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Abstract

System optimization is a process of translating
the dynamics of a system and its desired
objectives into the mathematical language, which
giverise to what is called a control problem and
then to find the solution of this problem. Such a
solution is called optimal control and the path it
follows to achieve the desired objectivesis called
optimal trajectory. Trajectory optimization is an
optimal transfer problem. For any specified end
condition and performance index, the problem of
determining the optimal trajectory in powered
flight of an aircraft in atmospheric conditions,
subject to certain physical constraints, is very
complex problem. In general it cannot be solved
without using numerical computation based on a
specified model of the atmosphere and aircraft
aerodynamic and engine characteristics. In the
past an intensive research has been carried out
in the area of system optimization and optimal
trajectories. In the work presented in this paper,
emphasis is made on generalization of the
optimal trajectories of aircraft, the basic
ingredients of the optimization problem and
formulating the precise statement of the
optimization problem. The definition of optimal
control problem, formulation of a control
problem and solution of such a control problem
are presented. Different optimization techniques
are discussed and compared to show their merits
and limitations. The optimal trajectories in
different phases of flight, i.e. trajectories in
horizontal plane, vertical climb trajectories, are
analyzed using the Pontryagin’'s Maximum
Principle.

1 Control Problem

In a general way a control problem is controlling
of adynamic system. Optimization of asystemis
a process of trandating the system dynamics and
its desired objectives into the abstract language
of mathematics, which give rise to what is called
a control problem, and then to find the solution
to this problem. Such a solution is also called
optimal control, and the path it follows to reach
the desired goal is called optimal trgjectory. The
mathematica model, which represents the
physical system, consists of a set of relations
between state of the system and input to the
system. Constraints are incorporated in this set of
relations, which are usually expressed in the
form of equations called the state equations. The
requirement of obtaining a certain output is
replaced with the requirement of hitting a certain
target set in the state space of the system. The
physical restrictions or constraints upon the set of
inputs lead to a set of admissible inputs or
controls. The desired objectives can be attained
by many admissible inputs, each of which results
in a different response. So it is required to
evaluate each response and if possible pick up
the best one. This requires the use of
performance criterion, which is a measure of
performance or cost of control. Such a
performance criterion is called performance
index or cost function (or functional). The
solution of a control problem is to determine the
admissible inputs which generate the desired
output and which, in doing so, minimize
(optimize) the cost functional.



The system is governed by a set of differential
equations or the state equations
x= f(xu,t) @
where x is state vector, u is control vector and
t is time. It is associated with a performance
index of general form:
J(u) = K[x(t;), t;]+ ]’L[x(t), u(t), t]dt (2)

t

where  gx,)t,] 1S the terminad cost and

L[x(t),u(t),t] iS cost between the time interval
[t,,t,]- The optimum control problem is to find

u(t) that minimizes the performance index along
the optimal trgectory. Based on how to find
u(t), an optimal control problem can be handled
in two possible ways:

» Parameter or Static Optimization
* Process or Dynamic Optimization

2 Parameter Optimization

The method where the control vector u(t) can be
found by a set of parameters &, &, as, .. &., IS
caled parameter optimization and the
performance index, which is to be minimized,
becomes a function of these parameters. Such a
performance index is aso called cost function.
This method is applied to trajectory optimization
problem where the trgjectory is expressed in
terms of a finite number of parameters and a set
of parameters is optimized to get the optimum
performance. It is used to maximize or minimize
acost function

J= K(x(tf),tf)+jL(x,u,t)dt ©)

As trgjectory Xx depends on u(t), therefore,
J depend on u(t). If ut)can be expressed in terms
of a finite number of parameters a, &, ...a, ,
then in the fina analysis, J can be written as a
function of finite number of parameters:
J="f(a,a,,.4a,) 4)
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The limitation of parameter optimization isthat it
becomes difficult to solve the problem if the
number of parameters increases or the
complexity of the problem increases where the
performance criterion is a cost functiond, i.e. it
is function of different functions. The dominant
optimization techniques used in parameter
optimization are: the Theory of Maxima and
Minima, the Direct Methods of optimization,
such as Simplex, Rosenbrock-Powel Method,
Method of Gradients or Steepest Descent,
Conjugate Gradient Method, etc.

3 Process Optimization

The process optimization is the generalization of
parameter optimization problem and is concerned
with finding a maximum or minimum for a
guantity (performance index) which depends
upon n independent functions Xy (t), Xa(t), ...Xn(t).
This is a generalization of the concept of a
function and is called functional. For more
complicated control problems, where the
performance criterion is cost functional, or where
more accurate solution is required, process
optimization is used, e.g. in case of trgjectoriesin
unsteady flight conditions. The cost functional is
of the type:

t

I =KIX(t, )t ]+ [LIX®),u(t).t]dt - ()

J depends on f(x(t),u(t)), but x()aso
depends on u(t) . Therefore, we can say that in

final analysis, the performance index jis a
functional of different controls and we can write
J=J(u) (6)

The famous optimization techniques used in
process optimization are: the Caculus of
Variations, the Belman's Dynamic
Programming, the Pontryagin's Maximum
Principle, etc. The main theoretical approaches,
which had a maor impact upon research in
optimization, are based on the basic theory of
ordinary Miximaand Minima.



4 Theory of Maxima and Minima

The theory of ordinary maxima and minima is
concerned with the problem of finding the values
of each of nindependent variables ay, &, .... a, a
which some function of variable f(a, &, .... &)
reaches either a maximum or a minimum. The
existence of a solution to such a problem is
guaranteed by the theorem of Welerstrass as long
asthe function is continuous.

4.1 Necessary conditionsfor maxima or
minima

The location of local extrema for a real-valued
function f(x), which is defined and continuous
on the closed interva [a, b] in the interior of a
region ‘R° may be determined by the two
necessary conditions, i.e. if x is an extremum
then

f'(x):%:o (7)

Such a point is also called stationary point or
critical point. If there isa point where f'(x) does

not exists but it is piecewise continuous, i.e.
f'(x-)and f'(x+)exists for al x but not

necessarily f'(x). The necessary conditions in
such acaseis

lim f'00=0 ad im0 <0

" (loca minimum) (®)
or
lim f'(x) <o ad lim f'(x)=0
(local maximum) ©)

for the end points a, b
lim f'(x) = o (loca minimum)

X a+

O |im £ (x) < o (local maximum) (10)

X - b-

We may conclude that the potential candidates
for the absolute extremum of f(x) are the
stationary points, the points where one or more
first partia derivatives of f(x) ae
discontinuous, and the end points. However,
neither stationary point nor discontinuities have
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to be extrema. In order to determine a locd
extremum of all the potential candidates for
extremum of a function, the sufficient conditions
are:

4.2 Function of oneindependent variable.

In case of a function f(x) of one independent
variable x, if x is a point a which f'(x)is zero
and if the derivative f'(x)changes its sign from
positive to negative (or negative to positive)
when it passes through zero, then x is maximum
(or minimum) of f(x). This is the necessary

condition for extremum of a function of one
independent variable, which may be phrased as:

if X isinterior point at which
f')=0and (., -0°f >or<0 (11)
ax?
then x islocal extremum.
x islocal minimumif f"(x)is positive, i.e.

0°f >0 (12)
ox?
and isloca maximum if
f"(x)isnegative,i.e. 2°f _ (13)
ox?

4.3 Function of two independent variables.

For a function of two independent variables
f(x,%,), extremum is relative minimum if

fXX >0 ar]d fXX fXX _(fXX )2>O (14)
171 171 272 172
and is relative maximum if

frp, <O and ¢

4 ()" >0 (19

Xq X fx X
171 272
4.4 Function of n independent variables.

The corresponding necessary conditions for local
extrema of a function of n independent variables
f(X1, X2, .... Xn) May be expressed as:

astationary point will be local minimum if
D, >0 (i:1,3,5, ....... )

and b <o (122,46 ....... ) (16)



a stationary point will be local maximum if
D, <0 (i:1,3,5, ....... )

and p >0 (=246 ..... )

(17)

where

fow o o o f

xixl XiX2 X X

45 Solutionssubject to constraints.

If the variables X1, X2, .... Xp are subject to certain
relations called constraints, of the form:

0, (Xy, X500 %,) =05 9,(Xy, Xp 00 X,) =0 -

9, (X, X, ,X,) =0 (18)
with m < n, the number of independent variables
is reduced to n-m. The problem is to find an
extremum of f(xi, X2, .... Xp) for one or more
independent variables subject to m constraint
eguations. There are different methods to find the
solution of this problem subject to constraints,
such as Substitution Method, Lagrange
Multiplier Method, Calculus of Variations. etc.

4.6 LagrangeMultiplier Method.
Consider a function of two independent variables
f (x;, X,) with constraint

9(x,%x;) =0 (19)

The derivative :((xi’fz)) aso called the Jacobian

can be written [ 3] as:

of of
0(f,o0) _ 0X 0 X (20)
— 27 = det ! 2
9(X,,X,) dg dg

0X, 0X,

_ 0f ag _ 3f ag
0x, 0X, 0X, 0X,

The necessary condition for the existence of

stationary point is also a point where the

Jacobian determinant must vanish, i.e.

o(f.q) .
9 (Xy,X,)
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or of 0g _ of ag _, (21)
Jdx, 0X, 0x, 0X,
This equation may be rewritten as:
of 19x, _ of 19x, _ _, (22)
ag/ax, ag/ax,

where A is a constant caled Lagrange
multiplier. Equation (22) can also be written as:
i + A a_g =0

0X, 0X,
and  of )09 _, (23)
0X, 0X,

Equation (23) can be considered as the necessary
conditions for the existence of a stationary point
of the function f +Ag without the constraints.

Therefore, the necessary condition for a
stationary point of f(x,x,) Wwith constraint

g(x.,%,) =0 is found by forming the augmented
function f + g, and treating the problem as one

without constraints. This result can be extended
to the general case of a function of n variables
with  m constraint equations, with the
introduction of a set of constants, Lagrange
multipliers, A . A,,. . A, The use of

augmented function alows a problem with
constraints to be replaced by a problem without
constraints. This new problem can be solved by
any technique used for solving problems without
constraints.

5 TheCalculusof Variations

The calculus of variations is that branch of
caculus in which extremal problems are
investigated under more general conditions than
those considered in the ordinary theory of
maxima and minima. More specificaly, the
caculus of variations is applied to process
optimization problems, where the maxima or
minima of functiona  expressions are
investigated. The most general problems of the
calculus of variations in one independent
variable are the problem of Bolza, Mayer, and
Lagrange. These problems are theoretically
equivalent and any one of them can be



transformed into another by change of
coordinates.

5.1 Problem of Bolza

In order to formulate the problem of Bolza,
consider a class of functionsx, (t), (k =1, 2,
...n) satisfying the constraints g(x,x,t) =0
which involve n-m degree of freedom. Assuming

that these functions must be consistent with the
end conditions:

Wy, (x,t)=0 (r=1,2,...q)

W, (x,,t,)=0 (r=0+l,g+2,...s<2n+2) (24)

where (2n+2) are the total boundary conditions, q
are the initial conditions, and (s-q) are the fina
conditions.

Find that specid set that minimizes the
functional form

ty

3 = KIX(t,).t ]+ [LOx X bt (25)

The above formulated problem can be treated in
a simple manner if a set of variables, called
Lagrange multiplies, A, A,,. . A is

m

introduced and if the following expression, called
the augmented function, is formed:

|::|_+i)\jgj (26)
£

Of F =L +A,9, +A,0, +. A9,
The extremal arc must satisfy constraints and the
Euler-Lagrange equation is
d_EaF E_G_on k=1,2...n) (27)
dt Hox, H ax,
A mathematical consequence of the Euler-
Lagrange equations is the differentia
relationship

d n 9F , [, OF _
LA R Tl ke
For the problems where the augmented function

is independent of t, the following integral, called
thefirst integral isvalid:

—F+£6ka:c (29)

9%,
where C is an integration constant.

(28)
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5.2 TheProblem of Mayer

The problem of Mayer is that particular case of
Bolza in which the integra pat of cost
functional J iszero, i.e. when

F=0 (30)
As the constraint equation isg;(X,,X.,t) =0,

therefore, the augmented function in Mayer
problem is equal to zero.

F=L+3 A,g,=0 (3
As F =0, therefore, the cost functional is

J = K[x(t, ) t,] (32)

5.3 TheProblem of Lagrange

The problem of Lagrange is that particular case
of the problem of Bolza in which the cost
functional J is expressed in the integra form
only, i.e.

K=0 (33)
ty
I = [Lx X, t)de (34)
tI
the transversality condition is simplified to
B " 9F o' (35)
Cdt + Zlaxk kaEi =0

5.4 ProblemsInvolving Inequalities

In many physical problems, there are various
inequality constraints on the control vector for
example, the maximum throttle setting,
maximum control deflecting, etc. So in a
problem with minimizing a cost functional

ty

3= [Lxx (36)
with equality consfrai nts of the form:

g(x,x,t) =0 (37)
and inequality constraints of the form:

MinSTOx)<T (38)

In order for atrgectory to be admissible, it must
satisfy both the equality and the inequality
constraints. The slack-variable method, convert
the inequality constraint equation (38) to an



equality constraint by introducing new state
variables z, satisfying the equation

=T ) =) =22 (39)
The problem under consideration becomes
identical with that finding the extremal arc, in
class x(t), z(t), which satisfy the equality
constraints, and Lagrange multiplier can now be
used to adjoin equations (36 to 39) and used the
usual necessary conditions are the applicable.
Therefore, a problem with two-sided inequality
constraint is replaced by the equality constraint
in the new problem. Similarly, a problem with
one-sided inequality constraint, r(x,x,t)< T,

is replaced by the equaity constraint
(rmax_r): 22'

5.5 Formulation of Optimal Control
Problem in Calculus of Variations

The formulation of the optimal control problem
using the Hamiltonian function is set of the
following expressions:

System dynamics
x = f(x,u,t) tZtl ti:fixed (40)
Performance index

ty

J =K[x(tf),tf]+IL(x,u,t)dt (41)
Final state constraint

W(x(t,)t,)=0 (42)
Hamiltonian
H(x,u,t) = L(x,u,t) + AT f(x,u,t) (43)
State equation
x':‘z)—'j\: f(x,u,t) tzt  (44)
Costate equation

A= =_-"=
dX ox [0o0x [0

Stationary condition
aH _ oL af 0, _
Rt i R
Boundary conditions x(t,) given
(K, #Wip =) dx(ty) (47)
(K, +Wlg+H)| d, =0

_OH _ oL _pofgf, (45)

(46)
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Therefore, the optimization depends on the
solution to a two-point boundary value problem.
Normally the initial state x(t;)is known and the

final costate A (t,) is determined by equation

(45). It is generaly very difficult to solve the
two-point boundary value problems. The most
serious limitation of the Calculus of Variationsis
that if there are constraints on the control input as
in amost all the practica problems, it is not
going to work, because the necessary conditions
for the extremum would not apply.

6 Dynamic Programming

Dynamic programming is based on the
Bellman’s principle of optimality, can be viewed
as an outgrow of the Hamilton-Jacobi approach
to variationa problems. The Dynamic
programming approach to optima control
problem is basically meant for discrete-time
systems. However, it can be used for continuous-
time systems.

Consider a system with plant dynamics
x = f(x,u,t)and associated with a performance
index

3= KIX(t) 1+ [L(xu tyd (48)

We are interested in determining a continuous
optimal control u”(t) onagiveninterval [t ,t, ]

that minimizes J and drivesagiveninitial state
x(t,) to afinal state satisfying constraint
Wx(t;)t;]1=0

Suppose t isthe current timeand t+A isa
futuretime close to t. Then the cost functional
can be written as:

I(xt) =KXt ).t 1+ I'L(x,u,r)dr +t+ftL(x,u,r)dr (49)

Comparing equation (48) and (49)

J(x,t) = min E?L(x,u,r)dr +J(x+Ax,t+At)E (50)

u(r) O+

t<r<t+At

where x + Ax isthe state at time t + At ,
therefore, and ax = f (x,u,t)At



Hence,

+At
J'(x,t) = min EIL(x,u,r)dr +J*(x+Ax,t+At)E (52)
U(T) t
t<r<t+At
The Taylor series expansion of J3*(x + ax,t + At)

about x, t and taking an approximation to the
integral in equation (51), we can write to first
order

37 (xt) = min (Lat+3" (xt)+3; ax+9;at) (52)

u(r)
t<r<t+At
where ;- - 93 and ;- - 99
X ' ot
J(x,1) = 37 (x, ) + I/ At (53)
+ min (LAt+ 3.7 fAt)
u(r)
t<r <t+At
O _grat= min (Lat+ s fat) (54)
u(r)
t<r <t+At
Letting at =0

_03 e LB E g (59
ot u(t) ox H

This partial differential equation for the optimal
cost J'(xt)is caled the Hamilton-Jacobi-
Bellman (HJIB) equation. It is solved backward in
time from t =t , by setting t, =t, in equation
(55), its boundary conditions seen to be

3 (ko )= Kk t) (56)
on hyper surface w (x(t,),t, )= 0

If we define the Hamiltonian function as:
H(x,u,A,t) = L(x,u,t)+ AT f(x,u,t)
and ,_03"

ox
Then the HIB equation can be written as:

9 (H(x,u,J;,t)) (57)

- —— = min
at u

The HIB equation provides the solution to the

optimal control problem for general nonlinear

time-varying systems; however, in most cases it

is impossible to solve analytically. When it can

be solved, it provides an optimal solution.

7 ThePontryagin’s Maximum Principle

FLIGHT TRAJECTORIESOPTIMIZATION

The mathematical modeling of aflight trajectory
optimization using the Pontryagin’s Maximum
Principle can be done with the assumption that
the optima control exists and it is unique.
Suppose that the optimal control y*(t) exists, it
isunique, and that x* (t) is the generated optimal
trgjectory. Then, corresponding to u*(t)and
x' (1), there exist a costate vector p-(t) such
that the following relations hold:
Plant Dynamics

X(t) = f[x(t),u(t),t] Xisn-dimensional (58)

Control Constraints

glu(t),t]=0
ut)dQ

uism-dimensional (59)

Cost Functiond

ty

() = K[x(t,)t ]+ fLIX(1), u(t),t]dt (60)

The Necessary Conditi ons;‘or Optimal Control

dx; (t) _ _oH state equations (61)
dt op; (1)1,

dp; (1) _ _ oH | costate equations (62)
dt ax, (1)].

where [k means that the partial derivative must
be evaluated at u'(t), x"(t) and p"(t).

7.1 Boundary Conditions

Initial Conditions
x"(t,) = x, (normally given) (63)

Termina Conditions
wx(t,),t,1=0 ¢ isk-dimensional (64)

Transversality Conditions

p(tf)=:f +E00£TEU (65)
u isk-dimensional

The Hamiltonian

H = H[x(t), p(t),u(t),t] = (66)

PoLIX(®),u(t), ]+ p" FIx(t), u(t), 1]



Minimization of the Hamiltonian

H[x (1), um (1), p (1), t]s (67)
H[x (), ut), p (o), t]

forevery t, t, <t <t,, and al admissible values
of u(t),i.eu)dQ

7.2 Selection of state equations

In case of an aircraft, with the assumption that
there is no wind, no sideslip and all the moments
are in equilibrium, the general equations of
motion over spherical and non rotating earth are
the state equations. Usualy, the optimal
trajectory problems are sought under these
conditions; otherwise, the problem becomes
complicated and can't be solved. Therefore, the
state equations are expressed as.

S dav _P D .
X, =v(t) :E :acosa———g siny

X, =y(t) _Ey — Psna+L cos¢— % R+h (68)

1

(Psma+ L)sm¢
mvcosy

. dy
X3 =X(t) :a:
dx,
x4=>'<g(t)=¥g=v cosy cosy
X = yg(t)-%—v cosy siny

Xg =h(t) =a=v siny

dm__

X =) == - =0

D:DDDDDDDDDDDD]]DDDDDDDDD

7.3 Selection of Control variables

We may chose a set of variables as control
variable, which will determine the trgectory,
such as throttle setting n, angle of attack o ,
angle of roll ¢ etc. Depending on the analysis of
a desired trgjectory any one or combination of
the control variables can be selected, but these
controls are subjected to physica limitations or
constraints as mentioned below:

Control Constraints
glut),tj=0 U ism-dimensional (69)
u(t) 0
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1' nmin Sr] Srlma)( 4 |nL|:n|_perm(M)
2. a
3.C

mmsa<a 5 |¢|S¢perm

<C, <C 6. M <M

Lmin L max perm

7.4 Derivation of Costate Equations

Depending on the number of state variables
(WY, X, Xgs Yg,0um etc), we must have equa

number of costate variables [ pi(t), p2(t), ps(t),
Pa(t), ps(t), Ps(t), pr(t) etc].
Thus, we have the costate vector as:

P, ()
p, (1) (70)
p(t)y=| .

p. (1)
Therefore, the Hamiltonian, defined by equation
(66) can be expressed as:

H = p,L{x(),u(t).] + g(t)%%cow—%ﬁ%@rgsiny%
(71)
81 . 1 1 V2 g

+pza)§;v%sm+5m2$ ECOSP ‘;%‘m%‘ﬁ’ﬁ

+p 0 _psing + £ psq [+ p,voosycosy
Fmveosy [ 27 T'm

+ps(tveosysiny  +p,(t)vsiny - p,(t)q
Where p, < 1 (constant scalar and normaly is
zero).
The costate equations, as defined by equation
(62), can be derived by taking the partia
derivative of the Hamiltonian (71) with respect to
each state variable as mentioned below:

. __0H _ _oH
Py ax, (t) av(t)’ (72)
. ___OH _ _ oH
27 700 oy
o0H _  oH

b7 = Cox, () om(t)

7.5 Cost Functional or Objective Function

The general form of the cost functional of a
system is given by the relation defined by
eguation (61), but the decision about the cost
functional or objective function depends on the
task of the system. Therefore, the decision about
the cost functional or objection function depends
upon the type of the aircraft and the requirement

8



of the particular mission to be accomplished by
the aircraft. In general, a cost functional can be a
functional of different functions or variables. The
scaling among these functions or variables may
not be same due to difference in dimensions; or it
may be desired to make the cost functional more
sensitive to one variable as compared to others.
In such case, weighing (or scaling) factors are
introduced in the cost functional to implement
the required scaling or desired effects of the
different variables on the cost functional. For
example, in case of an aircraft, considering both
time and the fuel consumption as the measure of
performance, the cost functiona can be
expressed as.

ty

J(u):J’dt +W(m, —-m,)

or J(u)=f'dt+W(Am) (73)

where m; and m, is the mass of the aircraft at
the initid time t, and the fina time t, of the

trajectory respectively, and w is the weighing
factor.

7.6 Minimization of the Hamiltonian and
Solution of the Differential Equations

Once dl the aerodynamic and engine data is
available, then the differential equations are
solved to get the state and costate variables. At
each time interval, the Hamiltonian is calculated
for al permissible values of the control
parameter and the optimal value is selected. This
optima vaue is used in the solution of the
differential equations for that particular time. The
eguations are solved at each time interval, from
the initial time to the termina time of the
trajectory to be optimized. The values of the
costate variables evaluated at the terminal time
are compared with the desired values of the
costates, which are obtained using transversality
conditions (65) as following:
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My
p. = a_K+ awl - - M - (74)
I 6Xjf 6Xjf axjf -

My
(j=1,2,3,---n)
where K is the terminal cost, ¢ is k-dimension
terminal conditions, and  is also k-dimension

unknown parameters analogous to Lagrange
multipliers, the values of these parameters are
chosen as a guess while assigning the initial
guess values of the costate variables. Therefore,
the desired final values are function of these
initial guess values of u. The comparison

between the values of the costate variables
evaluated at the termina time and the desired
vaiues of the costates will determine whether or
not the boundary conditions are satisfied. If not,
the initial guess value of the costates and  are
changed using optimization subroutine Simplex
and the process is repeated until the boundary
conditions are met. The initial values of costate
andy, that result in meeting the termina

conditions, are used along with the other terminal
conditions to evaluate the optimum tragjectory.

7.7 Examples

To verify the approach, a manoeuvrable aircraft
TC1.1 (an experimental aircraft) [6] was
selected for the evaluation of optimal trajectories
in horizontal flight and in vertical flight and the
results are shown in the figures 1 through 5.
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Figurel. Minimum fuel statetrajectories (Case Il)
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7.8 Analysisof results

The horizontal flight tragjectories of the above
examples shown in figures 1, 2, and 3 reveal the
desired results. The results of flight in vertica
plane as shown in figure 4 and 5 revea the
desired flight path control. However, it was
observed that as the terminal conditions can be
set in two possible ways, for example:

wlx, ().t )=0

Xgeg ~ Xg =0 or

Xg = Xgeg = 0
Both should vyield the same results, but
practicaly it was observed the inspite of
convergence in both the cases the results were
different. In minimum time case | of example in
the horizontal flight tragjectory, for the terminal
condition x . -x, =0, theresultislogical, i.e. it

results in maximum throttle control and
minimum time. While for the terminal
conditionx, -x,, =0, it results in minimum

throttle setting and takes maximum time,
although it meets the end conditions. This shows
that the Pontryagin’'s minimum principle
provides only the necessary conditions and not
the sufficient conditions for optimality. The
solution may or may not be optimal. In this case
both the results yield the extremal tragjectories,
but only one is optimal. It was also observed that
the change in boundary conditions for the state
variables results in change of the optimal
tragectories, however, the change in the initial
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guess of the costate variables does not effect the
results.

8 CONCLUSION

The following conclusions are drawn from the
anaysis of theresults:

* Flight trgjectory optimization problems can
be solved by any of the optimization
techniques. the Calculus of Variations, the
Beman's Dynamic Programming, the
Pontryagin's Maximum  Principle, etc.
depending on the complexity and nature of
the constraints, however, the Pontryagin's
Maximum Principleis applied as atest case.

It has been proved by the results that
Pontryagin's maximum principle provides
only the necessary conditions and not the
sufficient conditions for optimality, but still it
can be successfully applied for optimization
of trgectories of any aircraft for any flight
phase. Only it hasto be ensured to analyze all
the extremal trgjectories and find the optimal
trajectory by their comparison.

* The change in boundary conditions for the
state variables results in change of the
optimal trgjectories, however, the change in
the initial guess of the costate variables does
not effect the results.

* The Pontryagin’s maximum principle may be
applied in similar way for the optimization of
tragjectories of the spacecraft, and the same
atmospheric model can be used for the launch
or re-entry phase of the spacecraft.
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