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Abstract 
 The importance of applied load on the 

structure members cannot be denied in fatigue 
life prediction. A basic problem in fatigue 
research is the prediction of lifetime of a 
structural part when the amplitude of cyclic load 
varies in prescribed fashion with the number of 
cycles. This paper presents the prediction of 
fatigue lives for 3-D problems in elasto-plastic 
range with variable load amplitude. The effect of 
loading sequence on the fatigue life of a 
structure member and the validity of Miner’s rule 
are studied. The computational method is 
derived according to damage mechanics, theory 
of plasticity and finite element analysis (FEA). A 
two-block cyclic loading is considered with high-
low and low-high load sequence. To consider the 
effect of the high stress level beyond the yielding 
point of material in one load block, deformation 
theory and iteration method are applied to the 
stress analysis of the first load cycle. The 
damage evolution under given stress and damage 
fields for each block loading is determined by 
damage evolution equation. Furthermore, an 
additional loading method is introduced to 
perform the stress analysis with given damage 
field to avoid the reassembling of the stiffness 
matrix of structure member. Damage increment 
at critical element is considered as step length 
instead of load cycle increment.  Comprehensive 
computer programs are developed to consider 
both elastic and elasto-plastic cases. 

1 INTRODUCTION 
Structures are rarely stressed repeatedly at a 

single load level, and the failure of a structure is, 
therefore, the result of fatigue damage 
accumulation caused by a multiplicity of loading 
cycles having different amplitudes and 
frequencies. As it is known, the prediction of 
fatigue life under spectrum loading has been the 
subject of extensive research. 

A simplest and well-known model of fatigue 
damage accumulation is proposed by Palmgren 
[1] and Miner [2] known as Miner’s Rule. 
According to the rule, the failure in a multi-stage 
loading is defined by 

1=∑
i

i
Ni
n  

where, ni is the number of load cycles at load 
level σi, and Ni the total fatigue life at the same 
load level in constant amplitude. .  

According to Miner’s rule, the damage 
produced by σi for ni cycles is defined as ni/Ni 
and the individual damages are additive and 
independent of loading sequence. This simplest 
approach does not, in general, comply with 
reality. It is shown from experimental research 
that the sequence of loading can significantly 
affect the lifetime of a specimen.  In multi-stage 
constant amplitude loading, the left side of above 
equation, which is sometimes termed Miner’s 
index, is usually different from unity and is 
dependent on loading sequence. 
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A simple case of two block cyclic loading 
is considered with the stress level in high-low 
and low-high sequence, as shown in Fig-1 and 2. 
The amplitude of loading in each respective 
block is kept constant but different from each 
other. Both elastic and elasto-plastic cases caused 
by load blocks are investigated to see the effect 
of the combination and sequence of different 
load amplitudes. 

Fatigue life properties of the structure 
member under constant amplitude loading are 
needed as a baseline data [5].  The effects of 
high-load cycles on fatigue life at subsequent 
low-load cycles are determined by comparing the 
computational results from the variable-
amplitude analysis with the baseline data. 

Damage mechanics-finite element-
additional load method for the prediction of 
crack initiation life with damage increment as 
step length is introduced [4]. Reassembling of 
stiffness matrix during material degradation is 
eliminated by use of this approach, hence the 
CPU time is drastically reduced. Comprehensive 
computer programs are developed to cater for 
both elastic and elasto-plastic cases. 

2 INITIAL ELASTO-PLASTIC ANALYSIS 
During the first cycle of repeated loading, if 

the stress level at the critical point(s) of structure 
member is beyond the yielding point, the critical 
zone becomes plastic. 

2.1 Governing Equations 
The general governing equations from 

solid mechanics are given as follows: 
)( ,,2

1
ijjiji uu +=ε    (1) 

0, =+ ijji Bσ     (2) 
   ijji pl =σ   on  pS ,  ii uu =  on  uS      (3) 

2.2 Constitutive Relations and Plastic 
Correction 
The deviatoric strain and stress 

components can be given as 

 
3
1  , 

3
1

kkijijijkkijijij se σδσεδε −=−=      (4) 

where, kkσ
3
1  and kkε  are the hydrostatic stress 

and volume strain, respectively, ijδ  is the 
kronecker delta, sij  and  eij are the deviatoric 
stress and strain components, respectively. 

The relationship between deviatoric stress 
and strain components can be given by the 
deformation theory of Hencky as follows: 

ij
e

e
ij es

ε
σ

3
2

=    (5) 

where, σe and εe are the equivalent stress and 
strain, respectively.  

The relationship between hydrostatic 
stress and volume strain can be derived from 
Hooke’s Law as follows: 

kkkk Kεσ 3=    (6) 
where, K is the bulk modulus in terms of Lame’s 
constants. 

Eqn-4 can be re-written after substitution 
of eqn-5 and 6 as follows: 

kkijij
e

e
ij Ke εδ

ε
σ

σ +=
3
2   (7) 

where,  ( ) )1(1 DwE
e

e −−=
ε
σ    or  

( )
( )DE

DE
w

e

ee

−
−−

=
1

1
ε

σε     (8) 

In which w can be described as the 
relative reduction of young’s mudulus due to 
plastic effect and D is the initial damage before 
the first cycle of loading, if any. It is assumed 
that the relationship between σe and εe is the 
same as that in uni-axial stress case. 

Eqn-7 can finally be written in the 
following form 

( ) ( )DP
ij

e
ijij

,σσσ −=   (9) 

In above equation, ( )e
ijσ  is the linear stress 

components and ( )DP
ij

,σ  is the stress reduction 
components caused by plasticity and damage, 
given as follows: 
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( ) ( ) ( )wDDwEeKEe ij
DP

ijkkijij
e

ij −+=+=
3
2   , 

3
2 ,σεδσ

  (10) 
For the case of linear hardening, w can be 
expressed as  

( ) 





−−=

e

pw
ε
ε

ξ 11   (11) 

where,   ξ  can be determined by the elasto-
plastic curve shown in Fig-3, as follows: 

( )su

su

E εε
σσ

ξ
−

−
=    (12) 

 In which, uσ , sσ  and uε , sε  are the 
ultimate and yielding stresses and strains, 
respectively.  

2.3 Elasto-Plastic Finite Element Analysis 
According to above elasto-plastic 

constitutive relation, the stress components of an 
element can be expressed as: 
{ } { } ( ) { } ( ) [ ] [ ] { } { } ( )DP

eeee
DP

e
e

ee BE ,, σδσσσ −=−=  (13) 
in which, [E]e is the matrix of element material 
stiffness,[B]e the matrix of strain-displacement 
transformation and {δ}e the vector of element 
nodal point displacements. 

By applying the principle of virtual work 
at element level, we will get 

[ ] { } { } { } ( )DP
eeee FFK ,+=δ   (14) 

where, [ ] [ ] [ ] [ ]∫=
eV

ee
T
ee dvBEBK  - the element 

stiffness matrix 
{ } [ ] { } [ ] { }dsPNdvPNF

ee S
s

T

V
v

T
e ∫∫ +=  - the conventional 

element nodal force vector 
{ } ( ) [ ] { } ( )∫=

eV

DP
e

T
e

DP
e dvBF ,, σ  - the additional nodal 

force vector to consider the relative reduction of 
stiffness due to plastic effect and initial damage, 
if any. 

Expanding each matrix and vector in eqn-
14 at structure level, the governing system of 
non-linear equations is assembled as follows: 

[ ]{ } { } { } ( )DPFFK ,+=δ   (15) 
where, [K] is the  matrix of global stiffness of 3-
D sound body, {δ} the vector of global nodal 
point displacements, {F} the overall nodal force 
vector caused by original loading and {F}(P,D) the 
additional nodal force vector at structure level to 
consider the effect of plasticity and initial 
damage state.  

To solve eqn-15, an additional load-
iteration method is introduced. 

2.4 Iteration Method Solution 
In the first step of iteration it is assumed 

that the material is linearly elastic, that is 
( )

00  
,
1  1 3

2      ,0 DEew ij
DP

ij == σ  (16) 

where, D0 represents the initial damage state 
before iteration process. 

In the second step, if the stress level is 
above the yield limit then 

( ) ( ) ( )12121 
,
2  

1 
2 3

2   , 11 DwDwEew ij
DP

ij
e

p −+=





−−= σ

ε
ε

ξ

    (17) 
Similarly, for the nth step  

( ) 





−−=

−1 
11

ne

p
nw

ε
ε

ξ  and   

( )
( ) ( ) ( )( )111 

,
  3

2 −−− −+= nnnnnij
DP

nij DwDwEeσ             (18) 

The system of equations at structure level 
for the nth step has the form 

 [ ]{ } { } { } ( )DP
nn FFK ,+=δ    (19) 

The iteration process will be paused when 
the relative error in the n  eε and 1-n  eε  at critical 
element is less then 1%. The solution of iteration 
method is shown in Fig-4. A Computer program 
is developed for the elasto-plastic finite element 
analysis by means of the iteration method to 
determine the initial elasto-plastic equivalent 
stress and the modified stress ratio, which will be 
used in the damage analysis later. 
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2.5 Additional Loads for Stress Analysis 
During Damage Evolution 
Since the stiffness of structure member 

reduces with every increment of damage, the 
concept of damage-induced additional loads is 
introduced in order to avoid recurrent calculation 
of the stiffness matrix during damage evolution.  
It is known that after the initial loading, the stress 
and strain components will vary in elastic range 
under subsequent loading, with the consideration 
of the damage coupling effects. Then, we have 

( ) klijklij DC εσ ~1~ −=    (20) 
where, ijε~  and ijσ~  are the range of variation of 
strain and stress components, respectively. 

According to eqn-20, we have 
D
ji

E
jiji σσσ ~~~ +=    (21) 

where,  E
ijσ~  can be defined as the range of 

variation of elastic stress components, i.e., 
lklkji

E
ji C εσ ~~ =   (22) 

and  D
ijσ~  the range of variation of damage-

induced additional stress components, i.e., 
lklkji

D
ji CD εσ ~~ −=   (23) 

By substituting these equations into the 
equilibrium equations and boundary conditions, 
we get:   

0~~~
, =++ D

ii
E

jji BBσ        in  v   (24) 
D
iij

E
ji ppl ~~~ +=σ  on  Sp   (25) 

where,  D
jji

D
iB ,

~~ σ=   is the range of variation of 
damage-induced additional body force 
components and j

D
ji

D
i lp σ~~ −=  is the range of 

variation of damage-induced additional surface 
traction components 

3 FINITE ELEMENT ANALYSIS FOR 
GIVEN DAMAGE FIELD 
Additional load-finite element method [3] is 

introduced in the analysis of 3-D stress field for 
given damage field. By means of damage 
coupled constitutive relation, we have 
{ } ( ) [ ] { } ( ) [ ] [ ] { } eeeeeeee BEDED δεσ ~1~1~ −=−=  (26) 

where { } eσ~ , { } eε~ and { } eδ~  are the vectors for the 
range of variation of stress, strain and 
displacement components of an element, 
respectively, De is the damage of the element. 

By applying the principle of virtual work 
at element level, we can obtain 

[ ] { } { } { } D
eeee FFK ~~~ +=δ   (27) 

where, { } eF~  is the vector for the range of variation 
of conventional nodal forces and  { } D

eF~  the vector 
for the range of variation of additional nodal 
forces given by 

{ } [ ] { } eee
D
e KDF δ~~ =   (28) 

Expanding each matrix and vector in eqn-
27 to the order of global level, the governing 
system of equations is assembled as follows 

[ ]{ } { } { } D
FFK ~~~ +=δ   (29) 

where, { }F
~  and { }D

F
~  are the vectors for the range 

of variation of conventional nodal forces and 
additional nodal forces at the structure level, 
respectively. Obviously, with the application of 
additional load method, the analysis of 
displacement and stress fields for a damaged 
body can be carried out as that for sound body.  
3-D mesh arrangement is also optimized by 
convergence tests. In the finite element analysis 
the nodal point displacements are obtained by 
using 8-node brick elements. Then each brick 
element is divided into 5 four-node tetrahedral 
elements for further damage analysis. After 
obtaining the nodal point displacements for each 
brick element, the stress field and additional load 
vector can be calculated by using eqn-26 and 28 
from tetrahedral elements. 

4 EQUATIONS OF DAMAGE 
EVOLUTION 
Lemaitre and Chaboche are amongst those 

researchers who introduced equations of damage 
evolution during 1970s. The equation of damage 
evolution can be expressed as follows: 
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( )
qm

e
DD

R
dN
dD









−







−
=

1
1

1

~σ
γ   (30) 

where, N means the number of load cycles, γ, m  
and  q  represent the material behaviors which 
can be determined by means of conventional 
fatigue testing, and eσ~  is the range of variation 
of equivalent stress given by 

( )Ree −= 1~ σσ    (31) 
with R being the stress ratio in one load cycle. 

Eqn–30 can also be written in the form of 
equivalent stress as follows: 

qm
e

DDdN
dD









−







−
=

1
1

1
σ

α   (32) 

where, α  can be expressed as follows, 
( )nR−= 1βα    (33) 

here,  β, n, m and q are material dependent 
constants which can be estimated with the help 
of S-N curves of material for at least two stress 
ratio cases. 

5 DAMAGE FIELD ANALYSIS AND LIFE 
PREDICTION 
For the physically nonlinear problems caused 

by stress-damage coupling, the increment of 
damage in a critical element is taken as the step 
length to analyze the crack initiation and crack 
propagation for the structure member under 
repeated loading. In every stage of crack 
initiation and crack propagation, the current 
critical element is selected through the 
assessment of damage evolution rate dD/dN for 
all elements. For a given increment of damage 
∆D* of current critical element, the relevant 
increment in load cycles and the damage 
increments of other elements are given by 

( ) ( ) ∗
+∗

∗

+∗

∗

∗
∆










−

−










=∆−∆=∆ D

D
DDDDN

qmm

e

eqm

m
e

1
1

~
~

   , 1
~ σ

σ

σβ
   (34) 

where, “*” represents the field quantities for 
current critical element.  
Then, the current damage field will be expressed 
by D*+ ∆D* and D + ∆D for the current critical 

element and other ones, respectively. The 
corresponding field quantities ijiu ε,  and ijσ  (i, j 
= 1,2,3) can be obtained by the finite element-
additional loading method. The above two 
processes will be proceeded alternatively and 
paused when the damage in the current critical 
element reaches 1.0. The number of load cycles 
for the complete failure of the first critical 
element represents the crack initiation life. The 
total number of load cycles during crack 
initiation is, then, given by the following 
expression, 

∑
=

=
M

r
rNN

1
  (35) 

where, M is the number of steps during crack 
initiation, and Nr the number of load cycles of 
the rth step of crack initiation. 

6 FATIGUE ANALYSIS UNDER 
SPECTRUM LOADING 
For simplicity, the load spectrum consists of 

only one period with two blocks of cyclic 
loading at different stress level. The load 
amplitude remains constant within each block 
but different from one block to another. To 
investigate the validity of Miner’s Rule and the 
effect of load sequence, all possible load cases 
have been considered, including Elasto-Elastic, 
Elasto-Plastic, Plasto-Elastic and Plasto-Plastic 
load cases.  

6.1 Elasto-Elastic Load Case 
In this case the stress level in each of the 

blocks is below the yield limit. The load 
spectrum is shown in Fig-1. The stress-strain 
relation for this case is shown in Fig-5. The 
number of load cycles N1 for the first block is a 
given quantity as follows: 

fkNN =1   (36) 
where, Nf is the crack initiation life under 
constant amplitude loading and k (<1) a known 
quantity to define the  number of  load cycles of 
block-1. 
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6.1.1 Fatigue Damage Analysis for 1st Block 
The damage analysis for block-1 is the 

same as that of constant amplitude fatigue 
analysis. The additional load-finite element 
formulation for block-1 can be given in the form 
of the range of variation as follows 

[ ]{ } { } { } D
FFK 111
~~~ +=δ   (37) 

where, { }1~F  and { }D
F1
~  are the ranges of variation 

of conventional and additional loads for block-1, 
respectively. 
The damage evolution equation for block-1 has 
the form 

qm
e

DDdN
dD








−





−

=






1
1

1

~
1,

1

σ
β  (38) 

The nth increment of load cycles 
corresponding to the damage increment *D∆  in 
block-1 can be given as 

( )( )

( ) qm

m
ne

n DDN
+

−

−∆=∆ *

1
*

1,

*

1, 1
~σβ

 (39) 

Summation of the increments of load 
cycles, finally, will reach the given number of 
load cycles, N1, as follows: 

11, NN
n

n =∆∑  with    D*  = D*
1 (40) 

where, D*
1 is the damage of critical element at 

the end of block-1. It must be mentioned that in 
each step of damage increment the corresponding 
field quantities iu , ijε , ijσ and D can be obtained 
by the finite element method with additional 
loads. 

6.1.2 Fatigue Damage Analysis for 2nd Block 
When the number of load cycles is equal 

to N1 the load amplitude is changed from 1
~σ  to 

2
~σ  (Fig-5). In order to calculate the residual life 
due to the loading of block-2, the additional load-
finite element formulation for block-2 has the 
form, 

[ ]{ } { } { } D
FFK 222
~~~ +=δ   (41) 

 

where, { } D
F2
~  is the range of variation of 

additional loads caused by the damage of all 
elements. 

The damage evolution equation for block-
2 has the form 

qm
e

DDdN
dD








−





−

=






1
1

1

~
2,

2

σ
β   (42) 

The nth increment of load cycles corresponding 
to *D∆  in block-2 can be given as 

( )( )

( ) qm

m
ne

n DDN
+

−

−∆=∆ *

1
*

2,

*

2, 1
~σβ

  (43) 

The above process will be accomplished, 
when D*=1. Then, the summation of the 
increments of load cycles will give the residual 
fatigue life as follows: 

22, NN
n

n =∆∑   with  D*=1 (44) 

6.1.3 Total Fatigue Life 
After determining the number of load 

cycles for each block, the fatigue life of structure 
member will be   

21 NNNcr +=    (45) 
The Miner’s Rule index can be defined at 

this stage as follows: 

crcri cri

i

N
N

N
N

N
n

,2

2

,1

1

,
+=∑   (46) 

where, N1,cr and N2,cr are the fatigue lives from 
constant load amplitude fatigue analysis for 
respective loads.  If the summation in Eqn-46 
closes to unity, then it is shown that Miner’s 
Rule is available. 

Similar analysis can be carried out when 
the sequence of applied loads is reversed, to 
show the availability of Miner’s Rule and the 
effect of load sequence on total fatigue life. The 
load spectrum for reverse sequence is shown in 
Fig-2.  
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6.2 Elasto-Plastic Case 
In this case pure elastic deformation occurs 

in block-1 and plastic deformation takes place 
only at critical zone in block-2. It is assumed that 
the form of the load spectrum is similar to Fig-1. 
Fatigue damage analysis for block-1 in this case 
is same as that in elasto-elastic case. 

6.2.1 Fatigue Damage Analysis for Block-2 
At first, an additional load-iteration 

method is introduced to give the plastic 
correction for block-2 in order to determine the 
initial elasto-plastic maximum equivalent stress 
and modified stress ratio.  According to eqn-19, 
the formulation in finite element analysis has the 
form 

[ ]{ } { } { } ( )DP
FFK

,
222

~~~ +=δ    (47) 
where, { }2~F   is the vector for the variation of 
conventional loading corresponding to 

min,1max,2 PPP −=∆   (Fig-1), and { } ( )DP
F

,
2

~  is the 
vector for the variation of additional loads to 
consider the material degradation after the first 
block and the effect of plasticity.  

After the completion of above iteration 
process, the variation of stresses, ( )2,1σ∆ , 
corresponding to ∆P is obtained. Then, the range 
of variation of equivalent stress, 2,

~
eσ  , 

corresponding to min,2max,2
~ PPP −=  can be 

determined by means of the finite element 
analysis with additional loads in order to 
consider the damage caused by block-1. 
Therefore, the modified stress ratio will be 
obtained as follows: 

( )2,1
min,1max,2 σσσ ∆+=    (48) 

2,max,2min,2
~

eσσσ −=   (49) 

and  
max,2

min,2
2 σ

σ
=R               (50) 

Above range of variation of equivalent 
stress, 2,

~
eσ , and modified stress ratio, R2, 

obtained will be applied in eqn-42 to determine 
the initial damage evolution ratio, (dD/dN)2, for 
block-2.  According to eqn-41 to eqn-43, the 

increment of load cycles and the corresponding 
displacement, stress and damage fields will be 
calculated for each step of damage increment. 
Eventually, when D*=1, the residual fatigue life 
will be obtained by use of eqn-44. The stress-
strain relation for the elasto-plastic case is shown 
in Fig-6. 

6.3 Plasto-Elastic Case 
In this case, block-1 will cause plastic 

deformation and block-2, the elastic one in a 
structure member. The load spectrum is shown in 
Fig-2. Additional load-iteration method is 
introduced to give the plastic correction for 
block-1. The formulation in finite element 
analysis has the following form  

[ ]{ } { } { } P
FFK 111
~~~ +=δ    (51) 

where, { }P
F1
~  is the vector for the range of 

variation of additional loads to consider the 
effect of plasticity. 

After the completion of iteration process, 
the maximum equivalent stress, 1,

~
eσ , and the 

modified stress ratio, R1, obtained will be applied 
in eqn-38 to 40 as an initial data to determine the 
fatigue life, N1, for block-1. When the number of 
load cycles arrives at N1, the load amplitude is 
changed. The formulation in finite element 
analysis will have the form of eqn-41, in which, 
{ }2~F  is then, the vector for the variation of 
conventional loading corresponding to 

min,1max,2 PPP −=∆  (Fig-2). The maximum 
equivalent stress, and modified stress ratio 
obtained will be applied to determine the residual 
fatigue life N2 due to block-2, according to eqns-
41 to 44, until D*=1. The stress-strain relation 
for the plasto-elastic case is shown in Fig-7. 

6.4 Plasto-Plastic Case 
In this case plastic deformation will take 

place in both the blocks. After the application of 
load in block-1, there is going to be a plastic 
deformation and material will undergo a 
permanent set. The formulation in finite element 
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analysis will be different depending upon the 
load sequence. If the load in block-1 is lower 
than in block-2, then new yield and ultimate 
limits are required to be calculated for the 
iteration approach applied to block-2. Whereas, 
there will be no change in these limits if block-1 
loading is higher than 2. 

6.4.1 Low-High Sequence 
Additional load-iteration method is 

applied to block-1 for plastic correction. The 
load spectrum is shown in Fig-1. The finite 
element analysis will be performed according to 
eqn-51, then eqns-37 to 40. After the application 
of block-1, further plastic deformation will take 
place due to the higher load level of block-2. 
Then, to perform the analysis of plasticity, new 
yield and ultimate limits for stress and strain are 
calculated by transformation of εσ −  co-ordinate 
system to εσ ∆−∆ co-ordinate system (Fig-8) as 
follows: 







∆+−=∆−=∆

∆=∆−=∆

ssuuuu

s
ss E

εεεεσσσ

σεσσσ

,1min,1

min,1max,1

  , 

   , 
 (52) 

where, s,1ε  is the new yielding strain of the 
material damage caused by block-1. 

Additional load-iteration method, with 
above yield and ultimate limits, is applied to give 
plastic correction to block-2 in order to 
determine the next initial maximum stress and 
modified stress ratio. The formulation in finite 
element analysis has the form of eqn-51. The 
residual fatigue life N2 will then be calculated in 
a similar process as that for block-2 in elasto-
plastic case. The stress-strain relation for low-
high sequence is shown in Fig-8. 

6.4.2 High-Low Sequence 
In this case, additional load-iteration method 

is applied for plastic correction to block-1 only.  
The load spectrum is shown in Fig-2. The 
formulation in finite element analysis has the 
form of eqn-51, then eqns-37 to 40. After the 
application of load cycles N1 for block-1, the 

load amplitude is changed and the material will 
follow linearly elastic behavior.  The formulation 
in finite element analysis for block-2 will then be 
governed by eqn-41 and residual fatigue life N2 
will be then determined by eqns-43 and 44. The 
stress-strain relation for high-low sequence is 
shown in Fig-9. 

7 NUMERICAL RESULTS AND 
ANALYSIS 
Comprehensive computer programs are 

developed based on the above-mentioned theory 
to perform the additional load-iteration method, 
linearly elastic FEA, elasto-plastic FEA, damage 
mechanics-linearly FEA with additional loads, 
and damage mechanics-elasto-plastic FEA with 
additional loads. With the help of these programs 
the fatigue lives for above different cases are 
predicted. Before the application of above 
approaches for the investigation of spectrum 
loading, they are applied to predict the fatigue 
lives under constant load amplitude for 
verification. The numerical results are in good 
agreement with the experimental data as shown 
in Table-1. Variable load amplitudes in two steps 
are applied to specimens made of LC4CS 
aluminum alloy and 30CrMnSiNi2A steel alloy 
with stress concentration factors (Kt) of 2.0 and 
3.0, and stress ratio R=0.5. The computational 
results are shown in Fig-10 to show the 
availability of Miner’s Rule for different cases 
and the analysis for each case is given below: 

7.1 Elasto-Elastic Case 
Fatigue life prediction analysis for 

specimen made of LC4CS aluminum alloy, with 
Kt = 3.0 and R = 0.5 is carried out at constant 
load amplitude and two step variable load 
amplitude. The load levels in both blocks are 
considered to be elastic. It is found that the 
Miner’s Rule is available for this type of loading. 
The reversal of loading sequence does not affect 
the total fatigue life of the specimen.  
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7.2 Elasto-Plastic Case 
Fatigue life prediction for the same 

specimens as mentioned above is performed 
when block-1 undergoes elastic deformation and 
block-2, plastic deformation. From 
computational results it is found that Miner’s 
Rule can be satisfied approximately only in those 
cases when the difference in the load amplitudes 
of both block-1 and 2 is small. If the difference is 
larger, then Miner’s Rule is not available. It is 
shown that load sequence has a significant effect 
on the total fatigue life of structure member 
when the difference in load amplitudes of blocks 
is greater. The fatigue life of the specimens is 
extended significantly when a low one follows 
the high level load. This phenomenon suggests 
that exposure to medium cycle fatigue (MCF) 
prior to high cycle fatigue (HCF) may effect 
HCF life. This numerical result has also been 
verified by some experimental work performed 
in [6].  

7.3 Plasto-Elastic Case 
Fatigue life prediction for the same 

specimens is performed when plastic 
deformation takes place in block-1 and elastic 
one in block-2. The exposure of MCF prior to 
HCF extends the HCF life by approximately two 
times. With the increase in the difference of load 
amplitudes the extension factor will increase and 
vice versa. 

7.3.1 Plasto-Plastic Case 
Fatigue life prediction under variable load 

amplitude for the specimen made from 
30CrMnSiNi2A steel alloy with Kt =2.0, 3.0 and 
R=0.5 and specimen made from LC4CS 
aluminum alloy with Kt =3.0 and R=0.5, is taken 
as numerical examples. Plastic deformation takes 
place in both the blocks. It is observed that when 
the difference between two load levels is larger, 
the availability of Miner’s rule becomes remote 
and the change of load sequence affects the total 
fatigue life significantly. Moreover, MCF pre-

straining prior to HCF may also extend the 
fatigue life of specimen in plasto-plastic case.  

8 CONCLUSIONS 
1. Linear Damage Accumulation Rule (Miner’s 

rule) is available in the elasto-elastic cases of 
two-block loading, when the loading in both 
blocks is below the yield limit. It may be 
available in some of elasto-plastic, plasto-
elastic and plasto-plastic cases when the 
difference between load amplitudes of 
spectrum loading is small or the loadings are 
close to the yield limit of the material. 

2. There is a direct effect of loading sequence 
on fatigue life if the difference between the 
variable load levels is larger in the cases of 
elasto-plastic, plasto-elastic and plasto-plastic 
variable amplitude loads. 

3. Exposure of MCF prior to HCF loading may 
extend HCF life significantly. Which shows 
that fatigue life of a structure member can be 
extended by a suitable choice of MCF pre-
straining. 

4. Use of additional loading method instead of 
the damage mechanics-finite element method 
of variable stiffness and damage increment at 
critical element as step length instead of the 
increment of loading cycles is more flexible 
and reduces the computational time 
significantly. 
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Specimen Kt 
Stress 
(Mpa) 

Computed 
Fatigue Life 
(log10) 

Experimental 
Fatigue Life 
(log10) 

196 4.578 4.715 
157 4.995 5.148 
118 5.368 5.493 
88 6.232 6.0 

LC4CS 3.0 

70 7.069 7.0 
1400 4.649 4.663 30CrMnS

iNi2A 2.0 1200 4.938 4.914 
999 4.659 4.672 
924 4.818 4.903 30CrMnS

iNi2A 3.0 
849 4.988 5.041 

 
Table-1, Comparison of computational and 
experimental fatigue lives for constant load amplitude 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig-5, Stress-Strain curve for elasto-
elastic case 
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Fig-6, Stress-Strain curve for elasto-
plastic case 
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Fig-3, Stress-Strain curve for linearly 
hardening material 
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Fig-4, Iteration method 
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Fig-2, Load spectrum (high-low) case 
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Fig-7, Stress-Strain curve for plasto-
elastic case 
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Fig-8, Stress-Strain curve for Plasto-
plastic (low-high) case 
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Fig-9, Stress-Strain curve for plasto-
plastic (high-low) case 
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Fig-10, Availability of Miner's Rule for all the cases in normal 
and reverse sequence loading 
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