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Abstract 
System optimization is a process of translating 
the dynamics of a system and its desired 
objectives into the mathematical language, which 
give rise to what is called a control problem and 
then to find the solution of this problem. Such a 
solution is called optimal control and the path it 
follows to achieve the desired objectives is called 
optimal trajectory. Trajectory optimization is an 
optimal transfer problem. For any specified end 
condition and performance index, the problem of 
determining the optimal trajectory in powered 
flight of an aircraft in atmospheric conditions, 
subject to certain physical constraints, is very 
complex problem. In general it cannot be solved 
without using numerical computation based on a 
specified model of the atmosphere and aircraft 
aerodynamic and engine characteristics. In the 
past an intensive research has been carried out 
in the area of system optimization and optimal 
trajectories. In the work presented in this paper, 
emphasis is made on generalization of the 
optimal trajectories of aircraft, the basic 
ingredients of the optimization problem and 
formulating the precise statement of the 
optimization problem. The definition of optimal 
control problem, formulation of a control 
problem and solution of such a control problem 
are presented. Different optimization techniques 
are discussed and compared to show their merits 
and limitations. The optimal trajectories in 
different phases of flight, i.e. trajectories in 
horizontal plane, vertical climb trajectories, are 
analyzed using the Pontryagin’s Maximum 
Principle.  

1 Control Problem 
In a general way a control problem is controlling 
of a dynamic system. Optimization of a system is 
a process of translating the system dynamics and 
its desired objectives into the abstract language 
of mathematics, which give rise to what is called 
a control problem, and then to find the solution 
to this problem. Such a solution is also called 
optimal control, and the path it follows to reach 
the desired goal is called optimal trajectory. The 
mathematical model, which represents the 
physical system, consists of a set of relations 
between state of the system and input to the 
system. Constraints are incorporated in this set of 
relations, which are usually expressed in the 
form of equations called the state equations. The 
requirement of obtaining a certain output is 
replaced with the requirement of hitting a certain 
target set in the state space of the system. The 
physical restrictions or constraints upon the set of 
inputs lead to a set of admissible inputs or 
controls. The desired objectives can be attained 
by many admissible inputs, each of which results 
in a different response. So it is required to 
evaluate each response and if possible pick up 
the best one. This requires the use of 
performance criterion, which is a measure of 
performance or cost of control. Such a 
performance criterion is called performance 
index or cost function (or functional). The 
solution of a control problem is to determine the 
admissible inputs which generate the desired 
output and which, in doing so, minimize 
(optimize) the cost functional.  
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The system is governed by a set of differential 
equations or the state equations 

 ),,( tuxfx =&                          (1) 
where x  is state vector, u  is control vector and 
t  is time. It is associated with a performance 
index of general form: 
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where ]),([ ff ttxK  is the terminal cost and 
]),(),([ ttutxL  is cost between the time interval 

],[ fi tt . The optimum control problem is to find 
)(tu  that minimizes the performance index along 

the optimal trajectory. Based on how to find 
)(tu , an optimal control problem can be handled 

in two possible ways: 
 

•  Parameter or Static Optimization 
•  Process or Dynamic Optimization 

2 Parameter Optimization  
The method where the control vector )(tu  can be 
found by a set of parameters a1, a2, a3, .. an., is 
called parameter optimization and the 
performance index, which is to be minimized, 
becomes a function of these parameters. Such a 
performance index is also called cost function. 
This method is applied to trajectory optimization 
problem where the trajectory is expressed in 
terms of a finite number of parameters and a set 
of parameters is optimized to get the optimum 
performance. It is used to maximize or minimize 
a cost function 
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As trajectory x  depends on )(tu , therefore, 
J depend on )(tu . If )(tu can be expressed in terms 
of a finite number of parameters a1, a2, …an , 
then in the final analysis, J can be written as a 
function of finite number of parameters: 

),...,( 21 naaafJ =                   (4) 

The limitation of parameter optimization is that it 
becomes difficult to solve the problem if the 
number of parameters increases or the 
complexity of the problem increases where the 
performance criterion is a cost functional, i.e. it 
is function of different functions. The dominant 
optimization techniques used in parameter 
optimization are: the Theory of Maxima and 
Minima, the Direct Methods of optimization, 
such as Simplex, Rosenbrock-Powel Method, 
Method of Gradients or Steepest Descent, 
Conjugate Gradient Method, etc.  

3 Process Optimization 
The process optimization is the generalization of 
parameter optimization problem and is concerned 
with finding a maximum or minimum for a 
quantity (performance index) which depends 
upon n independent functions x1(t), x2(t), …xn(t). 
This is a generalization of the concept of a 
function and is called functional. For more 
complicated control problems, where the 
performance criterion is cost functional, or where 
more accurate solution is required, process 
optimization is used, e.g. in case of trajectories in 
unsteady flight conditions. The cost functional is 
of the type: 
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J  depends on ))(),(( tutxf , but )(tx also 
depends on )(tu . Therefore, we can say that in 
final analysis, the performance index J is a 
functional of different controls and we can write 

 )(uJJ =                               (6) 
 
The famous optimization techniques used in 
process optimization are: the Calculus of 
Variations, the Belman’s Dynamic 
Programming, the Pontryagin’s Maximum 
Principle, etc. The main theoretical approaches, 
which had a major impact upon research in 
optimization, are based on the basic theory of 
ordinary Mixima and Minima.  
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4 Theory of Maxima and Minima 
The theory of ordinary maxima and minima is 
concerned with the problem of finding the values 
of each of n independent variables a1, a2, …. an at 
which some function of variable f(a1, a2, …. an) 
reaches either a maximum or a minimum. The 
existence of a solution to such a problem is 
guaranteed by the theorem of Weierstrass as long 
as the function is continuous.  

4.1 Necessary conditions for maxima or 
minima 

The location of local extrema for a real-valued 
function )(xf , which is defined and continuous 
on the closed interval [a, b] in the interior of a 
region ‘R’ may be determined by the two 
necessary conditions, i.e. if x is an extremum 
then  

  0)( =
∂
∂=′

x
fxf                   (7) 

Such a point is also called stationary point or 
critical point. If there is a point where )( xf ′ does 
not exists but it is piecewise continuous, i.e. 

)( −′ xf and )( +′ xf exists for all x but not 
necessarily )(xf ′ . The necessary conditions in 
such a case is  

0)(lim ≥′
+→

xf
xx

  and     0)(lim ≤′
−→

xf
xx

  

 (local minimum)         (8) 
or 

0)(lim ≤′
+→

xf
xx

  and 0)(lim ≥′
−→

xf
xx

  

(local maximum)                  (9) 
 
for the end points a, b  
 0)(lim ≥′

+→
xf

ax

 (local minimum)     

or 0)(lim ≤′
−→

xf
bx

(local maximum)           (10) 

We may conclude that the potential candidates 
for the absolute extremum of )(xf  are the 
stationary points, the points where one or more 
first partial derivatives of )(xf  are 
discontinuous, and the end points. However, 
neither stationary point nor discontinuities have 

to be extrema. In order to determine a local 
extremum of all the potential candidates for 
extremum of a function, the sufficient conditions 
are: 

4.2 Function of one independent variable. 
In case of a function )(xf  of one independent 
variable x, if x is a point at which )(xf ′ is zero 
and if the derivative )(xf ′ changes its sign from 
positive to negative (or negative to positive) 
when it passes through zero, then x is maximum 
(or minimum) of )(xf . This is the necessary 
condition for extremum of a function of one 
independent variable, which may be phrased as: 
  
if x is interior point at which 

)(xf ′ = 0  and 
2

2

)(
x

fxf
∂
∂=′′ > or < 0    (11) 

then x is local extremum. 
x is local minimum if )(xf ′′ is positive, i.e. 

 02

2

>
∂
∂

x
f                 (12) 

and is local maximum if  
)(xf ′′ is negative, i.e. 02

2

<
∂
∂

x
f                 (13) 

4.3 Function of two independent variables. 
For a function of two independent variables 

),( 21 xxf , extremum is relative minimum if 
0

11
>xxf    and   0)( 2

212211
>− xxxxxx fff   (14) 

 
and is relative maximum if 

0
11
<xxf   and  0)( 2

212211
>− xxxxxx fff    (15) 

4.4 Function of n independent variables. 
The corresponding necessary conditions for local 
extrema of a function of n independent variables 
f(x1, x2, …. xn) may be expressed as: 

 
a stationary point will be local minimum if  
 0>iD    (i = 1, 3, 5, …….)  
and 0<iD    (i = 2, 4, 6, …….)    (16) 
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a stationary point will be local maximum if  
 0<iD      (i = 1, 3, 5, …….)  
and 0>iD      (i = 2, 4, 6, …….)       
(17) 
where 

      

ixxx

ixxx

ixxx

iD

ix2ix1ix

2x22x12x

1x21x11x

f..ff
.....
.....

f..ff
f..ff

=
 

4.5 Solutions subject to constraints. 
If the variables x1, x2, …. xn are subject to certain 
relations called constraints, of the form: 

0),...,(g 211 =nxxx , 0),...,(g 212 =nxxx ,  . 
 .   .   . 

0),...,(g 21m =nxxx            (18) 
with m < n , the number of independent variables 
is reduced to n-m. The problem is to find an 
extremum of f(x1, x2, …. xn) for one or more 
independent variables subject to m constraint 
equations. There are different methods to find the 
solution of this problem subject to constraints, 
such as Substitution Method, Lagrange 
Multiplier Method, Calculus of Variations. etc. 

4.6 Lagrange Multiplier Method. 
Consider a function of two independent variables 

),( 21 xxf with constraint  
      0),( 21 =xxg             (19) 

The derivative ),(
),(

21 xx
gf

∂
∂  also called the Jacobian 

can be written [ 3] as: 
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21
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det
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x
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x
f

xx
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∂
∂

∂
∂−

∂
∂

∂
∂=

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂              (20) 

The necessary condition for the existence of 
stationary point is also a point where the 
Jacobian determinant must vanish, i.e. 
 0

),(
),(

21

=
∂
∂

xx
gf   

or     0
1221

=
∂
∂

∂
∂−

∂
∂

∂
∂

x
g

x
f

x
g

x
f            (21) 

This equation may be rewritten as: 
     λ−=

∂∂
∂∂

=
∂∂
∂∂

2

2

1

1

/
/

/
/

xg
xf

xg
xf     (22) 

where λ  is a constant called Lagrange 
multiplier. Equation (22) can also be written as: 
  0

11

=
∂
∂+

∂
∂

x
g

x
f λ   

and 0
22

=
∂
∂+

∂
∂

x
g

x
f λ                (23) 

Equation (23) can be considered as the necessary 
conditions for the existence of a stationary point 
of the function gf λ+  without the constraints. 
Therefore, the necessary condition for a 
stationary point of ),( 21 xxf  with constraint 

0),( 21 =xxg  is found by forming the augmented 
function gf λ+ , and treating the problem as one 
without constraints. This result can be extended 
to the general case of a function of n variables 
with m constraint equations, with the 
introduction of a set of constants, Lagrange 
multipliers, 

mλλλ ..,, 21
.  The use of 

augmented function allows a problem with 
constraints to be replaced by a problem without 
constraints. This new problem can be solved by 
any technique used for solving problems without 
constraints.  

5 The Calculus of Variations 
The calculus of variations is that branch of 
calculus in which extremal problems are 
investigated under more general conditions than 
those considered in the ordinary theory of 
maxima and minima. More specifically, the 
calculus of variations is applied to process 
optimization problems, where the maxima or 
minima of functional expressions are 
investigated. The most general problems of the 
calculus of variations in one independent 
variable are the problem of Bolza, Mayer, and 
Lagrange. These problems are theoretically 
equivalent and any one of them can be 
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transformed into another by change of 
coordinates.  

5.1 Problem of Bolza 
In order to formulate the problem of Bolza, 
consider a class of functions )(tx k ,  (k = 1, 2, 
…n) satisfying the constraints 0),,( =txxg &  
which involve n-m degree of freedom. Assuming 
that these functions must be consistent with the 
end conditions: 
 0),( =iir txψ     ( r =1, 2, . . . q )  
              

0),( =ffr txψ  ( r = q+1, q+2, . . . s ≤ 2n+2 ) (24) 
where (2n+2) are the total boundary conditions, q 
are the initial conditions, and (s-q) are the final 
conditions. 
Find that special set that minimizes the 
functional form 

∫+=
f

i

t

t
ff dttxxLttxKJ ),,(]),([ &    (25) 

The above formulated problem can be treated in 
a simple manner if a set of variables, called 
Lagrange multiplies, mλλλ ..,, 21  is 
introduced and if the following expression, called 
the augmented function, is formed: 

 ∑
=

+=
m

j
jj gLF

1
λ                 (26) 

or    mm gggLF λλλ ++++= ...2211  
The extremal arc must satisfy constraints and the 
Euler-Lagrange equation is 

 0=
∂
∂−





∂
∂

kk x
F

x
F

dt
d

&
  (k = 1, 2, . . . n )   (27) 

A mathematical consequence of the Euler-
Lagrange equations is the differential 
relationship 

    0
1

=
∂
∂+





∂
∂+− ∑

= t
Fx

x
FF

dt
d n

k
k

k

&
&

            (28) 

For the problems where the augmented function 
is independent of t, the following integral, called 
the first integral is valid: 

   Cx
x
FF

n

k
k

k

=
∂
∂+− ∑

=1

&
&

             (29) 

where C is an integration constant. 

5.2 The Problem of Mayer 
The problem of Mayer is that particular case of 
Bolza in which the integral part of cost 
functional J  is zero, i.e. when  

0=F                (30) 
As the constraint equation is 0),,( =txxg kkj & , 
therefore, the augmented function in Mayer 
problem is equal to zero. 

 0
1

=+= ∑
=

m

j
jj gLF λ       (31) 

As 0=F , therefore, the cost functional is 
 ]),([ ff ttxKJ =              (32) 

5.3 The Problem of Lagrange 
The problem of Lagrange is that particular case 
of the problem of Bolza in which the cost 
functional J  is expressed in the integral form 
only, i.e.  

 0=K                (33) 

∫=
f

i

t

t
kk dttxxLJ ),,( &           (34)  

the transversality condition is simplified to 

0
1

=



∂
∂+− ∑

=

f

i

n

k
k

k

dx
x
FCdt
&

            (35) 

5.4 Problems Involving Inequalities 
In many physical problems, there are various 
inequality constraints on the control vector for 
example, the maximum throttle setting, 
maximum control deflecting, etc. So in a 
problem with minimizing a cost functional  

 ∫=
f

i

t

t

dttxxLJ ),,( &             (36) 

with equality constraints of the form: 
  0),,( =txxg &       (37) 

and inequality constraints of the form:  
 maxmin ),,( Γ≤Γ≤Γ txx&     (38) 

In order for a trajectory to be admissible, it must 
satisfy both the equality and the inequality 
constraints. The slack-variable method, convert 
the inequality constraint equation (38) to an 
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equality constraint by introducing new state 
variables z, satisfying the equation 
 2

maxmin ))(( z=Γ−ΓΓ−Γ           (39) 
The problem under consideration becomes 
identical with that finding the extremal arc, in 
class x(t), z(t), which satisfy the equality 
constraints, and Lagrange multiplier can now be 
used to adjoin equations (36 to 39) and used the 
usual necessary conditions are the applicable. 
Therefore, a problem with two-sided inequality 
constraint is replaced by the equality constraint 
in the new problem. Similarly, a problem with 
one-sided inequality constraint, max),,( Γ≤Γ txx&  
is replaced by the equality constraint 
( ) 2

max z=Γ−Γ .  

5.5 Formulation of Optimal Control 
Problem in Calculus of Variations  

The formulation of the optimal control problem 
using the Hamiltonian function is set of the 
following expressions: 
 
   System dynamics  

   ),,( tuxfx =&     itt ≥  it = fixed          (40) 
   Performance index   

      ∫+=
f

i

t

t
ff dttuxLttxKJ ),,(]),([     (41) 

   Final state constraint  
0)),(( =Ψ ff ttx            (42) 

   Hamiltonian 
     ),,(),,(),,( tuxftuxLtuxH Tλ+=    (43) 

   State equation  
     ),,( tuxfHx =

∂
∂=
λ

&  itt ≥     (44) 

   Costate equation 
  λλ

T

x
f

x
L

x
H







∂
∂−

∂
∂−=

∂
∂−=&  (45) 

   Stationary condition  
0=






∂
∂+

∂
∂=

∂
∂ λ

T

u
f

u
L

u
H          (46) 

Boundary conditions )( itx given 
    

0)(

)()(

=+Ψ++

−Ψ+

ft
T
tt

f
TT

xx

dtHK

tdxK

f
µ

λµ    (47) 

Therefore, the optimization depends on the 
solution to a two-point boundary value problem. 
Normally the initial state )( itx is known and the 
final costate )( ftλ  is determined by equation 
(45). It is generally very difficult to solve the 
two-point boundary value problems. The most 
serious limitation of the Calculus of Variations is 
that if there are constraints on the control input as 
in almost all the practical problems, it is not 
going to work, because the necessary conditions 
for the extremum would not apply.  

6 Dynamic Programming  
Dynamic programming is based on the 
Bellman’s principle of optimality, can be viewed 
as an outgrow of the Hamilton-Jacobi approach 
to variational problems. The Dynamic 
programming approach to optimal control 
problem is basically meant for discrete-time 
systems. However, it can be used for continuous-
time systems.  
Consider a system with plant dynamics 

),,( tuxfx =& and associated with a performance 
index 

   ∫+=
f

i

t

t
ff dttuxLttxKJ ),,(]),([        (48) 

We are interested in determining a continuous 
optimal control )(* tu  on a given interval [ it , ft ] 
that minimizes J  and drives a given initial state 

)( itx to a final state satisfying constraint 
0]),([ =Ψ ff ttx  

Suppose t  is the current time and tt ∆+  is a 
future time close to t . Then the cost functional 
can be written as: 

∫∫
∆+

∆+

++=
tt

t

t

tt
ff duxLduxLttxKtxJ

f

ττττ ),,(),,(]),([),(    (49) 

Comparing equation (48) and (49)  







∆+∆++= ∫

∆+

∆+<<

),(),,(
)(

min),( ttxxJduxL
u

txJ
tt

t
ttt

ττ
τ

τ

   (50) 

where xx ∆+  is the state at time tt ∆+ , 
therefore, and ttuxfx ∆=∆ ),,(   
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Hence, 







∆+∆++= ∫

∆+

∆+<<

),(),,(
)(

min),( ** ttxxJduxL
u

txJ
tt

t
ttt

ττ
τ

τ

   (51) 

The Taylor series expansion of ),(* ttxxJ ∆+∆+  
about x , t  and taking an approximation to the 
integral in equation (51), we can write to first 
order 

( )tJxJtxJtL
u

txJ t
T

x

ttt

∆+∆++∆=

∆+<<

**** ),(
)(

min),(

τ
τ

 (52) 

where 
x

JJ x ∂
∂=

*
* and 

t
JJ t ∂
∂=

*
*  

( )tfJtL
u

tJtxJtxJ
T

x

ttt

t

∆+∆+

∆+=

∆+<<

*

***

)(
min

),(),(

τ
τ

    (53) 

or ( )tfJtL
u

tJ T
x

ttt

t ∆+∆=∆−

∆+<<

**

)(
min

τ
τ

          (54) 

Letting 0=∆t  



















∂
∂+=

∂
∂− f

x
JL

tut
J

T**

)(
min

    (55) 

This partial differential equation for the optimal 
cost ),(* txJ is called the Hamilton-Jacobi-
Bellman (HJB) equation. It is solved backward in 
time from ftt = , by setting fi tt = in equation 
(55), its boundary conditions seen to be 

( ) ( )ffff ttxKttxJ ),(),(* =        (56) 
on  hyper surface ( ) 0),( =Ψ ff ttx           
If we define the Hamiltonian function as: 
 ( ) ( ) ( )tuxftuxLtuxH T ,,,,,,, λλ +=  
and  

x
J
∂
∂=

*

λ  

Then the HJB equation can be written as: 
  ( )),,,(min *

*

tJuxH
ut

J
x=

∂
∂−     (57) 

The HJB equation provides the solution to the 
optimal control problem for general nonlinear 
time-varying systems; however, in most cases it 
is impossible to solve analytically. When it can 
be solved, it provides an optimal solution. 

7 The Pontryagin’s Maximum Principle 

The mathematical modeling of a flight trajectory 
optimization using the Pontryagin’s Maximum 
Principle can be done with the assumption that 
the optimal control exists and it is unique. 
Suppose that the optimal control )(* tu  exists, it 
is unique, and that )(* tx  is the generated optimal 
trajectory. Then, corresponding to )(* tu and 

)(* tx , there exist a costate vector )(* tp  such 
that the following relations hold: 
Plant Dynamics 

  ]),(),([)( ttutxftx =&  x is n-dimensional   (58) 
 
Control Constraints 

   0]),([ ≥ttug           u is m-dimensional  (59) 
     Ω∈)(tu  
 
Cost Functional 

 dtttutxLttxKuJ
f

o

t

t
ff ∫+= ]),(),([]),([)(     (60) 

The Necessary Conditions for Optimal Control 
  

*

*

)(
)(

tp
H

dt
tdx

i

i

∂
∂=      state equations         (61) 

  
*

*

)(
)(

tx
H

dt
tdp

i

i

∂
∂−=   costate equations    (62) 

where  * means that the partial derivative must 
be evaluated at )(* tu , )(* tx  and )(* tp . 

7.1 Boundary Conditions 
Initial Conditions 

0
* )( xtx i =  (normally given)                (63) 

 
Terminal Conditions  

0]),([ =ff ttxψ  ψ  is k-dimensional        (64) 
 
Transversality Conditions 

µψ










∂
∂+

∂
∂=

f

T

f
f xx

Ktp )(      (65) 

µ  is k-dimensional                         
The Hamiltonian  
 

]),(),([]),(),([
]),(),(),([

0 ttutxfpttutxLp
ttutptxHH

T+
==    (66) 
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Minimization of the Hamiltonian 
[ ]

[ ]ttptutxH
ttptutxH

),(),(),(
),(),(),(

**

*** ≤     (67) 

 
for every t , fi ttt ≤≤ , and all admissible values 
of )(tu , i.e. Ω∈)(tu   

7.2 Selection of state equations 
In case of an aircraft, with the assumption that 
there is no wind, no sideslip and all the moments 
are in equilibrium, the general equations of 
motion over spherical and non rotating earth are 
the state equations. Usually, the optimal 
trajectory problems are sought under these 
conditions; otherwise, the problem becomes 
complicated and can’t be solved. Therefore, the 
state equations are expressed as: 

( )

( )




























−===
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+===







+

−−+===

−−===

s

g
g

g
g

q
dt
dmtmx

v
dt
dhthx

v
dt
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tyx

v
dt

dx
txx
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mvdt

dtx

hR
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v
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mvdt
dtx

g
m
D

m
P

dt
dvtvx

)(

sin)(

sincos)(

coscos)(

sinsin
cos
1)(

cos1cossin1)(

sincos)(

7

6

5

4

3

2

2

1

&&

&&

&&

&&

&&

&&

&&

γ

χγ

χγ

ϕα
γ

χχ

γϕαγγ

γα

  (68) 

7.3 Selection of Control variables 
We may chose a set of variables as control 
variable, which will determine the trajectory, 
such as throttle setting η , angle of attack α , 
angle of roll ϕ  etc. Depending on the analysis of 
a desired trajectory any one or combination of 
the control variables can be selected, but these 
controls are subjected to physical limitations or 
constraints as mentioned below: 
 
Control Constraints 

  0]),([ ≥ttug  u  is m-dimensional    (69) 
   u(t) ∈     

1.  maxmin ηηη ≤≤     4.  )( Mnn permLL =   
2.  maxmin ααα ≤≤        5.  permϕϕ ≤  
3. maxmin LLL CCC ≤≤    6.  permMM ≤  

7.4 Derivation of Costate Equations 
Depending on the number of state variables 
( mhyxv gg ,,,,,, χγ  etc.), we must have equal 
number of costate variables [ p1(t), p2(t), p3(t), 
p4(t), p5(t), p6(t), p7(t)  etc.]. 
Thus, we have the costate vector as: 
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Therefore, the Hamiltonian, defined by equation 
(66) can be expressed as: 
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Where po ≤ 1  (constant scalar and normally is 
zero).    
The costate equations, as defined by equation 
(62), can be derived by taking the partial 
derivative of the Hamiltonian (71) with respect to 
each state variable as mentioned below: 
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7.5 Cost Functional or Objective Function 
The general form of the cost functional of a 
system is given by the relation defined by 
equation (61), but the decision about the cost 
functional or objective function depends on the 
task of the system. Therefore, the decision about 
the cost functional or objection function depends 
upon the type of the aircraft and the requirement 
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of the particular mission to be accomplished by 
the aircraft. In general, a cost functional can be a 
functional of different functions or variables. The 
scaling among these functions or variables may 
not be same due to difference in dimensions; or it 
may be desired to make the cost functional more 
sensitive to one variable as compared to others. 
In such case, weighing (or scaling) factors are 
introduced in the cost functional to implement 
the required scaling or desired effects of the 
different variables on the cost functional. For 
example, in case of an aircraft, considering both 
time and the fuel consumption as the measure of 
performance, the cost functional can be 
expressed as: 
 )()( fi

t

t

mmWdtuJ
f

i

−+= ∫             

or  )()( mWdtuJ
f

i

t

t

∆+= ∫          (73) 

where im  and 
fm  is the mass of the aircraft at 

the initial time it  and the final time ft of the 
trajectory respectively, and W is the weighing 
factor. 

7.6 Minimization of the Hamiltonian and 
Solution of the Differential Equations 

Once all the aerodynamic and engine data is 
available, then the differential equations are 
solved to get the state and costate variables. At 
each time interval, the Hamiltonian is calculated 
for all permissible values of the control 
parameter and the optimal value is selected. This 
optimal value is used in the solution of the 
differential equations for that particular time. The 
equations are solved at each time interval, from 
the initial time to the terminal time of the 
trajectory to be optimized. The values of the 
costate variables evaluated at the terminal time 
are compared with the desired values of the 
costates, which are obtained using transversality 
conditions (65) as following:       
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( j = 1, 2, 3, - - - n ) 
where K is the terminal cost, ψ  is k-dimension 
terminal conditions, and µ  is also k-dimension 
unknown parameters analogous to Lagrange 
multipliers, the values of these parameters are 
chosen as a guess while assigning the initial 
guess values of the costate variables. Therefore, 
the desired final values are function of these 
initial guess values of µ . The comparison 
between the values of the costate variables 
evaluated at the terminal time and the desired 
values of the costates will determine whether or 
not the boundary conditions are satisfied. If not, 
the initial guess value of the costates and µ  are 
changed using optimization subroutine Simplex 
and the process is repeated until the boundary 
conditions are met. The initial values of costate 
and µ , that result in meeting the terminal 
conditions, are used along with the other terminal 
conditions to evaluate the optimum trajectory. 

7.7 Examples 
To verify the approach, a manoeuvrable aircraft 
TC1.1 (an experimental aircraft) [6]  was 
selected for the evaluation of optimal trajectories 
in horizontal flight and in vertical flight and the 
results are shown in the figures 1 through 5.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.   Minimum fuel state trajectories (Case II) 
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Figure 2.   Minimum time and minimum fuel state 
trajectories (Case III)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  3.    Comparison among the three flight cases 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.   Optimal state trajectories of flight in 
vertical plane 
 

 
 
 
 
 
 
 
 
 
 
Figure 5.   Flight path in vertical plane 

7.8 Analysis of results 
The horizontal flight trajectories of the above 
examples shown in figures 1, 2, and 3  reveal the 
desired results. The results of flight in vertical 
plane as shown in figure 4 and 5 reveal the 
desired flight path control. However, it was 
observed that as the terminal conditions can be 
set in two possible ways, for example: 

( ) 0),( =ffg ttxψ   
0=− gfgreq xx   or 

 0=− greqgf xx  
Both should yield the same results, but 
practically it was observed the inspite of 
convergence in both the cases the results were 
different. In minimum time case I of example in 
the horizontal flight trajectory, for the terminal 
condition 0=− gfgreq xx , the result is logical, i.e. it 
results in maximum throttle control and 
minimum time. While for the terminal 
condition 0=− greqgf xx , it results in minimum 
throttle setting and takes maximum time, 
although it meets the end conditions. This shows 
that the Pontryagin’s minimum principle 
provides only the necessary conditions and not 
the sufficient conditions for optimality. The 
solution may or may not be optimal. In this case 
both the results yield the extremal trajectories, 
but only one is optimal. It was also observed that 
the change in boundary conditions for the state 
variables results in change of the optimal 
trajectories, however, the change in the initial 
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guess of the costate variables does not effect the 
results.  

8 CONCLUSION 
The following conclusions are drawn from the 
analysis of the results: 
 
•  Flight trajectory optimization problems can 

be solved by any of the optimization 
techniques: the Calculus of Variations, the 
Belman’s Dynamic Programming, the 
Pontryagin’s Maximum Principle, etc. 
depending on the complexity and nature of 
the constraints, however, the Pontryagin’s 
Maximum Principle is applied as a test case.  

 
•  It has been proved by the results that 

Pontryagin’s maximum principle provides 
only the necessary conditions and not the 
sufficient conditions for optimality, but still it 
can be successfully applied for optimization 
of trajectories of any aircraft for any flight 
phase. Only it has to be ensured to analyze all 
the extremal trajectories and find the optimal 
trajectory by their comparison.  

 
•  The change in boundary conditions for the 

state variables results in change of the 
optimal trajectories; however, the change in 
the initial guess of the costate variables does 
not effect the results.  

 
•  The Pontryagin’s maximum principle may be 

applied in similar way for the optimization of 
trajectories of the spacecraft, and the same 
atmospheric model can be used for the launch 
or re-entry phase of the spacecraft.  
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