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Abstract

A new model has been developed to
characterise the structural behaviour of rotor
blades that benefit from fully integrated active
fibre construction. The beam wall is assumed to
consist of a composite laminate with passive as
well as active material plies. Standard theory
describing the macro-mechanical behaviour of
composites is employed to formulate the cross-
sectional stiffness matrix and the actuation
forces and moments in the rotor blade. The
symmetric stiffness matrix and the actuation
vector include the effects of axial, shear,
bending, torsion and bimoment actions in the
rotor blade.

This structural model is used to obtain a non-
linear dynamic model for the rotor blade that
can be used to investigate the aeroelastic
stability of the system or using various
individual blade control (IBC) schemes to
control the vibration of the rotor blades.
Hamilton’s principle is used to obtain the
corresponding governing differential equations
of motion and boundary conditions for a
cantilever beam rotating at a constant speed.
Galerkin’s method can be used to solve the
differential equations of motion. This results in
a system of linear, homogeneous, constant
coefficient, ordinary differential equations that
define the unsteady blade motion near the
equilibrium  operating conditions. These
equations can be used to investigate the stability
of the motion or control the vibration of the
rotors individually by a suitable actuation
scheme of the integrated actuators.

1. Structural Modelling of the Rotor Blade

1.1 Introduction

A typical helicopter rotor blade is exposed to a
complicated system of unsteady time-dependent
aerodynamic loads during its operation. As the
consequence, besides being subjected to a bi-
axial bending which results from flapping and
lead-lag actions a rotor blade is also subjected
to torsion and axial centrifugal tension.
Structurally more simple hingeless rotor design
is a by-product of the initial impetus for using
composites in order to improve the fatigue life
and damage tolerance of the blade [1].
Depending on their specific construction, these
blades can exhibit various structural couplings
between bending, shear, torsion and extension
actions. Warping may also become a prominent
effect in such advanced blades. Therefore, the
Euler-Bernoulli beam assumptions used to
model simpler isotropic beams become invalid
under these conditions.

Existing theories of mechanics of composite
materials can be employed to model the above-
mentioned non-classical effects in the rotor
blades. To this end, in the present work, a
hingeless rotor blade is considered where it is
modelled as a closed single cell, thin-walled
composite beam. The model assumes a beam
wall that is constructed from composite
laminae. In general, it allows for different
thickness and orientation for each ply that may
be constructed of either passive or active fibres.
The active laminae can be placed anywhere in
the stacking sequence. In view of large length-
to-chord ratios of helicopter blades a one-

*Professor, Department of Mechanical and Aerospace Engineering

Email: fafagh@mae.carleton.ca




dimensional beam model is adopted. The
material constitutive relations are determined
using the strains that are, in turn, obtained from
basic displacement field.

1.2 Displacement Field

The co-ordinate systems used in this study are
shown in Fig.(1.1-a). The orthogonal axes
system (X, Y#Zs) are fixed in an inertial frame

F. The global orthogonal co-ordinate system
(x,y,z) and associated unit vectors (i, j, k) are
fixed in a reference frame R that rotates with
respect to F at constant angular velocity €.
Point Op, a common fixed point of & and R
is located at the root of the rotor. The x-axis
lies along the elastic-axis of the beam that
passes through shear centres of all cross
sections. As a first attempt, the pre-cone angle
is assumed to be zero, and the plane containing

X#, x, Yr and y is considered to be the plane of

rotation. The origin O, of the local Cartesian co-

ordinate system (x,z,n) is located on the mid-

plane of the beam wall and moves along the

contour with the circumferential co-ordinate s

as shown in Fig.(1.1-b). The co-ordinates of

O, in the global co-ordinate system are denoted

as (X Y(s),Z(s)). Moreover, using the normal

co-ordinate n to denote the position of any other

point P on the beam wall with respect to (x,n,?),

the position of any point on the wall can be

completely defined in the global co-ordinate
system.

Next, in reference to Figs.(1.1-b) and (1.2), let

the following be denoted:

u,v,w: global displacements of O, in the x, y,
and z directions, respectively, represent-
ing an average cross-sectional displace-
ment at any distance x along the elastic
axis;

upVpy,wp global displacements of any point

P on the beam wall in the x, y, z

directions, respectively;

#(x),0,(x),0. (x) : cross-sectional rotation about

x, y, and z axis, respectively;
¢’(x) : rate of twist of the beam;
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w(s): torsional warping of the cross-section.

Then the displacements of a point P on the
beam wall can be expressed as follows:

u, =ux)=(Y-nz )0.(x)

,
+(Z+nY )0 ,(x)+yy (x)
where ( )S EM and
’ s
l//(s)z%ﬁads+£rnds (1.1.1)
_ TGP (1.1.2)
4[1 (G o )
r
and,
vp =v(X)—@(Z +nY ) (1.2)
w, =w(x)+ @Y —nZ ) (1.3)

Where A and I represent, respectively, the
area and the perimeter of the contour enclosed
by the mid-plane of the cross-section, % is the
wall thickness and G,y is the effective shear

modulus. In Eq.(1.1) the terms  nZ 6, (x)
and nY 0, (x) the axial

displacement of the point P due to cross-

sectional rotations 6, and 6, respectively;

while in Egs.(1.2) and (1.3) the terms
HZ+nYy) and @Y —nZ ;) represent the
displacement components in the y and z

directions of point P due to cross-sectional
rotation about the x-axis.

represent

1.3 Strain- Displacement Relations

The displacement field obtained in the previous
section is used to obtain the necessary strain-
displacement  relations. To  this end,
displacements are defined according to the
conventional small deformation theory. Hence,
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using Eq.(1.1), one gets the axial strain at any
point P on the beam wall as:

aMp ’ ’ ’
E. = =u'(x)=YO.(x)+726 (x)
ox 7

+y ()" (x) + Y60 (x)+ Z,6.(x)]
=& +nk, (1.5)

Where €5, and &, are the axial strain of the

middle-surface and the curvature, respectively.
Denoting the displacement along the tangential
direction ¢ as vy, the in-plane shear strain is

defined as

du, v
p t
=—+— 1.6
7xs aS ax ( )
Noting that v, and w, contribute to v;such that
v,=v,Y +w,Z, (1.7)

plane shear strain across the blade wall
thickness, and neglecting higher order terms,
one can show that Eq.(1.6) becomes

24
=(V'=-0.)Y. +(W+0.)Z —-——op’
7/)(_5 (V z) .S (W y) S r ¢ (1‘8)

.0
- }/xs

which is the expression for the in-plane shear

strain  y3, at the mid-plane. Next, using

Eqgs.(1.1-1.3), the transverse shear strains
(Timoshenko beam shear definition) are
identified as:

Vxy = V,_ez
Yez =W +0,

(1.9.1)
(1.9.2)

so that the in-plane shear strain in Eq.(1.8) can
be expressed as

24

Vxs = 7ny,s +7xZZ,S —TOZ(D’ (1.10)

1.4 Constitutive Relations

The standard theory describing the macro-
mechanical behaviour of composites is used in
the following deliberation [2]. Moreover, any
material non-linearity is assumed to be absent in
both the active and passive materials of the
composite, and  therefore, the linear
piezoelectric constitutive equations can be used.
Also, in view of the fact that electrical

displacements will not be of the main interest in
actuation of the rotor blade, the only
constitutive equation that needs to be
considered is

T:cES—eTE:cES—[ch]TE (1.11)
In conventionally poled piezoelectric the poled
direction is assigned to be the 3-axis with the
(1-2)-plane being the plane of isotropy.
However, for passive fibres such as carbon or
glass fibres as well as the piezoelectric fibres
that are to be used in the construction of the
rotor blade the corresponding passive and active
laminae are transversely isotropic materials
along the fibre direction. Therefore, the material
[-axis is assigned to be along the fibre direction
for such a construction. As the result the (2-3)-
plane becomes the plane of isotropy (for both
active and passive fibres), with the poling for
active fibres now being in the /-axis direction,
Fig.(1.3). In this co-ordinate system the
corresponding constitutive relations for active
as well as passive laminae become:

o] [€1 G2 i 0 0 0 1" Tepy

x| |C2 Cn Co3 0 0 0 lepn| |epn

033 C13 C23 C22 0 0 0 £33 er3

ol o o o 2=C 4 o [F1

23 3 V23

731 0 0 0 0 Ces 0 | | 731 0

2] o 0 0 0 0 Cg| LN2] LO
(1.12)

with the engineering shear strains and tensor
shear strains defined as (; =2,; for i # j. For
passive fibres £; = 0.

For a closed thin-wall beam the normal stresses
in the thickness direction as well as the
longitudinal and transverse shear stresses in the
wall are considered to be negligible, i.e., by
setting 033 =753 =73;=0 1in Eqgs.(1.12) a
plane stress state is defined. Hence, applying a
static  condensation to Egs.(1.12), the
constitutive relations for the orthotropic
material in a plane stress state are obtained as:

(%] O, O, O fi ef)
& =0 On 0 & |—|eh |E (1.13)
& 0 0 O | 72 0



where,
2
C,,C
1 _ 12623
O,=C, - » O =0, - .
22 22
2
23
sz—sz_C s Oss = Cess
22 (1.14)
Ciy
elplzell_c €3,
22
C
G =T 4

The plane stress constitutive relations given by
Eqgs.(1.14) are in reference to the co-ordinate
system (/,2,3) which is aligned with the
principal fibre directions. To obtain the
corresponding relations in the main structural
co-ordinate system (x,t,n), the material
properties must be rotated through the proper
angle 6, Fig.(1.4), using the standard tensor
transformation matrix. The transformed stress-
strain relations will read as:

O\ O On 916 € €lxx
O |= glz 922 O || €ss
sz Q16 Q26 Q66 yxs €lxs

(1.15)

—| Clss El

where the rotated ply stiffness are

@11 =U, +U, cos 20 +U; cos 46
QZ =U,—-U;cos 40

O = LU, sin 20+ Uy sin 49
0y, =U, =U, cos 26 + U, cos 40
0y =1 U, sin20 - Uy sin 40
Qé =Us—U;cos 40

(1.16)

with

v, = 31+3022+ 2012 + 4056
8
U, =192
2

_ 91110222012~ 4066

8
_911+922+6012~4066
- 8
_ 91119222012 +4066

8

U; (1.17)

Uy

Us
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and the rotated induced stresses are

€y =eﬁ cos2 9+eé sin2 0

. 2 2
€lgs eﬁ sin” 6 + elp2 cos“ @ (1.18)
g = (eﬁ - el% )sin @ cos @

1.5 Stress Resultants in the Rotor Blade

The stress resultants per unit length around the
perimeter of the beam wall are obtained by
integrating the stresses given in Egs.(1.15)
across the wall thickness 4. To this end, the
classical laminated plate theory is invoked first,
according to which the strain at any point across
the plate thickness can be expressed in terms of

the middle-surface strains 81-;- and curvatures

k;; . Hence, Eqs.(1.15), can be rewritten as

O O. O £ +nx
o %1 %2 %16 SARE I o P (1.19)
O-ss - ng 222 gZ6 gss +nKss 7| “ss El
T o e
Xs Q16 926 Q66 Ve TIE lxs

Upon integrating these stresses across the wall

thickness one gets the following stress
resultants:
_N)CX 1 [ __8;.’6_ _N)LCIX |
NS? A B gSQS N:‘l?
N, = NG
— j/xs _ XS ( 1 X 20)
M)CX KXX M)‘:’C
MSS B D K KXy M i
_MXS_ L __sz_ _M)(:s_

with extensional, coupling and bending stiffness
of, respectively,

25
l/ - h/2Ql/ n’

D, =" n*0,d
i h/zn Q;dn,

-
B, = fh/z nQ,dn,

ij=126

(1.21)

and stress resultants for actuation forces and
moments of
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a _ (M2 a _ 2

Nxx - /2 elxxEldn’ Nss - h/zelssEldn’
a _ [i2

Nxs - h/zelxsEldn’

2 2
M = f}/z/Z ne, . Ejdn, Mg = f//,/z ne, . E,dn,

Ml = [ ne Eydn (1.22)

Next, for the rotor blade under consideration,
the beam cross-section is assumed as infinitely
rigid in its own plane, so that kg and x is set
equal to zero. Moreover, since the internal

pressure of the closed cell beam is equal to the
external pressure, the hoop stress oz will also

vanish so that N, =M . =0. Finally, ignoring

the edge twist moment resultant M .., one may

XS 2
apply static condensation to Egs.(1.20) to obtain
the stress resultants for the rotor blade beam as:

N, A A A £ N
N, |=|4n An Ax |y, |- N [(1.23)

M 213 223 233 K sz

XX

where,
- A - A,A
All:All_i, A12:A16_ 12 26,
22 22
- A,B - A
As=B,——2,  An=4,—2, (1.24)
A22 A22
- A, B - B’
An=B,——2,  As=D,——2=,
Ay Ay
with the actuation stress resultants
N =N = e e
XX A22 Ss
—a A
N =N —A—%N; (1.25)

22

— B
Mxx :M; —iNi

22

1.6 Beam Stiffness and Actuation Forces

The internal forces and moments acting over the
cross-section of the beam are given as the
components of the force vector

F'=lp popom, M, M. 0] (126)

with the axial force, P, shear forces, P, P,
twisting moment, M ,, lead-lag moment, M y

flap moment M ,, and bimoment, Q,, defined

Z}
as

P, = c;[ Nds, P,= c;[ N, Y,ds,
T T

—-24Ax
r

=Nz ds, M, =N s,
r r

M, = 4 (NoZ+M_Y,)ds, (1.27)
T

M, = 4 (-N Y+M_Z )ds,
T

Q\'V = (j-NxdoS’
T

where, all the integration is around the beam
wall at the mid-plane. The resultant stresses
from Eqs.(1.23) are substituted into the
expressions given in (1.27), to get

F =Ku-F* (1.28)

where the beam stiffness matrix is obtained as

K, K, K, K, K; K, K,
K22 K23 K24 KZS K26 K27
K33 K34 K35 K36 K37
K= K, K, K, K,
symmetric K K, K,
K66 K67
L Ko |

(1.29)

The expressions for the stiffness coefficients Kj
for the normal internal force N are given in the
Appendix. Other stiffness coefficients are
obtained in a similar fashion, [3]. The global
displacements and actuation forces in
Eqgs.(1.28) are, respectively,



’

ey ve 000 60 @] (130)

I O T VO V] I GO 3)
where, the elements of the applied force vector
are given in the Appendix.

2 Governing Equations of Motion

2.1 Introduction

Hamilton’s principle is used to obtain the
governing differential equations of motion and
boundary conditions for a cantilever beam
rotating at constant speed:

él'[zr(éU—éT—é‘W)dtzo @.1)

The resulting system of non-linear governing
equations of motion is expected to be a
relatively large and complicated system.
Therefore, it would be desirable to neglect
higher order terms to reduce the size and
complexity of these equations. Such a reduction
has to be implemented in a systematic manner if
non-selfadjoint operators are to be avoided in
the resulting equations. To achieve this, a
consistent set of guidelines, parallel to the ones
that were used in references [3,4,5] has been
adopted in this report. These guidelines are
based on introducing a parameter ¢ that
represents the order of the dimensionless flap
deflection v/R. Table (2.1) lists the order of
magnitudes for various parameters that are used
in the present work. In general, in applying this
ordering scheme, terms of order & are ignored
with respect to unity.

2.2 Strain Energy Contribution
The variation of strain energy for the thin
walled composite beam is

8U = [ (N des, + N, 07, + M Bx, )dsdx (22)
T
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where, R is the length of the beam. Using the
appropriate strains and internal forces/moments
obtained in Section 1, and after a proper
integration by parts, it can be shown Eq.(2.2)
yields[3]:

8U = [ [Plou+ P/ov+ P/6w
+ (M) =P80, +(M.+P)30. (2.3)
+(M —0;)0p)dx +b(U)

Quantity Order | Quantity Order
VR, w/R 0@ | wr 0()
WR @) |y / 12 o)
/R ol | 9, Hy, 6, 0
Y/R, Z/R, w/R, &R o) 8 o(l)
R R TR 0@ | O (only aerodyn. loads) 0
d d d
wh o | Y T as ] ow

Table (2.1): Orders of magnitude of various
physical quantities

2.3Kinetic Energy Contribution

The kinetic energy contribution to the total
energy variation can be determined by
considering the kinetic energy of a typical point
on the beam wall. The result is [5]:

OT = f [Tt +(Ty =T v)Sv+ (T —Tw)ow
+(To —T )89 ]dx +b(T) 2.4)

Assuming that the centre of mass is not offset
from the elastic axis, and that the cross-section
is symmetric about chord-wise principal axis,
and denoting the beam mass/unit length as m,
for an antisymmetric warp function y, in
Eq.(2.4) one has:
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Tu = m(£2%x +2)
;v = mQ* —my — 2mi
(2.5)

Tw = —mW

T = —mk2p —mQ> (k2. — k2 )sin(0 + ¢)cos(6 + @)

my m
Ty=Tw=Tg=0,
. . 2 .
where, 6 is the pitch angle, mk,,~ is the polar
mass moment of inertia, and mk;l and mk_, are

the principal mass moments of inertia of the
cross-section.

2.4 Aerodynamic Contribution

All loads other than the elastic and inertial loads
that act on the blade are non-conservative loads.
In general, the non-conservative aerodynamic
loads  consist of L,, L,, L, and M,

representing, respectively, the distributed loads
that act in the x, y, and z directions, and the
pitching moment about the elastic axis
Fig.(1.1),. Then in reference to Eq.(2.1), one has

= [[L,6u+L,6v+L,6w+M,8p)dx (2.6)

For a first attempt in the modeling of the
problem, hover conditions are considered in the
present study. Greenberg’s extension of
Theodorsen’s theory for a two-dimensional
airfoil  undergoing sinusoidal motion in
pulsating incompressible flow has been used to
determine the corresponding aerodynamic
loads. In this approach, the aerodynamic forces
are obtained using strip theory in which only the
velocity component perpendicular to the
deformed blade span-wise axis is assumed to
influence the aerodynamic loads. Moreover,
non-linear rate products such as
wi, v2 and w?

order 0(.93 ), except those that contribute to

lead-lag or torsion damping, have been
neglected. The resulting loads are [5]:

as well as all terms of

P..ac
2

w? szz “+ Q) (0+9)

Cq
—[2.Qx—°—(l9+¢)vi]\'/+[2vi + 2(0+0)|w }
a

L, = 2x? Ev'w”dx)
—.szv( e +w')+.Q2 %( e +w')
+22(0+¢)-v, .wa+£.Qx¢——w}
pwac c?

M, = (—.Qx¢) (2.7)

In Eq.(2.7) the following are defined:

p.. = air density (kg/m?),
a = airfoillift curveslope (27 /rad.),
¢ = bladechord (m),

¢, = airfoil profile drag coefficient,

B, = precone angle (assumed zero in this study).

Moreover, the induced flow velocity, v; is
assumed to be steady and uniform along the
rotor length. Its magnitude is taken to be equal
to the value of non-uniform inflow obtained
from blade element momentum theory at
x=0.75R . Also, the blade angle at x=0.75R is
assumed to be equal to the blade collective pitch
angle plus the equilibrium elastic twist ¢, at

x=0.75R . Then, using b blades with solidity
o =bc/ 7R , one has

v, =sgn[f + ¢, (O.75R)]%QR

. L\/l + £|6> +0,(0.75LR)| - 1J
o

(2.8)

2.5 Total Variational Equations

Substituting Eqs.(2.3-2.8) into Eq.(2.1) yields
the total variational equations. For arbitrary
admissible variations Ju, dv, ow, 6@, 56,, and
00,, the coefficients of the wvariations in the
resulting integrand as well as the boundary
terms evaluated at x =0 and x=R must vanish.
This results in six non-linear partial differential
equations in terms of u, v, w, @, Hy, and 4.,

plus the boundary conditions at the ends of the
blade. The aerodynamic load L, is neglected as

7



a higher order term. Moreover, the axial
displacement u can be eliminated as an
independent variable. Then one can obtain the
final non-dimensional integro-partial
differential equations of motion for the blade as:

v equation:
2
( Azz)_”+( —Azs)w”
ll 11
A Ags
+H(——2 = Ays)6; sty e
11 11
ApAy
+H(EE A y)e” +( —/\23)‘9

1 1

A2 . 2c

+(—2—Ay)E, +‘7_‘7+Z{[
Aq

& x— O+,

} 2A13 —_2A15 P
11 Ay

fé)d’ zA12 fed'

—[2v, +x(0+ ) v —xv,0

A A
269 144 2

11 Ay
A, _ ., ¢ Ay
=-—11% ( 2—Lx +xv,0)+—=
11 6 a 11

2P -(PfY

(2.9.1)

ow equation:

A A ., A .,
(M_Azs)v +(i_A33)W
A11 11

AjA,
+(—EE - A )0 NESEL]
A11 11
RN (1 Al
- . T 1ii34
A11 11
A A A 3
BT AL el 42 v+
11 A11 24

= A3)6]
—A33)0,
=(
w2 w0+ faW”dx)erv—w'—%m'
~[F0+9)-7,F + T -2 7wy
~(P"Y
2.9.2)

By

Afagh, F.F.

09 equation:

Ay V7 + AW+ (

+(

11

+(
11

A
W b Lo

11

+2
11

_A14

A11

A14A13

2
A14A16

A14A12 —A24 )‘7/’

11

. AuA,
- A3 )w +(L—A45+A37)‘9
Ay

—Aye—

A7) +( L Au)e”

ll

~A34)0; + (-2
11

v+4—x¢+,u ¢+(,u — Ui )r])cosZH

+A )6,

_;__Cu — U )sm29+A14( Y- (MY +08)

11

(2.9.3)

06, equation:

A,y +

AjzA
4 Dz

. A A —

Assw +(M—Az3)v +(i—A33)W
1 Ay

LASERASTS

11

AsAy
(B2

11

A13

11

: 9; +( —Ays —As36)6!

11

~A3y)e” +(

2
—A3)0]
11

A -
S8BT A) 2By
11 A11

— A Sav ay Tsa\”
—B(PY-(PIY+(MLY,
11

(2.9.4)

06 equation:

—m
Ay +

A2
AggW” +(——2 4+ A 0"
A11

A A . ApA ”
+ (-2 A )W (- B A s + As)E)
A11 11

ApAe -, A ,

_ Dafde 07 +(- 124314 +A5)0
11 11
ApAs A%, A N
F(——L +A23)9 +( —Ay)8, —2—25
11 11 11

A — Sav Hayn I7a\”
=ix—i<P;> +(PY+(MLY,

A11

11

(2.9.5)
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3. Stability Analysis

3.1 Perturbation Equations

The necessary equations of perturbation that can
be used in the aeroelastic stability analysis of
the blade can be obtained from Egs.(2.9.1-
2.9.5). These non-linear, variable coefficient,
integro-partial differential equations can be
solved by Galerkin’s method [3,5]. To this end,
the displacements are expanded as a series of
products of generalised modal coordinates and
mode shapes:

N
TEYV(P)pl(R), W=
Jj=1

M=

w;(¥)e; (x)

J

M=

O (¥, (), 6, =

y 05 (¥)pj (%),

1

TM= L

¢ - .

J

I
> -

6.=3 05(¥)p; (¥ 3.1)

j=1

where ¥ =& 1is the azimuth angle, and

Vi), W), @;(y). @7 (y) and O] (y)

are the generalised modal co-ordinates. The
uncoupled mode shapes of a standard non-
rotating, uniform cantilever beam may be used

forp}(X), @ (x) and @;(x) as suggested in

[3,4,5]. Moreover, the actuation terms in
Egs.(2.9), also, can each be expressed as a
series expansion:

— N _ N
P =EW)Y. pj(X)., P’ =EW)Y p} ),
J=1 Jj=1

_ N _ N

PY=EW)Y pi(X), M{=E@W)) mj(X),
Jj=1 j=1

— N N

L =EW)Y.m](X), M =EW)y mi(x),
J

~ =
o =E(w)_§lq;“ (¥, (3.2)
where, E (11;/) is the applied electric field, and,
PEE). pYE). piE), mi@), m) (@), m}(F)
and g7 (X) are the effect of the respective

actuation on each mode shape due to material

properties and physical construction of the
integrated active fibres. The influence of j-th
actuation term can be determined as the ratio of
the j-th mode shape over the sum of the mode
shapes. Using the series expansions given in
Egs.(3.1), the governing equations of motion
(2.9) can, first, be reduced to a set of SN
ordinary differential equations in terms of
generalised  co-ordinates.  Next, small
perturbation motions about the equilibrium
operating conditions are considered by
expressing each time-dependent generalized
coordinate as the sum of a steady equilibrium
quantity that defines the corresponding
equilibrium deflection, and a small unsteady
perturbation quantity, i.e.,

Vi(P)=Vy, +AV;(¥), W, (¥)=W,; +AW;(P),

D;(¥) =0, +AD ;(¥), O} (¥)=0}, +A0%(¥),
0% (¥) =0}, +A0% (V) (3.3)

Two sets of equations can be obtained by
incorporating Eqs.(3.3) into Eqs.(2.9). The first
set will be the result of substituting the steady
equilibrium quantities into Egs.(2.9). This will
yield 5N non-linear algebraic equations in

y
Voj> Wojs @o;» 6y

and ©;, that can be solved
by any standard non-linear technique such as
Newton-Raphson or Least Mean Square
method. The second set of equations can be
obtained by substituting Eqgs.(3.3) into
Eqgs.(2.9), subtracting from the resulting system
the first system that was obtained from
equilibrium quantities, and neglecting all the
higher order terms in perturbation quantities.
This will yield a system of linearized
perturbation equations with coefficients that are
functions of steady equilibrium quantities as
determined from the first set. These
perturbation equations constitute a set of linear,
homogeneous, constant coefficient, ordinary
differential equations that define the unsteady
blade motion near the equilibrium operating
condition, and therefore, can be used to
determine the stability of this motion. To this
end, defining a vector of unknowns



X" =[AV; AW; AD; A©] AO]] (3.4)

the perturbation equations will have the general
form of

MX+C, X+K, X+FAE =0 (3.5)

where the subscript # denotes the total matrices
that are composed of gyroscopic, aerodynamic
and structural contributions:

C, =C,+C,, K, =K, +K,. (3.6)

The set of Egs.(3.6) may be rewritten as

AR

{_ N;)_IF}AE = A{ﬂ +BAE (3.7)

In this form, the eigenvalues of the matrix 4
determine the stability of the motion under
consideration. Moreover, the input control
vector B can therefore be used for vibration
control.

4 Conclusions and Recommendations

Basically, this report is comprised of two parts.
The first part deals with providing an analytical
structural model for a single-cell, thin-walled
composite rotor blade with fully integrated
active fibres. This model is based on a linear
formulation using  macro-mechanics  of
composite plate theory. It considers a
displacement field that accounts for axial,
torsional, lead-lag and flap actions in the blade.
The resulting beam stiffness matrix can
represent coupling between various actions such
as axial, torsional, bending and shear in the
blade. In the second part of the report, a set of
non-linear dynamic equations of motion has
been developed for a hingeless rotor blade using
the structural model presented in the first part. It
has been shown how this dynamic model can be
used in aeroelastic stability investigation and
dynamic control and analysis of the rotor.
Application of this modelling to a typical

Afagh, F.F.

composite rotor blade and simulation of the
corresponding results will be the subject of a
subsequent paper.

ZU—{),ZyT ¥y

principal flexural axes
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Figure 1.1: Rotor blade co-ordinate systems

¥

Figure 1.2: Rotor blade displacement
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Figure (1.3): Material axes for active and passive

Figure(1.4): Principal material axes vs. structural axes
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Appendix
Stiffness coefficients K;; for the normal internal
force V:

Ky, =<JZ11dS, K :{lexsds, K5 =§Z1zz’sds,
r T r

— Aa J— J—
K, =—2<{A12(T)ds, Kis =q(AnZ+A4137,)ds,
r r

K¢ = 4(2132»5 —leY)ds,
r

r

The applied force vector:

I o O VA A Ve

w

where,

Pl =dNuds, P! =JNuYds, P'={NuZds,
r r r

Ao

M =—2§NXX(T)ds, M =d(NwZ+M Y ,)ds,
r r

M¢ =J(-NwY+MZ )ds,
I

0% =N tuyds. (A.2)

References

[1]Hodges, D.H. Review of composite rotor blade
modelling, 4144 Journal, Vol. 28, No.3, pp.561-565,
1990.

[2] Jones, RM. Mechanics of Composite Materials.
McGraw-Hill, 1975.

[3] Afagh, F.F. Modelling of helicopter rotor blades
with integrated active fibres for vibration control and
aeroelastic analysis, Report No. DLR IB 131-2001/38,
2001.

[4] Hodges, D.H. and Dowell, E.H. Non-linear equations
of motion for the elastic bending and torsion of
twisted non-uniform rotor blades, Report No.. NASA
TN D-7818, 1974.

[5] Hodges, D.H. and Ormiston, R.A. Stability of elastic
bending and torsion of uniform cantilever rotor blades
in hover with variable structural coupling, Report No.:
NASA TN D-8192, 1976.

11



