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Abstract  
In the present paper, a developed conceptual 
design for the blading systems of a large 
amplitude unsteady propulsion -HYPS- is 
described.  The HYPS is an advanced Hydro-
Propulsive System which confers upon its 
blading systems the ability to effectively receive 
the changing dynamics of the fluid environment.  
The paper continues by reviewing the analysis 
principles upon which the preliminary design 
was constructed.  It further provides a general 
evaluation of the numerical method on the basis 
of system performance data gained through 
extensive trial.  

1 Introduction 
The status of the current turbomachinery 

technology indicates that the existing devices 
are incapable of controlling random and 
turbulent flow disturbing phenomena while 
maintaining the efficiency at the same time.  
This is partly due to the limitations of the 
conventional technology behind the design of 
such systems.  The changes in the driving 
concept and the configurations used in 
turbomachinery systems for over a century have 
been too trivial to help advance such systems in 
correspondence with the extent of available and 
developing technology at the time.   

The conventional systems use simple fixed 
or limited movable impellor blades, which are 
designed to deliver their best performance 
within fluxes flowing consistent to the direction 
of their blading systems.  They can also handle 

some confined range of particular directional 
flow fields.  In order to achieve high 
performances therefore, it is required for these 
turbine blades to be perfectly aligned with the 
direction of the flow.  However, if the angle of 
impact changes, resulting in non-alignment of 
the blading systems to the flow, or the direction 
of flow diverts altogether, the turbines are no 
longer able to perform anywhere near their 
peak. 

The advanced zero-head propulsion, HYPS 
[1], on the contrary to the conventional devices, 
confers upon its blading systems (propulsors) 
the ability to effectively receive the changing 
dynamics of the fluid environment.   

Within this system, an optimised 
aerodynamic design of the complex 
configuration of the propulsors becomes of 
particular importance in enabling the blading to 
achieve enhanced power conversion efficiency 
within a wide range of flow regimes by 
constructively extracting the inflow energy.   

This paper tends to provide an overview 
into some of the intricate analysis involved for 
finalisation of the propulsor design.  

2 General Theory 

2.1 Derivation of moment 
In order to determine the initial forces and 

vortices generated by the system through its 
propulsors the following method was applied: it 
was assumed that an incompressible and 
inviscid fluid flows through the finite system -
the HYPS- which was at rest at infinity with 
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respect to the selected Cartesian coordinate 
system (x,y,z).  The mean velocity of this 
system, S, in the positive x direction was U, 
repeated after each time period τ or after each 
covered distance b: 
 
 τUb = . (1) 
 
The HYPS shares this time period with the 
surrounding flow field.   

Assuming that vorticity was generated by 
S, it was proved that mean force could be 
exerted by S on the fluid [2].  In other words, 
the kinetic energy of the fluid was represented 
by the velocity field of the generated vorticity.  
When the periodically moving HYPS of finite 
extent induces a periodic neighbouring field of 
flow it can exert a mean force on the fluid 
which results in energy loss. 

The mean value of the moment created 
around x axis due to the fluid pressure applied 
over the system S with respect to the origin O 
was derived using Eq. (2):  
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where ex is the unit vector in the x direction.  
As: 
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and the difference of the potential at 
corresponding points and times can be only a 
constant c, therefore: 
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In the simulation of the propulsor wings 

used in the HYPS, as it represented an actual 
system, a moment around a line through the mid 

points of the propulsor blade chords was also 
introduced. 

2.2 Force generation 
The mean value of the time dependent 

force F per unit of span exerted by the flow on 
the adaptive propulsor blade profiles over one 
period of time, τ, can be written as:  
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where Γ is the circulation around the profiles, 
which represents a real number.  
 

Therefore, from Eq. (5): 
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2.3 Vorticity induction 
For determining the vorticity induction, 

initially thin finite span propulsor blades were 
considered.  The approach was constructed upon 
the following considerations and provided a 
different methodology to those of the 
conventional aero-hydrodynamically treated 
solutions. 

It was initially assumed that the complex 
propulsor wings had very small thicknesses, 
their tips were rounded off and the main wing 
was parallel to a plane y = cte.  

The rounding off of the blade tips created 
elliptic wing forms which are proven aero-
hydrodynamically ideal shapes for the highly 
efficient wings with high lift to drag ratios.  
However, as the manufacturing process of such 
delicate wing shapes for the end product was 
not an economical practice, in the final optimum 
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design analysis, they were replaced by specific 
trapeziums.  Such wings have a highly 
comparable performance to the elliptical ones 
due to their near “one” span efficiency factor, e.  
Moreover, their uncomplicated profiles 
introduced simplicity to the manufacturing 
process.   

Further innovative and conventional 
efficiency enhancing measures enabled the 
control of the washout over the propulsor wing 
surfaces and the maintenance of the pressure 
difference between the upper and the lower 
sides of the wings hence, the lift force. 

2.3.1 Vortex response of the equation of motion 
To simplify the solution to the flow 

behaviour the following assumptions were made 
[3]: incompressibility and inviscid nature of the 
flow, flow divergence of θ =θ (x, y, z, t), and 
flow vorticity of ω = ω (x, y, z, t).  It was also 
assumed that the flow passing the HYPS was 
limited to a finite region of unbound space.  It 
was assumed that the velocity field was zero at 
infinity.  Therefore, the unique solution to the 
behaviour of the flow around the HYPS will be: 

 
 ( ) ( ) ( )tzyxcurltzyxgradtzyxv ,,,,,,,,, ψ+Θ=  
  (7) 
where: 
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and V denotes the volume. 

To continue, it was supposed that θ = 0 and 
ω was concentrated on a closed vortex line J 
along which a length parameter s was 
considered.  Outside a narrow tube around J, ω 
= 0 was assumed, where inside it ω ≠ 0.  Its 
limit was considered homogeneously distributed 
while being tangent to J.  Therefore, when σ is 
the area of the cross section of this tube:  

 
 Γωσ

σ
=

→ 0
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From:  
 

 div curl v = divω = 0 (10) 
 

Γ, the vortex strength, is obtained.  ΓΓ =  is 
constant along J.  As the volume dV= σ ds from 
Eq. (8): 
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Application of the operation curl to both 

sides of Eq. (11) with (x, y, z) ∉J, resulted in: 
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where k = ( )sdd ,sdd ,sdd ζηξ  is the 

unit vector tangent to J.  Equation (12) is the 
Biot-Savart law for a closed vortex line.  
Accordingly, the direction of Γ obeys the right 
hand rule against its locally induced velocities. 

Outside the vortex line J, the fluid flow is 
free of rotation.  The space outside J is simply 
connected to the inside space through a 
sufficiently smooth surface S bounded by the 
vortex line.  A velocity potential considered was 
Φ = Φ (x, y, z) where J and Γ were assumed to 
be independent of time; otherwise, Φ could have 
also been time dependent.  Using the expression 
for k, and the x component xv  of v in Eq. (12), a 
relation for Φ was derived: 
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In the next step the Stokes’ relation was 

applied: 
 

 ( ) ( ) Sd ng curlsdg
SJ
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where ( )zyx ggg ,,g =  is a vector field and n is 
the unit normal on S.  The normal n obeys the 
direction of increase of s along vortex line J by 
the right hand rule.  Applying the following in 
Eq. (14): 
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Eq. (13) was-written as: 
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In this equation, the operator grad is taken with 
respect to x, y, z.  As: 
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hence:  

 

 ( )
23

,cos
R

Sd Rn
R

Sd nR =⋅  (18) 

 
The right hand side of Eq. (16) represents 

the solid angle dΛ under which the surface 
element dS, from the point (x, y, z) is seen.  
Hence, Λ is the total solid angle at (x, y, z) 
constructed by J: 
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Applying the similar method, the other 

components ( yv and zv ) of v were determined.   
For finding the potential function, the 

following was used: 
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However, the function is not continuous over S. 

This enabled a simple interpretation of 
vorticity generation in the HYPS:  A small flat 
vortex ring of area dS and strength Γ at some 
point ( )1tQ , 01 ttt ≥≥  was considered.  The size 
of the ring was chosen with respect to the 
dimensions of the HYPS.  At the centre of this 

ring, the unit normal n was assumed, related to 
Γ by the right hand rule.  The differential 
potential dΦ of this vortex had the following 
value according to Eqs. (18) and (16): 
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where α is the angle between n and R.  It is seen 
from Eq. (21) that the small ring vortex is 
equivalent to a source doublet, in this case of 
strength ΓdS, with its axis in the n direction. 

From Eq. (21) it follows that the potential 
function Φ can be determined as a superposition 
of potentials of small flat ring vortices of area 
dS and perpendicular to f(s) left behind the 
rotating HYPS.  The vorticity Γ of such a ring is 
connected to the direction of f(s) by the right 
hand rule and has the following value: 
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It was required to consider the limits 
0→sd and 0→Sd  for deriving the potential of 

these ring vortices.  According to the theory of 
external force fields, the shape of the ring 
vortices is optional.  For the purpose of 
simplicity in the solution, rectangular vorticity 
was considered. 

In order to further elaborate on this vortex 
model, the singular force f(t) was split into two 
parts: 

 
 ( ) ( ) ( )tgthtf +=   (23) 
 
Following, it will be shown that these forces 
somewhat represent the lift and drag forces 
caused by the fluid flow over the system on the 
propulsors.  The components h(t) and g(t) were 
uniquely determined and, in linear stages of the 
analysis, the velocities induced by each of these 
forces were added to the fluid system to obtain 
the velocity field induced by f.   

To calculate the strength of the vorticity 
shed behind the HYPS, the following was 
applied: the equations of motion for an inviscid 
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and incompressible fluid in an inertial Cartesian 
coordinates (x,y,z) were considered: 
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where an external force field per unit of volume 
is represented by F = F(x,y,z,t) which acts on 
the fluid.   

A flow field belonging to a force field 
around the HYPS was uniquely determined 
using appropriately chosen initial and boundary 
conditions.  The force field at t = 0 was assumed 
to satisfy curl F = 0.  This field was represented 
by: 

 
 ( )tzyxgradF ,,,ψ= , t > 0 (26) 

 
where ψ corresponds to some sufficiently 
smooth scalar function. 

Equation (24) was therefore written in the 
form of: 
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where ω  = curl v.  By taking curl from both 
sides: 
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As it is anticipated, this equation indicates 

that when curl F ≠ 0 then ω ≠ 0.  Therefore, 
given the fact that the rotation assumes a non-
zero value, it was concluded that the resulting 
force field induced vorticity in the flow behind 
the HYPS. 

Considering a closed contour C~  in the 
fluid, it was assumed that the contour was 
coupled with the fluid particles passing through 
the HYPS.  This resulted in its transport by the 
velocity field.  At an instant of time, the 
circulation ( )tΓΓ =  of C~  could be shown by: 
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where ds is a line element.  

By partial integration: 
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Using Eq. (24), the first integral also gave: 
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2.3.2. The perpendicular singular force h(t)  
The significance of this singular force was 

that it could leave behind a vorticity 
perpendicular to its velocity and therefore was 
practically used to approximate the lift force of 
the propulsors.   

By replacing the continuous action of the 
force with a singular forces h )( nσ  acting during 
the time interval: 
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During this time interval, the contribution 

of the singular force to the potential function 
will be of the magnitude of: 
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This contribution is delivered by a little flat 
rectangular closed vortex, perpendicular to 
h(σn), of length ∆s and width 2ε~ .  The strength 
of this vortex was derived using Eq. (22): 
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where h = h .   

By taking the limit 0→s∆ , and using 
Kutta-Joukowski theorem, the following vortex 
system was resulted: 
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Using the Biot-Savart law, the velocity 

field induced by the vortex system was 
calculated, considering the velocity induction by 
both the starting vortex and the bound vortex 
and taking the limit 0~ →ε : 
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Therefore, the velocity induction through the 
distributed vorticity using Eq. (22) was 
determined: 
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2.3.3. The parallel singular force g(t) 

In propulsion, force g, representing the 
drag force, often acts on the fluid in the negative 
s direction.  Then, according to the Newton’s 
third law, the force on the HYPS that causes g, 
is in the direction of the velocity V.  In other 
words, this reaction introduces a propulsive 
force into the flow.  Similar to the assumptions 
made in the previous case: 
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valid for all the coordinates which do not belong 
to the vortex ring.  The magnitude of g is equal 
to g . 

According to [4], this equation can be 
considered as a source system that produces a 
unit volume of fluid per unit time and has the 
velocity potential of: 
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Hence, the propulsive force in the HYPS 

can be replaced by a sink.   
By partial integration, from Eq. (38), the 

velocity field was determined: 
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Further discussions concerning the 

satisfaction of the equation of mass 
conservation have been furnished by [5].  

2.4. Influence of the propulsor downwash on 
the following propulsor 

In the HYPS, the following propulsors 
operate within the trailing vortices springing 
from the leading propulsors ahead with the flow 
around them considerably influenced by these 
trails.  The forces generated over the propulsor 
profiles, as seen from the trailing vortex drag 
equations, are proportional to the square of the 
velocity and the angle of incidence.  Small 
velocity changes, therefore, have negligible 
effect unless they alter the incidence of the 
propulsor aerofoils. In this case, they then 
appear to have a significant effect on the 
generation of the force over the propulsors. 

The following propulsors work at 
incidences that are altered appreciably by the 
tilting of the relative oncoming flow.  This is 
due to the large downward induced velocity 
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components generated by the leading 
propulsors.  

To calculate the effect of downwash on the 
following propulsors, it was assumed that the 
two consecutive propulsors were located a 
distance x apart.  x, a distance vector, consisted 
of a vertical and a horizontal components, 
depending on the location of the origin and 
orientation of the coordinate system in used.  
For initial analyses, the second propulsor was 
assumed to be located behind the leading 
propulsor wing centre of pressure and in the 
plane of the vortex trail.  

Assuming the near elliptic distribution, the 
semi-span of the bound vortex was [6]:  

 
 s' = (π/4)s (41) 

 
Downwash at the mid-span of the 

following propulsor, caused by the leading 
propulsor, was the sum of the downwash effects 
caused by the bound vortex and that of each of 
the trailing vortices.  Using the Biot-Savart 
equations, the downwash at this point was 
determined as follows: 

 

 
( )

�
�

�
�
�

�

′
++=

+
′

+↓=

s
cos

x
sin

cos
s

sin
x

wP

ββ
π
Γ

β
π
Γβ

π
Γ

1
2

1
4
2

2
4

0

00

 (42) 

 
From the sketch x = s'cot β  and s' = (π /4)s 
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Using the Kutta-Joukowski’s theorem, and 

downwash angle: 
 

 VwP /=ε  (44) 
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This allowed the angle of attack of the 

following propulsor to be determined relative to 
the angle of attack of the leading one.  The 
effect of the downwash on reduction of the 
latter angle of attack enables the following 
propulsors, operating within the wake region 
behind the leading propulsors, to reduce their 
drag generation, delay the flow separation over 
their low pressure wet surfaces, and control the 
stall phenomenon.  [5] provides further details 
and analyses on the interacting effects and their 
significance on the overall performance of the 
system.   

Having parametrically determined the 
forces, moments and velocity induction acting 
on the HYPS and its components, the motion 
could then be optimised.  This was possible 
through introducing propulsor specifications 
that yield an optimum response within the 
equations.  

3. Prototype Design and Manufacture 
The results of the parametric study, while 

observing strict compliance with aero-
hydrodynamic design guidelines, allowed the 
development of an optimum configuration for a 
HYPS prototype [5].  Subsequently, the scaled-
down system was designed and constructed 
using rapid prototyping. 
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4. Comparison of Simulation and Test 
The developed prototype of the HYPS was 

tested under different upstream flow conditions.  
This, together with detailed theoretical data 
analysis in the form of a parametric study, 
provided a better understanding of the complex 
fluid phenomena involved. 

The test results were compared to the 
output of the numerical analysis of the 
simulated system, run under the corresponding 
initial conditions, to provide a basis for the 
evaluation of the numerical model.  Different 
arrangements of the prototype represented the 
various modes of the simulation.  These 
arrangements were constructed by alteration of 
the number of arms and rotors as well as a range 
of feedback controllers implemented within the 
system. 

The comparisons made show a good level 
of agreement between the experiments and 
simulation.  Figure 1. compares the power 
output between the numerical and experimental 
data in low Reynolds number conditions.  

Conclusion  
The process of design and optimisation of 

the blading systems for an advanced unducted 
propulsion concept was described.  The system 
offers a highly effective means for capturing the 
kinetic energy stored in a wide range of fluid 
motions, particularly random and turbulent. 

The results of the investigation show that 
the system, as intended during the design 
process, maximises the prevailing aero-
hydrodynamic forces on its impeller blades.  It 
offers to eliminate the stall phenomenon on the 
propulsors altogether, or considerably delay it in 
very low upstream flow velocities.  This enables 
the HYPS to enhance its rotary motion and 
achieve a higher energy conversion rate, which 
is in addition to its unique ability to capture 
energy from irregular and multi-directional flow 
particle movements.  
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Figure 1.  Comparison of experimental results with 

numerical analysis  
(outside diameter of the HYPS prototype =0.26 m) [7] 

 
In conclusion, the performance of an 

optimum configuration of the advanced 
propulsive system implies a significant increase 
in efficiency over the typical wind and hydro 
turbomachineries.  The efficiency enhancement 
achieved is mainly owed to the parametric based 
aerodynamic design of the propulsors.  
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