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Abstract

The moving and/or deforming surfaces resulting
from aeroelastic simulations require deforming
meshes, and it is common to use simple interpola-
tion of surface displacements and velocities onto
the initial undisturbed mesh. However, aeroelas-
tic simulations can result in large displacements
and deformations of solid surfaces, and simple
interpolation of perturbations results in poor grid
quality and possible grid crossover. A new grid
motion technique is presented which is still sim-
ple in that it is driven solely by surface motion,
but represents rotational effects near the solid sur-
face, to maintain grid quality there. Significantly,
the scheme is fully analytic, so is very cheap
computationally and results in grid speeds also
being available analytically. Results, in terms of
unsteady grid motion and flow solution, show the
scheme to be effective and efficient.

1 Introduction

Unsteady flow-solvers are now routinely used,
and are being coupled with structural models to
produce aeroelastic simulation codes, see for ex-
ample [1, 2, 3]. Unsteady simulations will nor-
mally entail moving or deforming surfaces, and
hence require moving or deforming meshes. If
these deformations are small, or rotations are
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rigid, it is common to use simple interpolation
methods to interpolate surface displacements and
velocities onto the initial undisturbed mesh, or to
rigidly rotate the entire mesh. For example os-
cillating aerofoils and wings have been simulated
using both algebraic grid generation and motion
[4, 5, 6, 7, 8] where a new grid is generated al-
gebraically every time-step, and simple interpo-
lation of surface displacements and velocities [9,
10, 11, 12, 13], where meshes are perturbed ev-
ery time-step. The time-dependent motion of ro-
tor blades in forward flight has been modelled us-
ing rigid rotations of the surface, and the meshes
have been deformed using simple interpolation of
surface displacements [9, 10, 11, 12, 14]. This
has also been modelled using a multiblock ap-
proach with the inner (blade-fixed) blocks mov-
ing rigidly and the other blocks deformed with
simple interpolation [15, 16].

Coupling a structural model with a CFD code
in the time domain offers the opportunity to sim-
ulate aeroelastic response of wings and rotor
blades [1, 2, 3, 17, 18], but the resulting sur-
face motions may not be small. For example, the
hinge motion plus elastic deformation of a rotor
blade under loading in forward flight can result
in large time-dependent displacements of the sur-
face. Time-dependent grids cannot be computed
by simple grid perturbation in this situation, as
poor grid quality and grid crossover may result.
Furthermore, once the surface deforms, rather
than simply moving, rigid rotations of the mesh
are also not possible. Hence, a more general
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grid motion scheme has been developed and pre-
sented here, which maintains grid quality under
large deformations and motions. To maintain grid
quality under such conditions, particularly large
rotations, some account needs to be taken of the
surface normal direction changes to maintain the
grid orthogonality at the surface. More advanced
grid perturbation methods have been developed
to include surface normal direction changes, such
that changes to wing/blade geometries during de-
sign can be remeshed via perturbation instead
of regenerating the entire mesh, see for exam-
ple [19]. However, these methods require surface
normal data, and it is expensive and awkward to
recompute surface normals every time-step dur-
ing an unsteady computation, and problems oc-
cur at non-smooth surface points, for example
wing trailing edges. Hence, the scheme presented
here is driven solely by the surface state, and re-
quires no normal direction data. There has been
previous work using only the surface state to gen-
erate instantaneous meshes, by adopting a spring
analogy to model grid lines during unsteady com-
putations [20, 21, 22, 23, 24]. In this approach
the spring stiffness between each point is set
to be proportional to the reciprocal of the line
length, and when the surface moves the whole
grid moves according to the spring stiffnesses.
Hence, the unsteady mesh is driven solely by the
surface state, and as the near surface mesh has
the smallest cells, and hence line lengths, the in-
ner mesh moves almost rigidly as required. This
approach can also be applied to both structured
[22, 23, 24] and unstructured [20, 21] meshes.
However, the resulting set of equations determin-
ing the instantaneous position of every grid point
is expensive to solve, and the grid positions are
not available algebraically. This can lead to prob-
lems when evaluating the grid speeds required in
the unsteady flow-solver.

A new interpolation is presented here, which
is improved to maintain the grid quality, such that
the near surface grid moves almost rigidly. This
means the original grid quality is maintained.
Significantly, the technique is analytic and so all
grid positions and speeds at any time are avail-
able analytically. Details of the grid motion tech-

nique are first presented, followed by results of
grid motion for a large elastic deformation of a
high aspect ratio wing, and the effectiveness and
efficiency of the scheme demonstrated. An ef-
ficient implicit unsteady inviscid upwind finite-
volume flow-solver is also presented, and the so-
lution resulting from the motion considered pre-
viously is presented.

2 Grid Motion Scheme

A wing of aspect ratio twelve, no twist or ta-
per, and constant NACA0012 section is used
as an example. The initial mesh is generated
at zero incidence. The grid used for demon-
stration is a structured O-H mesh of dimen-
sions 99(chord) � 65(span) � 32(vertical) points,
with 48 sections on the wing. A transfinite in-
terpolation method [25], is used to generate the
mesh.

The coordinate system used is ξ in the chord-
wise direction, η in the spanwise direction, and
ζ is the cordinate between the inner and outer
boundary. The general transfinite interpolation
method results in a recursive algorithm, see
Eriksson [26], but this can be significantly re-
duced. The interpolation is performed here by

X � ξ � η � ζ ��� ψ0
1 � ζ � X � ξ � η � 0 ��� ψ1

1 � ζ � ∂
∂ζ

X � ξ � η � 0 �� ψ0
2 � ζ �
	 ψ0

2 � ζ � X � ξ � η � 1 ��� ψ0
1 � ζ � X2 � ξ � η � 1 ��

(1)
where X � ξ � η � 0 � is the inner boundary, X � ξ � η � 1 �
the outer boundary, and X2 � ξ � η � 1 � a smoothed
outer boundary function to control smoothness. It
has been found that specifying one inner bound-
ary derivative, and no outer boundary derivatives,
gives sufficient control.

After generating the volume mesh an ellip-
tic smoothing is applied [27]. The smoothing
has been coded such that boundaries are also
smoothed (see [12] for more details).

Figure 1 shows the wing surface mesh and the
portside plane, the same planes plus wake and tip
slits, and these planes plus the outer boundary.
The outer boundary is set at 20 chords.
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Fig. 1 Blade Surface Mesh, Inner Boundary
Planes, Inner and Outer Boundaries.

2.1 Algebraic Motion Scheme

As in simple perturbation approaches, the instan-
taneous surface grid positions are used to com-
pute the instantaneous displacement of each point
from the initial mesh position. To account for the
normal direction changes at the surface the dis-
placement is split into two components: an un-
rotated displacement and a rotation. The rota-
tion can be defined about any axis, but a span-
wise axis is chosen here, as this is the axis about
which the rotation is likely to be largest. This is

performed by first computing the instantaneous
rotation angle between the instantaneous surface
and initial surface at each section, and this is la-
belled θ � η � t � . It should be stated here that the
deformation is not constrained to be about this
axis, as will be demontrated later. To compute
the unrotated displacement of the surface each
section must first be rotated back through the an-
gle � θ. The rotation can be performed about any
point, but the instantaneous centroid of the sec-
tion, Xc � η � t � , is chosen to minimise the displace-
ment effect of the rotation, and so the displace-
ment of the surface is computed by

∆X � ξ � η � 0 � t ��� Xc � η � t ����
RY ��� θ ����� η � t ��� X � ξ � η � 0 � t ��� Xc � η � t ���� X � ξ � η � 0 � 0 �

(2)
where  RY � θ �! is the rotation matrix, RY � θ �!"� #$

cosθ 0 sinθ
0 1 0� sinθ 0 cosθ

%&
(3)

The centroid is computed for each station as

Xc � η � t �'� 1
imax

imax

∑
i ( 1

X � ξ � η � 0 � t � (4)

The instantaneous grid position of every point
can then be computed as a suitably weighted
combination of this displacement and a rotation
of � θ about the instantaneous centroid. This is
achieved by

X � ξ � η � ζ � t ��� X � ξ � η � ζ � 0 �� ψ1 � ζ ��� Xc � η � t �)� �
RY ��� θ ����� η � t ��� X � ξ � η � 0 � t �� Xc � η � t ��*� X � ξ � η � 0 � 0 ����

ψ2 � ζ ��� �RY ��� θ ��� I ��� η � t ��� X � ξ � η � ζ � 0 ��� Xc � η � 0 ����
(5)

where the blending functions can be defined as
required. For example, to move and rotate the
grid effectively rigidly, ψ1 and ψ2 would both be
unity. To reduce the displacement away from the
surface these would normally satisfy

ψ1 � 0 �+� 1 , 0 ψ1 � 1 �+� 0 , 0 (6)

ψ2 � 0 �+� 1 , 0 ψ2 � 1 �+� 0 , 0 , (7)
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It is desirable that the near blade region
moves/rotates rigidly, to maintain grid quality,
while the outer boundary is fixed. Hence,
the most effective blending functions have been
found to be

ζ � k - kmax (8)

ζ � . eζ � 1 � ζ
e � 2 / 2 � (9)

ψ1 � 1 � ζ � (10)

ψ2 � 1 � sin4 � ζπ
2
� (11)

This technique has two major advantages. It
is simple, and hence cheap, and is algebraic, so
an algebraic equation can be derived for instanta-
neous speeds,

d
dt

X � ξ � η � ζ � t ��� ψ1 � ζ ��0 d
dt

Xc � η � t �� dθ
dt

d
dθ

�
RY ��� θ ����� η � t ��� X � ξ � η � 0 � t ��� Xc � η � t ��� �

RY ��� θ ����� η � t �10 d
dt

X � ξ � η � 0 � t ��� d
dt

Xc � η � t �32425�
ψ2 � ζ ��0 dθ

dt
d

dθ
�
RY ��� θ ��� I ��� η � t ��� X � ξ � η � ζ � 0 ��� Xc � η � 0 ��"2

(12)
The centroid velocity for each station is simply

evaluated as

d
dt

Xc � η � t �'� 1
imax

imax

∑
i ( 1

d
dt

X � ξ � η � 0 � t � (13)

For a prescribed motion, every component in
equation (12) is available, regardless of the sur-
face motion. For a non-prescribed motion, the
surface velocities would be available, and every
component except the dθ

dt term known. However,
from the surface velocities dθ

dt can be recovered,
so an algebraic expression is always available for
the grid speeds.

2.2 Test Case

An algebraic test case is used to demonstrate the
scheme for large surface deformations. Oscilla-
tory in-phase pitch and flap is used, with linear
pitch angle variation from blade root to tip,

X

Y

Z

X

Y

Z

X

Y

Z

Fig. 2 Blade Surface at ωt � 0 � π - 2 � 3π - 2 ,
θY � η � t �'� θpitch 6 η

ηTip 7 sin � ωt � (14)

and a parabolic flap angle variation from root to
tip,

θX � η � t �'� θ f lap 6 η
ηTip 7 2

sin � ωt � (15)

In the above, η is the spanwise coordinate and
ηTip is the coordinate of the tip.

4



An Unsteady Flow-Solver with Algebraic Grid Motion for Aeroelastic Simulations

X Y

Z

X Y

Z

X Y

Z

Fig. 3 Grid plane at ωt � 0 � π - 2 � 3π - 2 ,
The time-dependent surface grid positions

and velocities can be determined algebraically
from equation (16).

X � ξ � η � 0 � t �8� Xc � η � ∆η � t �9� RX � θX �!� η � t �":� RY � θY �!� η � t �": X � ξ � η � 0 � 0 �� Xc � η � 0 �3;+� Xc � η � 0 �*� Xc � η � ∆η � 0 �3; (16)

where  RX � θ �! is the rotation matrix about the x
axis.

Results for pitch and flap angles of 20o are
shown. Figure 2 shows the extent of the blade

surface deformation by showing its shape at ωt �
0 � π - 2, and 3π - 2.

X Y

Z

X Y

Z

X Y

Z

Fig. 4 Grid plane at ωt � 0 � π - 2 � 3π - 2 ,
The effect of the deformation on the field

grid is shown in figure 3, which shows a grid
plane near the blade tip at ωt � 0 � π - 2, and 3π - 2,
and the near surface region of the same plane is
shown in figure 4. These figures clearly demon-
strate how the near surface mesh deforms almost
rigidly, while the far field mesh is undeformed.
The grid distributions obtained here are in fact
very similar to those that would be obtained by
solving the spring analogy equations, but are sig-
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nificantly cheaper to compute, and are available
algebraically.
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Fig. 5 Grid Speed Contours, ωt �
0 � π - 4 � 3π - 4 � π � 5π - 4 � 7π - 4.

The grid positions are not frequency depen-
dent, but the velocities are. An unsteady flow is
computed in the next section, and a reduced fre-
quency parameter,

k � ωc
2U∞

(17)

where c is the wing chord and U∞ the freestream
velocity, of 0.1 is used. The Mach num-
ber used is 0.7 and so with a standard non-
dimensionalisation, ω � 0 , 14. Figure 5 shows
dx - dt (left), dy - dt (middle), and dz - dt (right)

contours at various points over one cycle for
the same plane as shown in figures 3 and 4.
All speeds are zero everywhere at ωt � π - 2
and 3π - 2, and so values are shown at ωt �
0 � π - 4 � 3π - 4 � π � 5π - 4 � 7π - 4. All plots use 31
equally space contours. The grid plane shown is
the last constant section plane on the blade sur-
face, so has the largest grid speeds over the whole
domain. This demonstrates the smooth and sym-
metric nature of the grid speeds.

3 Unsteady Euler Solver

The three-dimensional unsteady Euler equations
in integral form are

d
dt < V

UdV � < ∂V
F , ndS � 0 (18)

where

U �
#=======$ ρ

ρu

ρv

ρw

E

%?>>>>>>>& � F �
#=======$ ρ 	 q � Xt �

ρu 	 q � Xt � � Pi

ρv 	 q � Xt � � Pj

ρw 	 q � Xt �8� Pk

E 	 q � Xt � � Pq

%?>>>>>>>& ,
(19)

V is the computational volume, ∂V the volume
surface, dS an element of the surface, n the sur-
face outward unit normal, and q and Xt are the
fluid and grid velocities respectively

q � #==$ u

v

w

%?>>& � Xt � #==$ xt

yt

zt

%?>>& , (20)

The equation set is closed by

P � � γ � 1 �@ E � ρ
2

q2 !�, (21)

3.1 Upwind Difference Scheme

A finite-volume upwind scheme is used to solve
the integral form of the Euler equations (equation
18). The flux-vector splitting of Van-Leer [28,
29] is used.
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For each cell face a local orthogonal coordi-
nate system � ξ � η � ζ � is adopted, where the prin-
cipal coordinate direction ξ is normal to the cell
face. The unit normal to each cell face is defined
as the unit vector in the ξ direction, nξ. Unit vec-
tors in two directions, lying in the cell face, nη
and nζ, are then defined to form an orthogonal
axis system.

To compute the flux in the principal direction,
the cartesian velocity components in the local cell
face axis system are required,

u � q , nξ � (22)

v � q , nη � (23)

w � q , nζ � (24)

and the contravariant velocity normal to the face

U � 	 q � Xt � , nξ , (25)

The general flux function in the principal direc-
tion, F, is then

F �
ABBBBBBBC BBBBBBBD

ρU

ρUu � P

ρUv

ρUw

EU � Pu

EFBBBBBBBGBBBBBBBH (26)

and the total flux across the face is simply FA,
where A is the cell face area.

The general flux vector is split into a forward
part, F I , associated with positive moving waves

only, i.e. all eigenvalues of ∂F J
∂U K 0, and a back-

ward part, F L , associated with negative moving

waves only, all eigenvalues of ∂F M
∂U N 0. At each

cell face a pair of states are thus defined and a
single numerical flux derived from this pair. The
split flux components are,

F O �
ABBBBBBBBBC BBBBBBBBBD

f Omass

f Omass ,�PRQ L U O 2a S
γ � u T

f Omass , v
f Omass , w
f Oenergy

E BBBBBBBBBGBBBBBBBBBH (27)

where
f Omass � U ρa

4
� M U 1 � 2 � (28)

f Oenergy � f Omass .  V� γ � 1 � U U 2a ! 2
2 � γ2 � 1 � � U

2

2� q2

2
� Xt , n �W� U U 2a �

γ / � (29)

and the Mach number normal to the cell face is
defined as

M � U
a
� (30)

a � γP
ρ
, (31)

The above splitting is only valid for XX M XX N 1.
Otherwise

F I � F
F L � 0 / M Y 1 � (32)

F I � 0
F L � F / M Z � 1 , (33)

The values of the conserved variables used in
the split fluxes must be consistent with the split-
ting, i.e. the positive vector must be evaluated
using information from upstream (in the princi-
pal direction) of the cell face only, and the neg-
ative vector using information from downstream
only. Hence the flux vector is split by

F � F I � U I ��� F L � U L �R� (34)

with the upwind interpolations given by a third-
order spatial interpolation [30]. High order
schemes suffer from spurious oscillations in re-
gions of high flow quantity gradients, and so a
flux limiter is required, and the continuously dif-
ferentiable one due to Anderson et al [30] was
chosen.

Once F has been split into its components the
resulting flux must be rotated back to the original
coordinate system. This is achieved by

F , n � R L 1  F I[� U I ��� F L\� U L �!�� (35)

where R is the rotation matrix.

7
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3.2 Implicit Time-Stepping Scheme

An efficient implicit scheme is adopted. The im-
plicit form of the differential equation for each
computational cell is considered,

∂ � V n I 1Un I 1 �
∂t

� R � Un I 1 �+� 0 (36)

where V is the time-dependent cell volume and
R is the upwinded flux integral. The im-
plicit temporal derivative is then approximated
by a second-order backward difference, follow-
ing Jameson [31], and a new residual R ])� U � de-
fined as

R ] � U �*� 3
2∆t

	V n I 1U � � 2
∆t

 V nUn !� 1
2∆t

	V n L 1Un L 1 � � R � U � (37)

and then a new differential equation can be writ-
ten in terms of a fictitious time τ, (called pseudo-
time). This equation is simply time-marched to
convergence in the fictitious time τ, for each real
time-step. For each real time step a multi-stage
time-stepping scheme with local time-stepping is
used in pseudo-time. The R.H.S. is manipulated
such that it is implicit and gives a “residual” that
tends to zero, see [8] for more details. For ex-
ample integrating from pseudo time-level m to
m � 1, the scheme would be^

1 � α j
3∆τ
2∆t _ Um I α j � Um � α j

3∆τ
2∆t

Um I α j M 1

� α j
∆τ

V n I 1 6 3
2∆t

V n I 1Um I α j M 1 �
2
∆t

V nUn � 1
2∆t

V n L 1Un L 1 �
6

∑
k ( 1

R L 1
k P F I[� U I � m I α j M 1

k � F L`� U L � m I α j M 1
k T An I 1

k /
(38)

with α0 a 1 a 2 a 3 � 0 � 1
4 � 1

2 � 1. k represents the six cell
faces, and ∆τ is the pseudo time-step. The time
step is now limited by accuracy rather than stabil-
ity. This approach also means that the grid gener-
ation routine only needs to be called once every

real time-step, to calculate the grid positions and
speeds at the next time level. The time-dependent
cell volumes are computed by satisfying a geo-
metric conservation law [32].

4 Unsteady Solution

The solution to the previously shown prescribed
motion was computed, using the following con-
ditions,

M � 0 , 7 � k � 0 , 1 � (39)

θ f lap � θpitch � 10o , (40)

The steady solution at zero incidence was first
computed then the unsteady motion started, and
solution computed using the implicit scheme
with 64 real time-steps per cycle.

Figure 6 shows upper surface Mach number
contours over one cycle, at ωt � 0, π - 4, π - 2,
3π - 4, π, 5π - 4, 3π - 2 � and 7π - 4. (Sequence is left,
right, etc. moving down the page) The growth
and decay of a large transonic region is clear.

5 Conclusions

An algebraic grid motion technique suitable for
large deformations has been presented, which is
driven solely by the surface motion. The com-
monly used simple interpolation of surface dis-
placements and velocities onto the initial mesh
cannot be used for aeroelastic simulations result-
ing in large displacements/deformations of solid
surfaces, as it results in poor grid quality and pos-
sible grid crossover. A new interpolation tech-
nique is presented which is still simple in that it
is driven solely by surface motion, but represents
rotational effects near the solid surface, to main-
tain grid quality there. Furthermore, the scheme
is fully analytic, so is very cheap computationally
and results in grid speeds also being available an-
alytically. Since the grid positions and speeds are
algebraic, they are independent of the time-step
used in the unsteady simulation, which is not the
case for a non-algebraic scheme, since numerical
differences have to be used to compute the grid
speeds. Results for a large surface deformation
have shown the scheme to be effective at main-
taining grid quality, and efficient.

8



An Unsteady Flow-Solver with Algebraic Grid Motion for Aeroelastic Simulations

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

Fig. 6 Upper surface Mach Contours at ωt �
0 � π - 4 � π - 2 � 3π - 4 � π � 5π - 4 � 3π - 2 � 7π - 4.
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