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Abstract

AUSM-type schemes share the advection
property. Since it always transfers information
like hyperbolic equation, the advection property
is not appropriate in applied to subsonic flows
which are governed by elliptic PDE. The
disagreement between the advection property
and physical phenomena induces excessive or
insufficient fluxes behind shocks where the flow
is subsonic and eventually shows oscillatory
behaviors. In order to settle this disadvantage, a
scheme should calculate fluxes behind a shock
discontinuity with the consideration of physical
phenomena as accurately as possible.

AUSMPW+ is modified to capture a shock
wave exactly with monotonic characteristic in
considering physical phenomena accurately as
possible and whether a cell-interface of shock
region is in a subsonic or a supersonic region.
In addition, it could capture shocks robustly
independent to grid system.

1 Introduction

AUSM-type schemes are developed
combining the accuracy of FDS and the
robustness of FVS. The first AUSM type
scheme, AUSM [1] is simple as FVS but
accurate since the information of both side
properties could be exchanged across a cell-
interface. Accuracy was improved in only
boundary or shear layers. However, it has been
still shown dissipative results in capturing a
shock. Moreover, the advection property causes

a monotonic problem. AUSM had the both of
accuracy and monotonic characteristic problem
in capturing shocks, though there is a noticeable
enhancement of accuracy in only boundary
layers. In order to improve the accuracy
problem, AUSM+ [2] was developed with the
definition of the speed of sound at a cell
interface which could give the information on a
sonic transition position. So AUSM+ can
capture a shock exactly if a sonic transition
position is on a cell-interface. However, in
condition that a sonic transition position is
deviated from a cell-interface, the monotonic
characteristic cannot be maintained any longer.
In order to improve the monotonic characteristic,
AUSMPW [3] and AUSMPW+ [4,5] were
developed. They control the advection property
using pressure based weight functions and
remove oscillations in a shock region
successfully. But in some grid systems, they still
show oscillations though it is much less than
that in AUSM or AUSM+. It is due to the
advection property which is not suitable to
physical phenomena.

In this paper, AUSMPW+ is modified by
newly defined speed of sound. It can remove
oscillations completely independent to grid
systems and represent physical phenomena
accurately. The modified AUSMPW+ is called
M-AUSMPW+ temporally for convenience.

2 Governing Equation

The two dimensional Euler equation as
conservative form is as follows.
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where ¢, is total internal energy.
For calorically perfect gas the equation of
state is given by

1
p=(r-1)pe= (7—1)/0(6, —5(u2 +v2)j, (3)
with y=1.4 for air.

3 Spatial Discretization

The flux which is constructed by AUSM-
type schemes is written as follows.

F, =Mjc,®, + Myc,®, +P; P, +P;P,), (4)
2 2 2
where @ = (p, pu, pH)" and P =(0, p,0)" .

The Mach number and pressure splitting
functions of M-AUSMPW+ are the same as
those of AUSMPW+ [4] and pressure based
weight functions f, , and w are also the same.

Only the difference from AUSMPW+ is

the speed of sound at cell-interfaces. The

problematic mach number region where
AUSMPW+ shows the oscillatory behavior is

0<M, M, <1. Thus the speed of sound in M-
AUSMPW+ is modified only in this region.

i) |m;
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>1,

M| <1, 0< MM, <1, (5)

ii) [M;[>1,

MZ‘<1,0<MZM;<1, (6)
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iii) elsewhere (7)
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o %(UL +U,)<0: ¢, =c? /max(|U, |,c").
2
Superscript * indicate the property at the
sonic speed.

4 Analysis of Oscillatory Behaviors in Shock
regions

a
M, =M, <1 M, =M, <1
M | 31 i M | >1
i i~
/M <1
HE

P4
M, =M, > M, =M, >1
(a) (b)
Fig. 1. Schematics of two types of shock

capturing along the sonic transition position.

Figure 1 shows the schematics of
numerical shock structure. In case of (a) the
sonic transition position is located between i"

and i+1"™ cell center points. Since M, M} =1,
the Mach number at the
i+1/2,M | =M M., is always smaller than

i+—
2

one. It means that a sonic transition position,
where M, M, =1, is located on the left of the
cell-interface i +1/2 . The case (b) is that the

sonic transition position is located between i-1"
and i" cell center points. The Mach number at

the cell-interface i—1/2, M | =M M, , is
)

always greater than one. It means that the sonic

transition position is located on the right of cell-

interface i —1/2.

cell-interface

*

i+l
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Now, the characteristic of FVS type
schemes and AUSM-type schemes will be
studied in each case respectively.

Since van Leer scheme [6] transfers a flux
according to the sign of eigenvalue, physical
phenomena could be considered somewhat
accurately. However there is no way to know
where a sonic transition position is located, i.e.,
van Leer scheme cannot distinguish between
Fig. 1(a) and Fig. 1(b). Thus even if a sonic
transition position is located right on a cell-
interface, van Leer scheme produces much
different fluxes compared to physical fluxes. All
of these errors act as numerical dissipation and
accuracy gets worse.

AUSM+ improved accuracy. Since the
speed of sound in AUSM+ uses Prandtl relation
of stationary normal shock, AUSM+ can
recognize where a sonic transition position is,
1.e., AUSM+ can distinguish between Fig. 1(a)
and Fig. 1(b). As a result, AUSM+ can capture a
shock discontinuity exactly without oscillations
providing that a sonic transition position is
located on a cell-interface. However, the
advection property of AUSM+ makes
oscillatory problems if a sonic transition
position is located out of a cell-interface.
Behind a shock discontinuity a flow is governed
by elliptic equations, on the other hand,
AUSM+ always maintain hyperbolic equations
because of the advection property. In non
shock-aligned grid system, this is the pivotal
reason of oscillation.

AUSMPW+ is designed to remove
numerical oscillation shown in AUSM+ and
improve accuracy in capturing the oblique
shock. The oscillation in AUSM+ is due to the
insufficient numerical dissipation caused by the
advection property in subsonic flow region. The
basic idea of AUSMPW+ is the control of
advection property by the pressure based weight
function and the production of proper numerical
dissipation.

In case of Fig.2(a), the mass flux of van
Leer scheme, which does not show oscillation
phenomena, is as follows.

Vanleer : F =u,p, + M ycipp-

AUSM+:F =u,p, + M4c,p, .
2

AUSMPW+:
F=u,p +Myc,p,

2

+M e, W(l+fR)(pR _pL)"'pRp—pL}
2 K

Terms of M~ of AUSMPW+, AUSM+ and
van Leer FVS are fluxes transferred to the
opposite direction compared to a flow direction.
The term of M~ of AUSM+ is much smaller
than that of van Leer or AUSMPW+ scheme
because of the advection property. So the total
flux of AUSM+ at a cell-interface is transferred
to a flow direction excessively by the ratio of
density and speed of sound. If solutions are
converged, after all, the numerical oscillation is
generated. AUSMPW+ decreases fluxes by
adding the terms of pressure based weight
function f and w. It can remove most of
oscillations, however, AUSMPW-+ shows a little
numerical oscillation as in Fig. 7.

In case M, goes to M, asymptotically, the

physical flux is F =u,p, , since the cell-

interface is located on the supersonic region.
The flux of van Leer still includes the term of
M~ and the total flux becomes smaller than the
physical flux. After a solution is converged, van
Leer scheme capture shock discontinuity
through two intermediate cells even in a shock-
aligned grid system as the case (a) in Fig.7. On
the other hand, in case of AUSM+ and

AUSMPW+, M., goes to one and M,

becomes zero. The total flux at a cell-interface
is exactly the same as the physical flux.
AUSM+ and AUSMPW+ could represent
physical shock phenomena exactly and capture
shock accurately without numerical oscillations
as the case (a) in Fig.7.

In Fig. 2(b), since the flow is supersonic at
a cell-interface, the exact physical flux is
F=u,p, . The mass flux of AUSM+ and

AUSMPW+ is also F =u,p,. There seems to

be no problem. However, AUSM+ also shows
numerical oscillations because of the advection
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property. The main reason is the excessive flux
at the next cell-interface i +1/2 compared with
those of van Leer scheme and AUSMPW+. The
mass flux of van Leer scheme which does not
show oscillation phenomena, is in the cell-
interface i+1/2 as follows.

Vanleer : F = M;c,p, + M Crpp -

AUSM+: F=Mjc,p, + Myc,p, -

2 2
AUSMPW+ :
F =MZCL,0L +Mye,p,

2 2

+MRCI|:W(1+fR)(pR _pL)+%:|.

2

AUSMPW+ reduces fluxes by adding the
terms of pressure based weight function f'and w,
and as a result, it does not show numerical
oscillations like van Leer FVS. If M, goes to

M , asymptotically, AUSMPW+ transfers the
same flux as the physical flux, F =u,p,. It is

possible to capture shocks exactly without
numerical oscillations as the case (e) in Fig. 7.
Even in M, <M, <1, by thanks to the term of

pressure based weight function, f and w,
AUSMPW+ can transfer an appropriate flux
across a cell-interface and never show
numerical oscillations.

Based on analyzing above results, to
remove the oscillations completely throughout a
whole Mach number region, the proper
numerical dissipation seems to be required in

the problematic region , |M Z‘>l , M

<1,

0<M, M, <1 where a shock is captured as in

Fig. 1(a). Governing equations in this region are
as follows.

Continuity equation:
Py = P+ prM e
u ) L ®
= piut; = pr0.25 1 === | c = pyuy,
c

Momentum equation:
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pL”L2 +p, =
piuiz + P+ prMycuy + By py )

2
= PrUp + Pp

If Egs. (8) and (9) satisfy the condition of
Fig. 1(a) and the expansion shock solution is
excluded, the following equation is simplified as
follows.

When ‘M;‘>1,

2
clz—[uR—Zp—LuLJ+ {uR—Q&uLJ —u,’
’ Pr Pr

Py (”L —Ug )+pL
Pr
With the ¢, and P, , M-AUSMPW+ could

M|<1,0<M;M; <1, (5)

2

P =1

remove the numerical oscillation completely.
The monotonic characteristic of van Leer,
AUSM+, AUSMPW+, and M-AUSMPW+ can
be summarized as follows. Van Leer scheme
always maintains the monotonic characteristic.
As mentioned above, since it cannot
distinguish from Fig. 1(a) and Fig. 1(b), it
show the inaccurate discontinuity. AUSM+
always shows oscillation, especially, in
l1<M, <M, oscillations are more severe.
AUSMPW+ removes oscillation successfully

even though it shows a little oscillation in
l<M, <M, . At last, M-AUSMPW+ never

show numerical oscillation in any case,
moreover, it can capture shocks with only one
intermediate cell.

Table 1. the comparison of a monotonic
characteristic of each scheme

(casel: M, =M, ;case2:1<M,<M,;
case 3: M, <M, <1;case4: M, =M)

case 1 case 2 case 3 case4

Van Leer mono mono mono mono
AUSM+ mono oscil oscil mono
AUSMPW+ mono oscil mono mono
M-AUSMPW+ | mono mono mono mono
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5 Analysis of the Monotonic Characteristic of
AUSM-type schemes

The inveterate problem of AUSM-type
schemes, i.e., oscillatory problems induced by a
shock discontinuity, will be analyzed. The
monotonic characteristic of each scheme will be
proven based on numeric and mathematics.

Figure 2 is a schematic of a numerical
shock structure in computations.

If a solution would be converged
completely, fluxes of all cell-interfaces are the
same and expressed by

F =F =F,=F =F, (10)

At this point, to maintain the monotonic
characteristic, following conditions should be
satisfied.

Density condition:

PL S PSPy <Py S Py (11)
pressure condition:
PLEPS Dy S Py S Py (12)

Mach number condition:
M, 2M, 2M,>M,>2M, (13)

Pr

M.,  =M,<l

i+l R

-
M, =M, >1
Fl F2 F3
Fig. 2. The schematic of numerical shock
discontinuity.

At first, if the converged solution satisfies
Mach number condition of Eq.(13), the critical
Mach number also satisty Eq.(14) since critical
Mach number show the same tendency as
physical Mach number

M, >M; >M;>M;>M, (14
Since the solution is assumed to be

converged completely, mass fluxes at each cell-
interface are the same as follows.

puit, =p,M;+p M =p M +p,M;

—pzM +p3M p3M +pRM (15)

= PrUg
In AUSM-type scheme or van Leer scheme,
M+
—* <1 from Eq. (14).

3

Then, p; = pp —"- < Prs P3 < Pr (16)

My
M
MJr
I Mz < Ps (17)
with the same way,

PLEpSp,<pySpp (18)
In case of pressure condition, converged
pressures at each cell can be determined by the
equation of state.

p= p—[2H M’e )2] (19)

and the pressure condltlon of Eq. (20) is also
satisfied.
PSP S Py S Py S pp (20)

Therefore, in FVS or AUSM-type scheme,
what the Mach number distribution satisfies
Eq.(14) means that all distributions of property
are monotonic, i.e., only if the distribution of
Mach number is monotonic through a shock
discontinuity, it is allowable to say that the
scheme capture shocks with the monotonic
characteristic.

Coming back to Eq.(15), the last equation
is not used yet. From the last equation, the
following condition is introduced.

pM; =0= le - M =0 (201

Equatlon (21) is the necessary condition
for the monotonic capturing with only one
intermediate cell. In order to satisfy Eq. (21),
the Mach number of cell 1 should be greater
than one and less than M, or the Mach number

splitting function M, should be zero itself.

Van Leer scheme does not satisfy Eq.(21).
So, it captures shocks with two intermediate
cells as shown in Fig. 7.



Fluxes of AUSM-type schemes may be
written as follows
F,=U,® +p,

Fo=M,c, P, +Mcy® +p,+PFpp (22)
F,=Mc, P +M,;c,; P, + P p, + P p,
Fy=Mjc, @y + M @ + Py py + Prp Py
Fp=U,®; + p,

If there exists converged solutions and
converged solutions were obtained after
computations, fluxes at all of cell-interfaces are
the same.

i) F, =F,
mass flux :
P (M1+LCIL _MI_RCIR)

. (23)
+p,Mypcop —pMc =0

momentum flux :
Jio= lel*C*(MrLClL _MI_RCIR)
+p2M;C*A7;RczR —pMc"M ¢, (24)
+P1(P12 — P )""sz{R -p, =0
energy flux:
lel(MrLcu _HI_RCIR)

e 25)
+p, H M jpcop —p, H M ;) =0

i) F, = F,

mass flux :
pZ(M;LCZL _MZ_RCZR) (26)

+ pRM;RcRR _pIMrLClL =0
momentum flux :
S = pzM;ﬁC*(M;chL —M e )
+IORM;C*M1;RCRR _lel*c*MlJrLclL (27)
+P2(P2+L _P2_1€)+pRPR_R -pP =0
energy flux:
szz(MerchL _MZ_RCZR) (28)
+ PrH g M g Crp _lelMlzclL =0
After simplify Eqgs.(23) to (28), it is easily
known that the function f,, and f,, of Eq.(24)

and Eq.(27) are the functions of velocity of cell
2 with the parameter of velocity of cell 1, i.e.,

Jio = flz(Uz): 0, fr = f23(U2): 0. (29)
If there are the velocity of cell 2 which
satisfies Eq.(28), there exists the solution which
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shows monotonic distributions of Mach number,
density and pressure.

Figure 3 is the results for AUSM+. If the
triple intersection point of functions fi», f»3 and
zero exists, i.e., the solution of equations

S :fn(Uz):O and f, :fz3(U2):0 exists.

If the triple point exists and Mach number of
cell 2 is less than M, it means that the Mach
number distribution does not satisfy monotonic
Mach number condition of Eq. (14). On the
other hand, if the triple point exists and Mach
number of cell 2 is greater than M ,, the Mach
number distribution does satisfy monotonic
Mach number condition and all property
through a shock discontinuity has monotonic
distributions.

(@) I<M,<M, (AUSM+)

f12, f23

Fig. 3. f, and f,; of AUSM+.

Form Fig. 3, AUSM+ always shows
numerical  oscillation.  Especially, = when
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l<M, <M, , the converged solution is
predicted to show severe oscillatory behaviors.
In Fig. 4, when 1 <M, <M,, M, is less
than M, in some region. It means that
AUSMPW+ does not satisfy monotonic
conditions and shows oscillations. However,
since M, is slightly less than M, oscillations
are so small that there is a slight problem in real
applications. In contrast, when 1> M, > M, ,

M, is always greater than M, and the

monotonic  converged solution could be
obtained.
(@) I<M,<M, (AUSMPW+)
t M,
15F
0.5
ST
]
&
-0.5
1.5f—
E 1 L P I R B
0.5 0.6 0.7 0.8 0.9
M2

(b) 1>M,>M, (AUSMPW+)

M,

T | IFEETER EEA NI IR E A IR R
0.5 0.6 0.7 0.8 0.9

Fig. 4. f}, and f,; of AUSMPW+.

Figure 5(a) and 5(b) show that M, is
always greater than M, . It means that the

solution by M-AUSMPW+ always shows the
monotonic characteristic.

(a) I<M,<M, (M-AUSMPW+)

(b) 1>M,>M, (M-AUSMPW+)

M,

05

f12, f23

05F

PRI | SRS ERSERNI ERNIIIN i,
0.5 0.6 0.7 0.8 0.9
M2

Fig. 5. f}, and f,; of M-AUSMPW+.

6 Result

6.1 Characteristic of shock-capturing
according to a sonic transition position

Cell-interface

Fig. 6. Definition of indexes of cells and cell-
interfaces.



Following numerical tests are performed to
investigate the shock-capturing characteristic of
each scheme according to a sonic transition
position and a cell-interface. The Mach number

at the cell-interface i +1/2 is M |, =M, M, .
i+—
2
The initial conditions of each case are as

follows

When M, >1> M,

Case (@) : M, , =M, =M, , M, =M, ,
M, =M,,M =1

1*5 l+5
Case (b) : M, , =M, , M,=05M,+1) ,

M, =My, M  >1,M , <1
Z—E I+E

Case (¢) : M, , =M, , M,=1, M,

Case (d) : M, , =M, , M,=05M,+1) ,

Figure 7 shows the pressure distributions
of each scheme according to each initial
condition.

As mentioned above, though it shows the
monotonic characteristic in capturing shocks,
van Leer scheme captures shocks through two
intermediate cells even if sonic transition
position is located on a cell-interface like cases
(a) and (e).

AUSM+ always maintains the hyperbolic
characteristics even in a subsonic region
because of the advection property. Since
hyperbolic characteristic is exactly coincident
with cases (a) and (e), AUSM+ does not show
oscillations. The rest of cases, however, show
oscillations, since the advection property is not
appropriate to solve a subsonic region.

AUSMPW+ can capture shock exactly
maintaining the advection property in cases (a)
and (e) which a sonic transition position is
located on a cell-interface. If the sonic transition
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position is deviated from a cell-interface,
AUSMPW+ controls the advection property
appropriately using pressure weighted function f
and w, and as a result, removes the oscillations.
However, in case (b), even AUSMPW+ shows
small oscillation. It is caused by the fact that, as
sonic transition position approach a cell-
interface, the speed of sound of AUSMPW+
reduces the numerical dissipation so rapidly that
it induces the numerical oscillations. Lastly, M-
AUSMPW+ shows the best results and they are
with the same level of accuracy. Shocks are
captured through only one or no intermediate
cell in all cases.

(a) (b) (c)  vanLeer (d) (e)

Pre:
Pre:

~ Prossur
Pre:

\\\\\\\\
ssssssssssssssssssss

(a) (b) (c) AUSM+ (d) (e)

Pro
Pre:

~ Prossu
Pre
Pro

L N L I U

(@) (b) (c) AUSMPW+ (d) (e)

Pressure
Pressure

aaaaaaaaaaaaaaaaaaaaaaaaa

@ (b) (c) M-AUSMPW+ | (d) (e)

s
_ Prose
P
Pro
=

aaaaaaaaaaaaaaaaaaaaaaaaa

Fig. 7. Comparison of pressure distribution of
each scheme along the Mach number at cell i.

6.2 Hypersonic flow around a cut cylinder

In case of a strong shock like a hypersonic
flow problem, there may occur many accuracy
or robustness problems according to the
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distance between a sonic transition position and
a cell-interface. For example, in non shock-
aligned grid system, large numerical errors are
induced across shocks, propagate downstream
along flows and have bad influences on
accuracy.[5] Aligning shocks with grid system
for the improvement of accuracy could give the
ability to capture shock without numerical
dissipation. However, it is liable that
insufficient numerical dissipation magnifies
numerical shock instability.

M-AUSMPW+ AUSMPW+ AUSM+

Mach number =15 Mach number = 15 Mach number = 15

Pressure contour

Pressure contour Pressure contour

Fig. 8. Comparison of pressure contours of each
scheme.

M-AUSMPW+ AUSMPW+ AUSM+

Mach number = 15 Mach number = 15 Mach number = 15

Pressure contour Pressure contour Pressure contour

Pressure
Pressure
Pressure

x

Fig. 9. Comparison of pressure distributions
along the stagnation line.

Figure 8 and 9 show shock-capturing
characteristic of each scheme in multi-
dimensional problems and are the case that a
sonic transition position and a cell-interface are
located like Fig. 1(a). As shown in Fig. 1(a),
AUSM+ and AUSMPW+ show oscillations.
Moreover, the results of AUSM+ and
AUSMPW+ cannot be converged because of

oscillations. In contrast, as in one-dimensional
results, M-AUSMPW does not show any
numerical oscillations and it always maintains
the monotonic characteristic. Independent to
grid systems, M-AUSMPW+ can capture shock
without oscillations.

7 Conclusions

Numerical oscillations in shocks, which is
one of disadvantages of AUSM-type schemes,
was analyzed and solutions for the removal of
them are provided. AUSM+ which has the
advection property cannot represent the physical
phenomena accurately in subsonic or transonic
flows. This disagreement between the advection
property and physical phenomena directly leads
to numerical oscillations. The inaccurate
representation of physical phenomena induces
excessive or insufficient fluxes and eventually
shows oscillatory behavior. In order to settle
this disadvantage, scheme should calculate
accurate fluxes behind a shock discontinuity
with right consideration of physical phenomena.
M-AUSMPW+ is developed to remove
oscillations completely in considering physical
phenomena accurately as possible and whether a
cell-interface of shock region is in subsonic or
supersonic region. Independent to a sonic
transition position, M-AUSMPW+ can capture
shock accurately with the monotonic
characteristic.
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