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Abstract 

AUSM-type schemes share the advection 
property. Since it always transfers information 
like hyperbolic equation, the advection property 
is not appropriate in applied to subsonic flows 
which are governed by elliptic PDE. The 
disagreement between the advection property 
and physical phenomena induces excessive or 
insufficient fluxes behind shocks where the flow 
is subsonic and eventually shows oscillatory 
behaviors. In order to settle this disadvantage, a 
scheme should calculate fluxes behind a shock 
discontinuity with the consideration of physical 
phenomena as accurately as possible.  

AUSMPW+ is modified to capture a shock 
wave exactly with monotonic characteristic in 
considering physical phenomena accurately as 
possible and whether a cell-interface of shock 
region is in a subsonic or a supersonic region. 
In addition, it could capture shocks robustly 
independent to grid system. 

  

1  Introduction 
AUSM-type schemes are developed 

combining the accuracy of FDS and the 
robustness of FVS. The first AUSM type 
scheme, AUSM [1] is simple as FVS but 
accurate since the information of both side 
properties could be exchanged across a cell-
interface. Accuracy was improved in only 
boundary or shear layers. However, it has been 
still shown dissipative results in capturing a 
shock. Moreover, the advection property causes 

a monotonic problem. AUSM had the both of 
accuracy and monotonic characteristic problem 
in capturing shocks, though there is a noticeable 
enhancement of accuracy in only boundary 
layers. In order to improve the accuracy 
problem, AUSM+ [2] was developed with the 
definition of the speed of sound at a cell 
interface which could give the information on a 
sonic transition position. So AUSM+ can 
capture a shock exactly if a sonic transition 
position is on a cell-interface. However, in 
condition that a sonic transition position is 
deviated from a cell-interface, the monotonic 
characteristic cannot be maintained any longer. 
In order to improve the monotonic characteristic, 
AUSMPW [3] and AUSMPW+ [4,5] were 
developed. They control the advection property 
using pressure based weight functions and 
remove oscillations in a shock region 
successfully. But in some grid systems, they still 
show oscillations though it is much less than 
that in AUSM or AUSM+. It is due to the 
advection property which is not suitable to 
physical phenomena.  

In this paper, AUSMPW+ is modified by 
newly defined speed of sound. It can remove 
oscillations completely independent to grid 
systems and represent physical phenomena 
accurately. The modified AUSMPW+ is called 
M-AUSMPW+ temporally for convenience. 

2  Governing Equation  
The two dimensional Euler equation as 

conservative form is as follows. 
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where et is total internal energy. 
For calorically perfect gas the equation of 

state is given by  

( ) ( ) ( )
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with 4.1=γ  for air. 

3  Spatial Discretization  
The flux which is constructed by AUSM-

type schemes is written as follows. 
 

( )RRLLRRLL cMcM PPF −+−+ Ρ+Ρ++= ΦΦ
2
1

2
1

2
1 ,  (4) 

where ( )THu ρρρ ,,=Φ  and ( )Tp 0,,0=P .  
The Mach number and pressure splitting 

functions of M-AUSMPW+ are the same as 
those of AUSMPW+ [4] and pressure based 
weight functions RLf ,  and w are also the same.  

Only the difference from AUSMPW+ is 
the speed of sound at cell-interfaces. The 
problematic mach number region where 
AUSMPW+ shows the oscillatory behavior is 

10 ** << RL MM . Thus the speed of sound in M-
AUSMPW+ is modified only in this region.  

 
i) 1* >LM , 1* <RM , 10 ** << RLMM , (5) 
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ii) 1* >RM , 1* <LM , 10 ** << RLMM , (6) 
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iii) elsewhere (7) 
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Superscript * indicate the property at the 
sonic speed. 

4 Analysis of Oscillatory Behaviors in Shock 
regions 

 
Fig. 1. Schematics of two types of shock 
capturing along the sonic transition position. 
 

Figure 1 shows the schematics of 
numerical shock structure. In case of (a) the 
sonic transition position is located between ith 
and i+1th cell center points. Since 1** =RL MM , 
the Mach number at the cell-interface 

21+i , *
1

*

2
1 +

+
= ii

i
MMM , is always smaller than 

one. It means that a sonic transition position, 
where 1** =RL MM , is located on the left of the 
cell-interface 21+i . The case (b) is that the 
sonic transition position is located between i-1th 
and ith cell center points. The Mach number at 
the cell-interface 21−i , **

1
2
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i
MMM −

−
= , is 

always greater than one. It means that the sonic 
transition position is located on the right of cell-
interface 21−i .  
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Now, the characteristic of FVS type 
schemes and AUSM-type schemes will be 
studied in each case respectively. 

Since van Leer scheme [6] transfers a flux 
according to the sign of eigenvalue, physical 
phenomena could be considered somewhat 
accurately. However there is no way to know 
where a sonic transition position is located, i.e., 
van Leer scheme cannot distinguish between 
Fig. 1(a) and Fig. 1(b). Thus even if a sonic 
transition position is located right on a cell-
interface, van Leer scheme produces much 
different fluxes compared to physical fluxes. All 
of these errors act as numerical dissipation and 
accuracy gets worse.  

AUSM+ improved accuracy. Since the 
speed of sound in AUSM+ uses Prandtl relation 
of stationary normal shock, AUSM+ can  
recognize where a sonic transition position is,  
i.e., AUSM+ can distinguish between Fig. 1(a) 
and Fig. 1(b). As a result, AUSM+ can capture a 
shock discontinuity exactly without oscillations 
providing that a sonic transition position is 
located on a cell-interface. However, the 
advection property of AUSM+ makes 
oscillatory problems if a sonic transition 
position is located out of a cell-interface. 
Behind a shock discontinuity a flow is governed 
by elliptic equations, on the other hand, 
AUSM+ always maintain hyperbolic equations 
because of the advection property. In non 
shock-aligned grid system, this is the pivotal 
reason of oscillation. 

AUSMPW+ is designed to remove 
numerical oscillation shown in AUSM+ and 
improve accuracy in capturing the oblique 
shock. The oscillation in AUSM+ is due to the 
insufficient numerical dissipation caused by the 
advection property in subsonic flow region. The 
basic idea of AUSMPW+ is the control of 
advection property by the pressure based weight 
function and the production of proper numerical 
dissipation. 

In case of Fig.2(a), the mass flux of van 
Leer scheme, which does not show oscillation 
phenomena, is as follows. 

Van leer : RRRLL cMuF ρ+ρ= − . 

AUSM+ : LRLL cMuF ρ+ρ= −

2
1 . 

AUSMPW+: 
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Terms of −M  of AUSMPW+, AUSM+ and 
van Leer FVS are fluxes transferred to the 
opposite direction compared to a flow direction. 
The term of −M  of AUSM+ is much smaller 
than that of van Leer or AUSMPW+ scheme 
because of the advection property. So the total 
flux of AUSM+ at a cell-interface is transferred 
to a flow direction excessively by the ratio of 
density and speed of sound. If solutions are 
converged, after all, the numerical oscillation is 
generated. AUSMPW+ decreases fluxes by 
adding the terms of pressure based weight 
function f and w. It can remove most of 
oscillations, however, AUSMPW+ shows a little 
numerical oscillation as in Fig. 7. 

In case iM  goes to LM  asymptotically, the 
physical flux is LLuF ρ= , since the cell-
interface is located on the supersonic region. 
The flux of van Leer still includes the term of 

−M  and the total flux becomes smaller than the 
physical flux. After a solution is converged, van 
Leer scheme capture shock discontinuity 
through two intermediate cells even in a shock-
aligned grid system as the case (a) in Fig.7. On 
the other hand, in case of AUSM+ and 
AUSMPW+, 21, +iRM  goes to one and −

RM  
becomes zero. The total flux at a cell-interface 
is exactly the same as the physical flux. 
AUSM+ and AUSMPW+ could represent 
physical shock phenomena exactly and capture 
shock accurately without numerical oscillations 
as the case (a) in Fig.7. 

In Fig. 2(b), since the flow is supersonic at 
a cell-interface, the exact physical flux is 

LLuF ρ= . The mass flux of AUSM+ and 
AUSMPW+ is also LLuF ρ= .  There seems to 
be no problem. However, AUSM+ also shows 
numerical oscillations because of the advection 
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property. The main reason is the excessive flux 
at the next cell-interface 21+i  compared with 
those of van Leer scheme and AUSMPW+. The 
mass flux of van Leer scheme which does not 
show oscillation phenomena, is in the cell-
interface  21+i  as follows. 

Van leer : RRRLLL cMcMF ρ+ρ= −+ . 
AUSM+ : LRLL cMcMF ρ+ρ= −+

2
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2
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AUSMPW+ reduces fluxes by adding the 

terms of pressure based weight function f and w, 
and as a result, it does not show numerical 
oscillations like van Leer FVS. If iM  goes to 

RM  asymptotically, AUSMPW+ transfers the 
same flux as the physical flux, LLuF ρ= . It is 
possible to capture shocks exactly without 
numerical oscillations as the case (e) in Fig. 7. 
Even in 1<< iR MM , by thanks to the term of 
pressure based weight function, f and w, 
AUSMPW+ can transfer an appropriate flux 
across a cell-interface and never show 
numerical oscillations.  

Based on analyzing above results, to 
remove the oscillations completely throughout a 
whole Mach number region, the proper 
numerical dissipation seems to be required in 
the problematic region , 1* >LM , 1* <RM , 

10 ** << RL MM  where a shock is captured as in 
Fig. 1(a). Governing equations in this region are 
as follows. 

 
Continuity equation: 
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Momentum equation: 
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If  Eqs. (8) and (9) satisfy the condition of 

Fig. 1(a) and the expansion shock solution is 
excluded, the following equation is simplified as 
follows. 
When 1* >LM , 1* <RM , 10 ** << RL MM , (5) 
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With the 
2
1c  and −

RP , M-AUSMPW+ could 

remove the numerical oscillation completely. 
The monotonic characteristic of van Leer, 

AUSM+, AUSMPW+, and M-AUSMPW+ can 
be summarized as follows. Van Leer scheme 
always maintains the monotonic characteristic. 
As mentioned above, since it cannot 
distinguish from Fig. 1(a) and Fig. 1(b), it 
show the inaccurate discontinuity. AUSM+ 
always shows oscillation, especially, in 

Li MM <<1 oscillations are more severe.  
AUSMPW+ removes oscillation successfully 
even though it shows a little oscillation in 

Li MM <<1 . At last, M-AUSMPW+ never 
show numerical oscillation in any case, 
moreover, it can capture shocks with only one 
intermediate cell. 

 
Table 1. the comparison of a monotonic 

characteristic of each scheme  
(case1: Li MM = ; case 2: Li MM <<1 ; 
case 3: 1<< iR MM ; case4: Ri MM = ) 

 

 case 1 case 2 case 3 case4
Van Leer mono mono mono mono
AUSM+ mono oscil oscil mono

AUSMPW+ mono oscil mono mono
M-AUSMPW+ mono mono mono mono
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5 Analysis of the Monotonic Characteristic of 
AUSM-type schemes 

The inveterate problem of AUSM-type 
schemes, i.e., oscillatory problems induced by a 
shock discontinuity, will be analyzed. The 
monotonic characteristic of each scheme will be 
proven based on numeric and mathematics. 

Figure 2 is a schematic of a numerical 
shock structure in computations. 

If a solution would be converged 
completely, fluxes of all cell-interfaces are the 
same and expressed by 

 RL FFFFF ==== 321   (10) 
At this point, to maintain the monotonic 

characteristic, following conditions should be 
satisfied. 

Density condition: 
 RL ρρρρρ ≤≤≤≤ 321  (11) 
pressure condition: 
 RL ppppp ≤≤≤≤ 321   (12) 
Mach number condition: 
 RL MMMMM ≥≥≥≥ 321  (13) 
 

 
 

Fig. 2.  The schematic of numerical shock 
discontinuity. 
 

At first, if the converged solution satisfies 
Mach number condition of Eq.(13), the critical 
Mach number also satisfy Eq.(14) since critical 
Mach number show the same tendency as 
physical Mach number  

 **
3

*
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*
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*
RL MMMMM ≥≥≥≥  (14) 

Since the solution is assumed to be 
converged completely, mass fluxes at each cell-
interface are the same as follows. 
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In AUSM-type scheme or van Leer scheme, 
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with the same way, 
 RL ρρρρρ ≤≤≤≤ 321  (18) 
In case of pressure condition, converged 

pressures at each cell can be determined by the 
equation of state. 

  ( )[ ]2**2
2

1 cMHp −
−

=
γ

γρ .  (19)  

and the pressure condition of Eq. (20) is also 
satisfied. 

 RL ppppp ≤≤≤≤ 321  (20) 
Therefore, in FVS or AUSM-type scheme, 

what the Mach number distribution satisfies 
Eq.(14) means that all distributions of property 
are monotonic, i.e., only if the distribution of 
Mach number is monotonic through a shock 
discontinuity, it is allowable to say that the 
scheme capture shocks with the monotonic 
characteristic. 

Coming back to Eq.(15), the last equation 
is not used yet. From the last equation, the 
following condition is introduced. 
 −− == 110 MM LL ρρ  → 01 =−M  (21) 

Equation (21) is the necessary condition 
for the monotonic capturing with only one 
intermediate cell. In order to satisfy Eq. (21), 
the Mach number of cell 1 should be greater 
than one and less than LM  or the Mach number 
splitting function −

1M  should be zero itself.  
Van Leer scheme does not satisfy Eq.(21). 

So, it captures shocks with two intermediate 
cells as shown in Fig. 7. 

Lρ
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11 >=− Li MM

11 <=+ Ri MM

1F 2F 3F
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Fluxes of AUSM-type schemes may be 
written as follows 

LLLL U pΦF +=  

111111 ppΦΦF −− +++= RLRRLLLLL PcMcM  (22) 

22112221112 ppΦΦF −+−+ +++= RLRRLL PPcMcM  

RRRLRRRRRLL PPcMcM ppΦΦF −+−+ +++= 222223  

RRRR U pΦF +=  
If there exists converged solutions and 

converged solutions were obtained after 
computations, fluxes at all of cell-interfaces are 
the same. 
i) 21 FF =  
mass flux : 
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momentum flux :  
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energy flux: 
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ii) 32 FF =  
mass flux : 

 
( )

0111

22222

=−+

−
+−

−+

LLRRRRR

RRLL

cMcM

cMcM

ρρ

ρ
 (26) 

momentum flux :  
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energy flux: 
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After simplify Eqs.(23) to (28), it is easily 

known that the function 12f  and 23f  of Eq.(24) 
and Eq.(27) are the functions of velocity of cell 
2 with the parameter of velocity of cell 1, i.e., 
 ( ) 021212 == Uff , ( ) 022323 == Uff . (29) 

If there are the velocity of cell 2 which 
satisfies Eq.(28), there exists the solution which 

shows monotonic distributions of Mach number, 
density and pressure.  

Figure 3 is the results for AUSM+. If the 
triple intersection point of functions  f12 ,  f23  and 
zero exists, i.e., the solution of equations 

( ) 021212 == Uff  and ( ) 022323 == Uff  exists. 
If the triple point exists and Mach number of 
cell 2 is less than RM , it means that the Mach 
number distribution does not satisfy monotonic 
Mach number condition of Eq. (14). On the 
other hand, if the triple point exists and Mach 
number of cell 2 is greater than RM , the Mach 
number distribution does satisfy monotonic 
Mach number condition and all property 
through a shock discontinuity has monotonic 
distributions.  
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Fig. 3. 12f  and 23f  of AUSM+. 

 
Form Fig. 3, AUSM+ always shows 

numerical oscillation. Especially, when 
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LMM << 11 , the converged solution is 
predicted to show severe oscillatory behaviors.  

In Fig. 4, when LMM << 11 , 2M  is less 
than RM  in some region. It means that 
AUSMPW+ does not satisfy monotonic 
conditions and shows oscillations. However, 
since 2M  is slightly less than RM , oscillations 
are so small that there is a slight problem in real 
applications. In contrast, when RMM >> 11 , 

2M  is always greater than RM  and the 
monotonic converged solution could be 
obtained. 
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Fig. 4. 12f  and 23f  of AUSMPW+. 

 
Figure 5(a) and 5(b) show that 2M  is 

always greater than RM . It means that the 
solution by M-AUSMPW+ always shows the 
monotonic characteristic.  
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Fig. 5. 12f  and 23f  of M-AUSMPW+. 
 

6 Result 

6.1 Characteristic of shock-capturing 
according to a sonic transition position  

 

 
Fig. 6. Definition of indexes of cells and cell-
interfaces. 
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Following numerical tests are performed to 
investigate the shock-capturing characteristic of 
each scheme according to a sonic transition 
position and a cell-interface. The Mach number 
at the cell-interface 21+i  is *

1
*

2
1 +

+
= iii

MMM . 

The initial conditions of each case are as 
follows 

 
When RL MM >> 1  
Case (a) : Lii MMM ==−1 , Ri MM =+1 , 

L
i

MM =
−

2
1 , 1

2
1 =

+i
M  

Case (b) : Li MM =−1 , ( )15.0 += Li MM , 

Ri MM =+1 , 1
2
1 >

−i
M , 1

2
1 <

+i
M  

Case (c) : Li MM =−1 , 1=iM , Ri MM =+1 , 
1

2
1 >

−i
M , 1

2
1 <

+i
M  

Case (d) : Li MM =−1 , ( )15.0 += Ri MM , 

Ri MM =+1 , 1
2
1 >

−i
M , 1

2
1 >

+i
M  

Case (e) : Li MM =−1 , Rii MMM == +1 , 
1

2
1 =

−i
M , R

i
MM =

+
2
1  

 
Figure 7 shows the pressure distributions 

of each scheme according to each initial 
condition. 

As mentioned above, though it shows the 
monotonic characteristic in capturing shocks, 
van Leer scheme captures shocks through two 
intermediate cells even if sonic transition 
position is located on a cell-interface like cases 
(a) and (e).  

AUSM+ always maintains the hyperbolic 
characteristics even in a subsonic region 
because of the advection property. Since 
hyperbolic characteristic is exactly coincident 
with cases (a) and (e), AUSM+ does not show 
oscillations. The rest of cases, however, show 
oscillations, since the advection property is not 
appropriate to solve a subsonic region. 

AUSMPW+ can capture shock exactly 
maintaining the advection property in cases (a) 
and (e) which a sonic transition position is 
located on a cell-interface. If the sonic transition 

position is deviated from a cell-interface, 
AUSMPW+ controls the advection property 
appropriately using pressure weighted function f 
and w, and as a result, removes the oscillations. 
However, in case (b), even AUSMPW+ shows 
small oscillation. It is caused by the fact that, as 
sonic transition position approach a cell-
interface, the speed of sound of AUSMPW+ 
reduces the numerical dissipation so rapidly that 
it induces the numerical oscillations. Lastly, M-
AUSMPW+ shows the best results and they are 
with the same level of accuracy. Shocks are 
captured through only one or no intermediate 
cell in all cases. 
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Fig. 7. Comparison of pressure distribution of 
each scheme along the Mach number at cell i. 

 

6.2 Hypersonic flow around a cut cylinder 
In case of a strong shock like a hypersonic 

flow problem, there may occur many accuracy 
or robustness problems according to the 
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distance between a sonic transition position and 
a cell-interface. For example, in non shock-
aligned grid system, large numerical errors are 
induced across shocks, propagate downstream 
along flows and have bad influences on 
accuracy.[5] Aligning shocks with grid system 
for the improvement of accuracy could give the 
ability to capture shock without numerical 
dissipation. However, it is liable that 
insufficient numerical dissipation magnifies 
numerical shock instability.  
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Pressure contour
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Fig. 8. Comparison of pressure contours of each 
scheme. 
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Fig. 9. Comparison of pressure distributions 
along the stagnation line. 

 
Figure 8 and 9 show shock-capturing 

characteristic of each scheme in multi-
dimensional problems and are the case that a 
sonic transition position and a cell-interface are 
located like Fig. 1(a). As shown in Fig. 1(a), 
AUSM+ and AUSMPW+ show oscillations. 
Moreover, the results of AUSM+ and 
AUSMPW+ cannot be converged because of 

oscillations. In contrast, as in one-dimensional 
results, M-AUSMPW does not show any 
numerical oscillations and it always maintains 
the monotonic characteristic. Independent to 
grid systems, M-AUSMPW+ can capture shock 
without oscillations. 

 

7 Conclusions 
Numerical oscillations in shocks, which is 

one of disadvantages of AUSM-type schemes, 
was analyzed and solutions for the removal of 
them are provided. AUSM+ which has the 
advection property cannot represent the physical 
phenomena accurately in subsonic or transonic 
flows. This disagreement between the advection 
property and physical phenomena directly leads 
to numerical oscillations. The inaccurate 
representation of physical phenomena induces 
excessive or insufficient fluxes and eventually 
shows oscillatory behavior. In order to settle 
this disadvantage, scheme should calculate 
accurate fluxes behind a shock discontinuity 
with right consideration of physical phenomena. 
M-AUSMPW+ is developed to remove 
oscillations completely in considering physical 
phenomena accurately as possible and whether a 
cell-interface of shock region is in subsonic or 
supersonic region. Independent to a sonic 
transition position, M-AUSMPW+ can capture 
shock accurately with the monotonic 
characteristic. 
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