
ICAS 2002 CONGRESS 

                            1 

 
Abstract  

Future air traffic management (ATM) decision 
support systems (DSS) rely upon trajectory 
forecasting to adequately deliver benefits.  These 
forecasts are subject to errors from a variety of 
sources.  As the number and sophistication of 
ATM DSS capabilities grow, the interoperability 
between DSS will become more sensitive to the 
magnitude and variation in trajectory 
forecasting errors across DSS.  This paper 
presents a parametric analysis of some of the 
larger error sources.  Errors are considered due 
to turn dynamics, weight, wind gradient 
omission, speed intent, interim altitudes, top of 
descent placement, and wind for typical 
airborne flights. Estimates of error contributions 
to typical scenarios are presented as a function 
of phase of flight.  While certain errors are 
isolated as having larger impacts on the typical 
scenario, all error sources considered may have 
significant impact on trajectory forecasting 
under specific circumstances. 

1  Introduction  

In the quest to modernize our national airspace 
system (NAS) to reduce congestion and delays, 
the Federal Aviation Administration must 
develop, deploy, and maintain new Decision 
Support System (DSS) automation. The goal of 
such automation is to help controllers manage 
greater levels of traffic safely, efficiently, and 
with greater productivity. The FAA, with 
assistance from the National Aeronautics and 
Space Administration (NASA), has been 
successful in deploying the first phase of “free 
flight” DSS tools to a subset of our nation’s Air 
Traffic Control (ATC) facilities.  Although each 
of these tools provides a valuable benefit to a 

unique region of airspace (e.g., terminal, en 
route) and type of operations (i.e., local control, 
local TFM, national TFM, collaborative decision 
making), they all share one aspect in common, 
trajectory modeling. Each tool, in one form or 
another, must generate its advisories based on 
the prediction and analysis of four-dimensional 
(4D) trajectories for each flight operating within 
its airspace domain. 
 
Although each new FAA DSS tool must 
generate a return on investment for deployment 
and maintenance, an issue arises with the large-
scale success of many DSS tool capabilities. 
Each tool developed to date has also had to 
develop its own trajectory modeling capability. 
This independent development approach leads to 
overlapping efforts with some duplication across 
DSS tool projects. Furthermore, differences in 
requirements and approach, when combined 
with a lack of standardization, lead to subtle and 
sometimes major differences in software and 
architectural implementation of trajectory 
modeling functions. As a result of these 
differences, two issues arise regarding the 
precision (i.e., interoperability) across DSS 
tools, and the cost of development, deployment, 
and maintenance of a diverse set of systems 
performing a similar function.  
 
First, differences across DSS tools could 
potentially lead to situations where controllers 
and/or traffic managers receive slightly different 
values for the same parameter for the same 
flight. Suc h differences may be due to 
differences in the level of modeling fidelity, 
input data, and update rates. Setting aside the 
issue of trajectory prediction accuracy, this issue 
is one of precision between different DSS tools. 
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For example, a conflict-probe tool may indicate 
that a flight will arrive at a fix at one time, and a 
separate flow-metering DSS tool may indicate a 
slightly different time. In many cases, such 
differences may be entirely innocuous. 
However, such differences may lead to 
interoperability differences that are unacceptable 
for more advanced applications.  
 
The second issue has primarily to do with the 
operation and maintenance of an operational 
DSS system. In many cases, the initial 
innovation represents only a fraction of the total 
life-cycle cost of an advanced automation 
system. When one considers that each DSS tool 
is typically deployed to many ATC facilities (up 
to 20 en route Centers and many more terminal 
approach controls), it becomes clear how the 
cost of developing and deploying a trajectory 
modeling function for each tool is magnified by 
the number of installations (throughout the 
nation) that must be installed, monitored, and 
maintained. Differences in trajectory modelers 
require duplicative efforts to develop, parallel 
efforts to train facility-support personnel, and a 
greater number of support personnel to service 
the diverse set of DSS tool systems. 
 
Common trajectory modeling (TJM) refers to a 
capability to provide common “services” to 
subscribing DSS tools.  Prior efforts [1,2]  
provide a detailed description of the potential 
levels of common TJM services.  They also 
define a research and development approach for 
assessing and down-selecting the type of 
common TJM services and their implementation.  
Many prior efforts [3,4,5] have identified the 
impact of modeling and input errors on 
performance of specific trajectory modelers or 
decision support tools.  However, one must 
recognize that these input errors are not static.  
For example, future information exchange 
between the airspace users and ATSP may 
improve the ATSP’s knowledge of aircraft 
weight for estimating climb and descent profiles.  
As the magnitude and frequency of these input 
errors evolve, so does the relative importance of 
each error source.  This paper presents a 

parametric analysis of some of these error 
sources allowing a future user to estimate the 
relative contribution due to each error source.  
We also apply estimates of these errors to a 
scenario day to provide an assessment of error 
contributions under today’s operational 
environment.    

2 Trajectory Forecasting Errors  

As part of the development of a research plan for 
investigating common trajectory modeling, a 
joint FAA-NASA-MITRE effort catalogued the 
specific modeling “factors” contributing to 
modeling errors.  Each factor represented an 
element of a model (e.g., inclusion of turn 
dynamics), or an input error (e.g., improper 
route amendments, uncertainty in winds).  These 
factors were subsequently categorized 
qualitatively according to the group’s 
expectation of error magnitude (high-medium-
low), frequency of error (frequent or rare), and 
time horizon within which the FAA could 
develop mechanisms for coping with the 
uncertainty.  For example, the inclusion of turn 
dynamics could be accomplished within TJM 
functions with relative ease, but improvements 
in pilot intent require the ability to obtain the 
information from the flight deck to a trajectory 
modeler.  Identified errors are described in [6].  
 
In this paper, we focus on some of the higher 
impact errors (eit her high due to impact or 
frequency) that can be quantitatively analyzed.  
Specifically, we discuss and estimate the impact 
of the following factors: 
 
• Inclusion of turn dynamics in the trajectory 

modeler. 
• Error in aircraft weight estimate. 
• Omission of wind gradient term in modeler. 
• Error in speed intent. 
• Interim altitude levels on climb and descent. 
• Error in placement of top of descent. 
• Error in estimates of wind. 
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3 Results 

Two types of results are presented in this 
section: parametric analyses, and averaged 
results across a scenario day.  The parametric 
analyses are sensitivity studies intended to 
illustrate the impact of a single factor on 
trajectory uncertainty as the impact level of that 
factor is increased.  For example, the impact of 
weight on accuracy during climb is reported as 
the weight error is increased.  Averaged results 
across a scenario day represent the standard 
errors that are expected in trajectory forecasting 
when subject to errors on input representative of 
today’s operations.  The averaged results include 
the effect of the error on a collection of flights 
subject to a variety of different conditions and 
parameters (e.g., winds, aircraft type, flight 
profile, cruise level, initial weight).   
 
This report presents the trajectory uncertainty 
during the en route portion of flight (defined 
here as that portion above 10,000 feet).  We 
further subdivide the en route portion into three 
distinct phases: climb, cruise and descent.   
 
Trajectory uncertainty is defined in terms of 
three separate components: along-track, altitude 
and cross-track.  Errors are obtained by defining 
a vector between the “truth” trajectory and the 
predicted trajectory.  This vector is projected 
into a component in the vertical direction 
(altitude error), an along-track component in the 
direction of the “truth” velocity vector, and a 
cross-track component in the horizontal plane 
normal to the truth velocity vector.   

3.1 Turns  

Certain trajectory forecasting tools assume 
instantaneous turns rather than modeling the 
dynamics of the turn.  We estimate the impact of 
this omission by comparing trajectories with a 
simple turn model to trajectories assuming a 
discrete heading change at a waypoint.  This 
error represents the error of exclusion of the turn 
model and does not attempt to represent errors 
introduced in the execution of the turn by a pilot 
(described in [5]).  Our parametric analysis 

assumes a turn model, representing truth, with 
constant airspeed, a maximum bank angle of 25 
degrees, no winds and the bank angle is 
achieved instantaneously.   
 
Figure 1 shows the turn model employed.   The 
along-track error and maximum cross-track 
errors are respectively given by: 
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Figure 2 illustrates the effect of airspeed and 
heading change on the maximum cross-track and 
along track error in a turn. (e.g., An error of 
8557 ft. along track and 9270 ft. across track can 
be experienced by a flight at 400 kts 
encountering an 80-degree heading change.) 
 
A different turn model was used to obtain the 
impact of turns on a scenario.  This turn model 
incorporated the effect of winds on the turn and 
assumed a standard rate turn with a bank angle 
limited to a maximum of 25 degrees. The wind 
was assumed to be a constant during the turn.  
An entire day’s worth of flight plans and actual 
tracks were obtained, and the errors introduced 
by modeling instantaneous turns were 
investigated.  Figure 3 shows the distribution of 
maximum cross-track errors for both types of 
scenarios.  The average maximum cross-track 
error (averaged across all turns) is 1711 feet.  
Figure 4 illustrates the along-track standard error 
during all en route phases of flight based upon 
actual turn data.  Note that turns in a terminal 
environment would likely be larger and more 
frequent. 

3.2 Weight Erro r 

We estimated the impact of a percentage error in 
aircraft weight during both climb and descent.  
For the parametric analysis, we assume an 
aircraft initially accelerating from 250 knots to a 
climb calibrated airspeed (CAS) at a climb rate 
of 2000 feet per minute, the aircraft then climbs 
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using a constant CAS and constant Mach 
number segment.  Upon descent, the process is 
reversed.   
 
As an illustration of the impact of weight on the 
climb angle (?), an aircraft with a generic drag 
polar (CD0 + kCL

2) subject to no wind would 
experience the following climb angle. 
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(The dV/dh  term is obtained by holding either 
Mach or CAS constant).  During climb, the 
thrust (T) term dominates over the drag terms 
and we see that the climb rate would be 
dominated by a term inversely proportional to 
the weight.  During descent (negative ?), the 
impact of the weight on descent rate will depend 
on whether the induced drag term (k W) 
dominates.  Thus, for certain aircraft, weight 
errors will yield almos t no error in altitude on 
descent (e.g., see [4]). 
 
We applied variations in weight of 5 and 10% 
above and below a nominal weight of 100000 
lbs to a B737-300 aircraft model climbing to 
33000 feet.  No wind was used for the 
parametric analysis, but an ISA atmosphere was 
assumed for the temperatures.  Figures 5 and 6 
illustrate the altitude and along-track errors 
experienced by the flight during the climb.  
During the Mach segment, true airspeed 
decreases as altitude increases.  The reverse is 
true during the CAS segment.  Thus, the along-
track error tends to peak around transition. 
 
Using a sample of flights across the NAS, we 
calculated the climb and descent profiles at 
nominal weights, and compared them to climb 
profiles with an additional weight uncertainty 
expressed as a percentage error.  This error was 
drawn from a normal distribution with zero 
mean and variance of 5% to be consistent with 

[7].  (Assuming that weight biases in [7] could 
be removed.)  For descent profiles, we assumed 
the same percentage weight error.  Figure 7 
shows the standard error encountered both along 
track and in altitude during climb.  The altitude 
error peaks at 763 feet decreasing to zero as the 
cruise altitude is reached.  The along track error 
grows to a constant 0.41 nautical miles. 

3.3 Wind Gradient Omission 

Many tools seeking to forecast trajectories 
include the effect of winds on climb and descent, 
but neglect the effect of the wind gradient term.  
This term is best illustrated by an example.  
Consider a flight subject to a tailwind (w) 
monotonically increasing as a function of 
altitude.  The climb angle (?) can be expressed 
as: 
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An increase in the wind gradient (dw/dh) will 
result in a decrease in the climb rate.  This result 
can be observed in Figures 8 and 9.  Linear wind 
gradients were imposed assuming wind speeds 
of up to 100 knots at 33000 feet.  In these 
figures, a positive number implies a tailwind.  
The lack of symmetry in the along-track error is 
the result of competing effects.  When subject to 
a headwind, neglecting the gradient places the 
estimated flight below the actual flight.  This 
results in a lower headwind at the lower altitude 
(increasing the ground speed).  The lower 
altitude also results in a lower true airspeed for 
constant CAS.  However, as the flight climbs 
into the constant Mach regime, the lower altitude 
results in a higher airspeed.  At lower altitudes, 
the effect of constant CAS dominates, thus the 
estimated flight lags behind the actual.  At 
higher altitude, the wind effect dominates over 
the Mach number effect.  The estimated flight 
then begins to catch up.  When subject to a 
tailwind, the dominant effect always results in a 
faster estimated flight.   
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3.4 Speed Intent 

Constant speed intent errors do not lead to a 
bounded error. These errors integrate into 
increasing positional uncertainty. We investigate 
the impact of speed uncertainty in climb and 
descent by applying a constant percentage error 
in speed to the climb and descent CAS and 
Mach.  From [7] we estimate a speed error of 
approximately +/-5% in both climb CAS and 
Mach number.  This assumes an error stemming 
from the observed variance in pilot-discretionary 
speed profile for cases where the DSS is 
attempting to guess a flight’s planned speed 
versus providing a speed advisory.  On descent, 
an error of 5.5% was imposed.  During descent, 
the along-track error does not continue to 
increase since all flight trajectories are bound by 
the 250 kt (CAS) restriction below 10,000 feet. 
 
When applied to the climb scenario, the along-
track standard error grows at 5.3 knots. During 
descent, the error peaks at 3.1 nmi.  Altitude 
errors peak at 212 feet in climb and 2920 feet in 
descent.   

3.5 Interim Altitudes  

One additional source of trajectory uncertainty 
involves the practice of aircraft flying level at 
altitudes other than their cruise altitude.  This 
can occur for a variety of reasons:  
• transitioning aircraft will encounter a 

conflict that is averted by remaining at an 
interim altitude,  

• an interim altitude is provided to a 
transitioning flight and the controller does 
not provide a continuing clearance until the 
aircraft has leveled off 

• a procedure is in place with a specified 
altitude restriction 

• a flight conducts a “step-climb” to a new 
cruise-level 

• a flight requests a new altitude to avoid 
turbulence. 

 
We estimated the frequency with which flights 
encounter a “level-off” altitude during climb by 
looking at a sample of 3966 climbing flights in a 

scenario day.  A total of 28% of these climbing 
flights were subject to interim altitudes with a 
level-off altitude distribution, and duration as 
shown in Figure 10.  Note that longer durations 
tended to be associated with level-offs at higher 
altitudes due to step climbs. 
 
The impact of these level-offs on trajectory 
uncertainty was estimated by assuming that none 
of the level-offs were predicted to occur when 
the trajectory forecast was made.  (Although, 
some of these, based on restrictions, would be 
known.)  Figure 11 illustrates the impact of these 
level-offs on climb.  During climb, level-offs 
will always place the flight path below forecast, 
resulting in the average peak altitude error of 
280 feet.  At one sigma, the peak altitude error is 
1418 feet. 
 
The above approach assumes that interim 
altitudes are not known prior to conducting 
trajectory forecasts.   However [8] found that 
when dealing with the input of altitude 
clearances into automation, “almost all altitude 
clearances were correlated to a flight plan 
amendment or interim altitude message”.  Thus, 
at some point prior to the level-off, the altitude 
of the level-off would be known to the 
automation either through amendments, or 
through restrictions.  We analyzed the errors by 
assuming that the level-off altitude was known, 
but the duration was assumed to be the mean.  In 
this case, knowing the level-off altitude lowers 
the peak altitude error from about 1400 feet to 
900 feet. 

3.6 Top of Descent 

One error occurring only in descent involves the 
placement of the top of descent (TOD) point.  A 
delay in the placement of top of descent will 
result in a flight significantly above the 
forecasted profile.  Some trajectory prediction 
algorithms will integrate backwards from bottom 
of descent, for these algorithms, one can 
approximate the error as a scaled error in the 
placement of the bottom of descent.   
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We estimated the error in TOD placement by 
first looking at the variance in the top-of-descent 
based upon observed flight data. We calculated 
the variance by grouping flights by arrival 
airports and corner posts.  This approach sought 
to eliminate regional variation in TOD 
placement.  Based upon these observations, we 
found a variance of 28 nautical miles in the TOD 
placement.  We estimated this error by imposing 
a normally distributed error in TOD with a 
variance of 28 nautical miles. 
 
Note that an error of 28 nautical miles on TOD 
represents the error encountered under current 
operations by a decision support system without 
imposing changes in descent procedures.  When 
these assumptions are relaxed, [9] showed that a 
mean error of 1.2 nautical miles could be 
obtained in TOD placement for non-FMS 
equipped aircraft (assuming a TOD advisory is 
issued).  Given accurate wind, performance, and 
speed-profile data, [9] showed the error could be 
reduced to 2.4 nautical miles for FMS aircraft 
without requiring advisories.     

3.7 Wind  

Unlike some of the errors reported previously, 
errors in forecasting the wind can be represented 
by a vector field, rather than a point value.  
However, much of the literature reports wind 
prediction accuracy in te rms of aggregate rms 
statistics (see [10] for a discussion on these 
problems) which hides localized wind errors that 
are on a scale of relevance to conflict probe 
applications (e.g. 20 mins). Furthermore, the 
impact of wind errors on trajectory uncertainty 
depends on the spectral characteristics of the 
wind estimation error.  Wind uncertainty also 
depends on the forecast being used (e.g., RUC-1, 
RUC-2)[11] or if the forecast was augmented 
with updates from airborne data (e.g., [12]).   
 
We present here a parametric analysis of wind 
uncertainty in climb and in descent, assuming a 
wind bias error corresponding to rms values 
typically reported in the literature.  A bias error 
is used since one would expect errors resulting 
from time varying wind signals to have  a smaller 

impact on trajectories than the effect of a 
constant wind bias.  The magnitude of the wind 
bias was obtained from [10,11,12] with rms 
values ranging from 7 to 20 knots.   
 
Along-track error grows monotonically with the 
speed error.  The altitude error is zero when 
expressed as a function of time since the aircraft 
continues to climb at the same rate in an air-
fixed frame of reference.  Note that if altitude 
restrictions are in place, a coupling between 
along-track and altitude will result in altitude 
errors due to along-track errors. 
 
We obtained the impact of the wind error on a 
scenario day by applying a wind error to each 
flight in our climb and descent scenarios.  The 
wind error was obtained by sampling from a 
distribution using the cumulative probability 
density function shown in [10].  This wind bias 
produced along-track errors growing at 10 kts. 

3.8 Lateral Deviations not Amended 

One effect that we did not calculate in this 
report, is the impact of route deviations for 
which amendments were not entered into the 
automation system.  Through a voice tape 
analysis, [8] determined that only 18% of route 
clearances are entered into the automation as 
route amendment messages. While this number 
is based on a limited data set, the impact of 
errors in the lateral route were investigated in 
[3,7].  The former study revealed a mean error of 
2.46, 1.09, and 6.06 nautical miles for 
departures, over-flights and arrivals.  Standard 
deviations for the same scenarios were 2.32, 
1.48 and 5.51 nautical miles, respectively.   

4 Summary   

We summarize the results of the parametric 
analysis in Table 1.  For each parametric 
analysis, we obtained an error as a function of 
forecast time (e.g., Figures 5,6,8,9). Table 1 
reports the peak error occurring across all time.  
For the turns, the cross-track error is reported in 
column 4.  For some of the factors (e.g., wind 
bias), the along-track error continues to grow at 



 

                            7  

TRAJECTORY MODELING ACCURACY FOR AIR TRAFFIC 
MANAGEMENT DECISION SUPPORT TOOLS 

a particular rate and does not peak.  For these 
errors, the growth rate in the error is reported in 
knots.  The level-off error depends on both the 
magnitude of the level-off and the altitude of the 
interim altitude.  For this table, we considered 
interim altitudes at 15,000 feet. 
 

Table 1. Parametric analysis, peak errors. 

Factor 
Input  
Error 

Along-
track (nmi) 

Cross-
Track  or 
Alt. (ft) Phase* 

20° 0.02 592 (2) 
45°  0.27 3165 (2) 

Turns 
 

 90°  2.71 15912 (2) 
10% -0.92 -2206 
5% -0.46 -1137 
-5% 0.44 1183 

Weight 
 
 
 -10%  0.39 2385 

(1) 
 
 
 

10% 1.05 1104 
5% 0.57 594 
-5% -0.62 -661 

 -10%  -1.29 -1372 

(3) 
 
 
 

100 kts 0.79 1253 
50 kts 0.31 649 
-50 kts -0.18 -698 

Wind 
Gradient  

 
 
 -100 kts -0.24 -1424 

(1) 
 
 
 

100 kts -2.40 -1804 
50 kts -0.99 -934 
-50 kts 0.57 965 

 -100 kts 0.72 1927 

(3) 
 
 
 

5% 16 kt  595 Speed 
 -5% 17 kt  -1061 

(1) 
 

5.5%  2.54 -5558 
 -5.5%  -4.71 3953 

(3) 
 

25 nmi 9.5 9660 
5 nmi 1.9 2213 
-5 nmi -1.9 -2215 

TOD Error 
 
 
 -25 nmi -9.5 -9620 

(3) 
 
 
 

Wind Bias w kts w kt  - All 
1 min 1.3 2180 Level -off 

 5 min 6.5 4940 
(3) 

 
1 min 1.5 3352 

 5 min 5.3 10310 
(1) 

 

*(1) Climb, (2) Cruise,(3) Descent
 
Table 2 summarizes the results of the application 
of errors to our scenarios (e.g., Figures 4,7). 
Each error in the table represents the peak in the 

standard error time series.  In certain cases for 
which the mean was sufficiently large, we also 
report the mean in brackets. 
 
The results presented in Table 2 allow one to 
make conclusions regarding the investigated 
errors for the impact on average errors only.  
Clearly, for all cases, biases in wind represent a 
growing uncertainty, however, by setting the 
look-ahead horizon, the error can be estimated.  
A 20-minute look-ahead horizon yields a 3.3 
nautical mile error due to this factor.  The 
relative importance of this error can be assessed 
by considering that flights are usually required 
to be separated by 5 nautical miles laterally and 
1000 feet vertically (2000 above FL290). 
 

Table 2 Estimate of Peak Standard Errors [and 
means] 

Factor Along-
track 

Cross track 
or altitude  

Condition 

.68 [.34] Climb 

.44 [.13] Cruise 
Actual 
Turns 

.42 [.13] 

 
2515 

Descent 
.41 763 Climb Weight  
1.0 620 Descent 
0.13 239 Climb Wind 

Gradient 1.56 454 Descent 
5.3 kts 212 Climb Speed 

Error 3.11 2920 Descent 
2.8 kts 

 [0.18 kts] 
1418  
[280] 

Climb Level -offs 

8.44 2769 Descent 
TOD 

(28 nmi) 
9.4 7050 Descent 

  
TOD 

(1.2 nmi) 
0.38 444 Descent  

 
Wind bias 10 kts - All  

 
On descent, improvements in top-of-descent, 
wind uncertainty, speed intent and altitude intent 
data will provide the largest reduction (of the 
factors considered) in typical altitude and along-
track errors.  During climb, reductions in altitude 
intent and weight uncertainty will provide the 
best improvements in altitude error, whereas, 
better wind prediction and speed intent will 
provide the best reduction in along-trac k error. 
   
Depending on the DSS, consideration of the 
average errors may yield unacceptable trajectory 
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forecasting errors.  For conflict-probe 
applications, Table 1 reveals that almost all 
factors have certain circumstances under which 
the errors may be considered large compared to 
the 5 nm lateral and 1000 ft vertical separation 
requirements. 
 
For applications involving turn advisories, turns 
may have a significant cumulative effect on 
along-track error.  Neglecting turn dynamics 
may provide palatable errors on average, but for 
a flight with large turns for metering and 
spacing, the error would become unacceptable.   
 
While the effect of the wind gradient did not 
figure prominently in the average, large wind 
gradients would affect all flights in a 
geographical location.  Thus, a large wind 
gradient over a hub airport would contribute 
significantly to trajectory forecast errors to 
almost all climbing and descending flights into 
and out of that hub.   
 
Some errors can be addressed by improving the 
flow of information between humans and 
automation, or by defining procedures.  An 
example is provided in  [9] whereby procedures 
and/or data can be used to significantly reduce 
the top of descent uncertainty from the large 
errors reported herein to the value shown as the 
second TOD row of Table 2.   

5 Conclusions  

As future technologies deploy within the NAS, 
information currently unavailable will become 
more readily obtainable by trajectory forecasters.  
Thus the magnitude of the errors reported in 
Table 2 will evolve as the NAS modernizes.  
Furthermore, trajectory forecasting requirements 
will depend on the DSS application.  By 
analyzing future DSS for trajectory forecasting 
requirements as a function of the anticipated 
level of fidelity of all the input factors, 
requirements for a common trajectory modeler 
can begin to be developed.   
 
We have presented a parametric analysis of the 
impact of various trajectory forecasting error 

sources.  We have applied error analysis to a 
sample collection of flights under various 
climbing, cruising and descending scenarios.  
Although this study does not comprehensively 
analyze all factors, a comparison of the data 
presented indicates that the pacing factor for 
trajectory forecasts depends on the DSS 
application of interest and operational scenario 
to be considered.  Further work is needed to 
achieve a comprehensive investigation of the 
error sources and their impact.   
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Figure 1. Simple turn model (φ = bank angle). 
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Figure 2. Turn omission error. 
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Figure 3. Maximum Cross-track distribution.  
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Figure 4. Along-track errors due to turn 

omission (mean plus one sigma). 
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Figure 5. Altitude error due to weight. 
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Figure 6. Along-track error due to weight. 
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Figure 7. Scenario errors due to weight in climb.  
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Figure 8. Altitude errors due to gradient 

omission 
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Figure 9. Along-track errors due to gradient 

omission. 
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Figure 10.  Level off altitude histogram and 

cumulative duration distribution. 
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Figure 11. Standard errors due to level-offs. 

 
 
 


