yang,S.C. and Qiao, Z.D. Navier-Stokes Calculations
of Transonic Viscous Flow over Finite Wings. ACTA
AERODYNAMICA SINICA, pp.243-249,Vol.18,
No.2, 1998

[3] Yang, Y. and Qiao, Z.D. Time Accurate 2D Navier-
Stokes Calculations with a Dual-Time Stepping
Method, Chinese Journal of Aeronautics, PP.168-173,
Vol.10, No.3,1997

[4] Yang, A.M. Qiao, Z.D. and Weng, P. F. Numerical
Simulation of the Viscous Flow past a Helicopter
Rotor in Forward Flight Using Newton-Like Sub-
Iterations. ACTA AERODYNAMICA SINICA,
PP.57-63, Vol.20,No.1,2002

[5] Hsu, J.M. and Jameson,A. An Implicit- Explicit
Hybrid Scheme for Calculating Complex Unsteady
Flows. AIAA paper 2002-0714,2002

[6] Yoon, S. and Jameson, A. An LU-SSOR Scheme for
the Euler and Navier-Stokes Equations. AIAA paper
87-0600, 1987.

[7] Simpson, L.B. Unsteady Three-Dimensional Thin-
Layer Navier-Stokes Solutions on Dynamic Blocked
Grids. AFATL-TR-89-19,1989

[8] Jameson, A. Time Dependent Calculations Using
Multigrid with Applications to Unsteady Flows Past
Airfoils and Wings, AIAA paper 91-1596,1991.

[9] Caradonna, F.X. Laub, G.H., and Tung, C. An
Experimental Investigation of the parallel Blade-
Vortex Interaction, NASA TM-86005, 1984

[10] Webster, R.S., Chen, J.P. and Whitfield, D.L.
Numerical Simulation of a Helicopter Rotor in Hover
and Forward Flight, AIAA Paper 95-0193, 1995

[11] Ahmad, J. and Duque, E.P.N. Helicopter Rotor Blade
Computation in Unsteady Flows Using Moving
Overset Grids. Journal of Aircraft, PP.54-60, Vol.33,
No.1, 1996



Z.D.Qiao, A.M.Yang, B. Zhu
  

          4

X

Y

Z

X

Y

Z

Fig.1a  Moving chimera grid system for hover flight

Fig.1b  Moving chimera grid system for forward flight
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         (e) o150=ψ

Fig.2 Pressure comparison between computation and experiment (first test case)
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Fig.3 Pressure distributions of the helicopter rotor (second test case) at  r/R=0.96
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Fig.4  Pressure contours on the upper surface of the helicopter rotor (second test case)
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Fig. 6 a   Vorticity contours of the helicopter rotor (the second test case) ( o90=ψ )
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Fig. 6 b  Vorticity contours of the helicopter rotor (the second test case) ( o180=ψ )


