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Abstract  
Each airplane is not only operated in a level 
steady flight, but also has to perform a number 
of maneuvers. Sometimes these maneuvers are 
very rapid and it is the reason that extreme 
loads generated in such maneuvers on the 
tailplanes have to be calculated. These loads 
are responsible for the state of strain, elastic 
deflection, fatigue and other phenomena. 
Among different maneuvers considered in this 
paper are motions following a sudden deflection 
of elevator and response to a vertical gust. This 
paper focuses mainly on the flight dynamics and 
flight control system of a trainer jet aircraft. 
Analysis is based on the linearized equation of 
motion of a rigid airplane of six degrees of 
freedom in an arbitrary motion with deflectable 
control surfaces. An important point in the 
analysis was estimating the stability derivatives, 
computed by means of panel methods, and 
compared with the results of classical 
engineering approach.  

1  General Introduction 
The main goal of this paper is to present a 

quick and reliable method for computing of 
lifting force and pitching moment acting on an 
airplane in selected rapid maneuvers. Among 
typical maneuvers are the motions following: 
(1) sudden deflection of the elevator, (2) vertical 
gust, (3) dropping a container, (4) dropping the 
water from a firefighting airplane, (5) sudden 
flap deflection and (6) sudden change of the 
engine thrust. In this paper the maneuvers 
following a sudden deflection of elevator and a 
sudden vertical gust were analyzed in details. 
The panel methods [6,8,11] supplemented by a 
traditional engineering approach (see, e.g. 

ESDU [3]) were used to compute important 
aerodynamic coefficients, including lift-curve 
slope, zero-lift angle of attack, downwash, polar 
drag coefficients, pitching moment curve slope, 
tailplane lift-curve slopes, all versus the angle of 
attack and elevator deflection. The dynamic 
equations of disturbed motion were derived 
from two fundamental equations of the rigid 
body motion – the equation of change of 
momentum and the equation of change of 
moment of momentum. The disturbed motion is 
related to the state of airplane equilibrium, i.e. 
angle of attack increment, elevator deflection 
increment and all other parameter increments 
are equal to zero in the state of equilibrium. The 
aerodynamic forces and moment acting on the 
airplane in the disturbed state are computed as a 
sum of products of stability derivatives and 
disturbances (corresponding to the longitudinal, 
plunging and pitching motions, respectively). 
The approach used in this paper enables 
computing the aerodynamic and inertial forces 
acting on the airplane structure, and then finally 
the extreme states of loads, the state of strain 
and the fatigue wear degree. The detailed 
calculations were performed for X-2000, a 
trainer airplane. 

2  List of symbols  

a - wing lift-curve slope, ∂CLw/∂α 
a1 - tailplane lift-curve slope versus angle 

of attack, ∂CLH/∂α 
a2 - tailplane lift-curve slope versus 

elevator deflection, ∂CLH/∂δH 
A(AH) - main wing (tailplane) aspect ratio 
Ca = MAC - Mean Aerodynamic Chord 
CL, CD   - lift and drag coefficients 
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Cm  - pitching moment coefficient, around 
the mean quarter-chord point A  

CmwB,C - pitching moment coefficient of the 
wing-body combination about the CG 
(for an arbitrary CL) 

CmwB,0 - pitching moment coefficient of the 
wing-body combination about the CG 
for CL=0 

D, L, M - drag, lift and pitching moment for 
whole aircraft 

Jy - moment of inertia about y axis 
MCy, T

CyM  - aerodynamic and thrust pitching 
moment of the whole aircraft about the CG 

m - mass of the whole aircraft 
nz - normal load coefficient 
Psx, Psz - components of thrust (along and 

perpendicular to MAC) 
Q  - pitch rate 
S (SH) - main wing (tailplane) area 
U,W  - speed components in maneuver 
U0,W0  - speed components in steady flight 
u,w  - small disturbances of U,W 
xA  , xC  , zC  ,  xN  - co-ordinates of points A, 

C, N, H with respect to nose of MAC 
x0, z0  - co-ordinates of aircraft position in the 

ground fixed axis system 
αDYN-   dynamic angle of attack (angle between 

vector of the airplane speed and MAC 
direction); αDYN=α 

αKIN - kinematic angle of attack (angle 
between vector of the air-flow over the 
airplane and MAC direction) 

αST - angle of attack in a steady flight 
δH - elevator deflection 
ε - downwash 
ε0 - downwash when α=0 
dε/dα - slope of downwash versus to angle of 

attack 
θ, ϑ  - pitch angle & its small disturbance 
∆X, ∆Y, ∆Z, ∆u, ∆w - increments of forces, 

pitching moment and speed in maneuver 
Xu,Xw,Xq,Zu,Zw, …- dimensional stability 

derivatives 
CDu,CDw,CDq,CLu, … - dimensionless stability 

derivatives 
κH - horizontal tail volume 

3  Dynamic equations of motion 
The dynamic equations of motion [2] have been 
written for the body frame of reference Axyz 
and have the form: 
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where x, z denote the coordinates of the airplane 
center of gravity in the design frame of 
reference AxDyDzD  (axis AxD is directed along 
MAC, opposite to the flight direction; AzD is 
perpendicular to AxD and is directed to the top 
of airplane). 
The forces and pitching moment (present on the 
right side of eq.(1)) in the state of equilibrium 
are equal to zero. That is the reason to write the 
equations of motion of small disturbances with 
respect to the state of equilibrium. Coming from 
an assumption that the velocities (and path 
angle) consist of steady state and perturbation 
components we have 
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where ∆X,  ∆Z, ∆M  denote increments of forces 
and pitching moment due to performing a 
maneuver (following the elevator deflection, 
gust or other external input). 

The increments can be computed as 
follows: 
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The dimensional stability derivatives in Eq. (2) 
depend on the dimensionless stability 
derivatives as follows 
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The dimensionless stability derivatives were 
defined and computed from the following 
formulae: 
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The dimensionless, longitudinal stability 
derivatives depend on lift coefficient CL , steady 
angle of attack αST and airplane speed V=V∞. 
The X-2000 airplane at speed V=100 m/s has 
the following stability derivatives (Tab.1): 

 
Tab.1 Values of dimensionless stability 
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derivative  numerical value 
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The dynamic equations of motion can be 
rewritten in the matrix form 
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4  Aircraft used for testing 
The approach used in this paper enables 

computing the unsteady aerodynamic and 
inertial forces acting on the airplane structure, 
then finally the extreme states of loads. The 
detailed calculations were performed for X-
2000 subsonic jet trainer airplane, designed and 
assembled in a small private company in 
Poland, now under the flight tests. 
Configuration (Fig.1) reminds the Falcon 
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version of Bede BD-10 light aircraft, however 
X2000 is an original new concept 
aerodynamically designed from scratch. It is a 
tandem two-seat, subsonic, fully composite 
airplane, wings with leading edge sweepback, 
twin fins and rudders, non-boosted dual 
controls, retractable tricycle type landing gear, 
take-off mass equal to 2400 kg, one turbojet 
engine of 13 kN thrust. 

Control surface deflections were of the step 
change type, gust was assumed to be either of 
the step change type or harmonic, with a gust 
cycle time corresponding to the time to travel a 
distance equal to 25 MAC [4]. In all cases a 
jump type elevator deflection was assumed to 
last for 1 s, whilst the airplane response was 
observed for 3 s. The airplane motion and loads 
acting on the tailplane and main wing were 
calculated by means of numerical integration. 

Fig.1  X-2000 - light subsonic jet trainer 

5 Influence of altitude on gust maneuver 
 
All maneuvers considered here are computed 
under the assumption that they are performed at 
Sea Level. An increment in the dynamic angle 
of attack is equal to 
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A simple model of one degree of freedom can 
be used to calculate the vertical speed W. This 
model has the form of a linear differential 
equation 
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and it can be rewritten as follows: 
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The solution of eq. (16) has the form: 
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and it is presented in Fig.2 as a function W/Wgust 
versus time. 
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Fig.2 Vertical speed versus time, depending on the flight 

altitude 
 

From this analysis it follows that the higher 
altitude the higher normal load coefficient and 
the more severe maneuver (under the 
assumption that speed V and the lift-curve slope 
(a=∂CLw/∂α) do not change with altitude). The 
above conclusion can be written in the form: 
Low altitude ⇒⇒⇒⇒ high ρρρρ ⇒⇒⇒⇒ high W/Wg ⇒⇒⇒⇒ small 

∆∆∆∆αααα ⇒⇒⇒⇒ small ∆∆∆∆L ⇒⇒⇒⇒ small n 

6. Results and discussion 
Tab.2 Three differently-defined angles of attack: 

αST, αDYN, αKIN  

VST V∞∞∞∞ 

ααααST

A
C

 

VUN V∞∞∞∞ 

ααααDYN

B 
C

VUN

V∞∞∞∞ 

ααααKIN

VH

VV

Vg 

C
C 
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One has to emphasize the differences between a 
flight analysis, including and excluding gust. In 
the case when gust is not included (both either 
in a steady flight (case A) or unsteady flight 
(case B)) vectors of speed of the center of 
gravity VST or VUN, and the corresponding 
vectors of air-flow over the airplane V∞, have 
the same values and are opposite in direction. In 
the case when gust is included (case C) both 
vectors are completely different, i.e. they are 
out-of-parallel and can have different lengths. 
All these vectors and corresponding angles of 
attack are shown in Tab.2. 

A number of selected maneuvers has 
been presented and discussed in [7,9,10]. The 
dynamic response of the X-2000 airplane 
following either a sudden elevator deflection or 
gust has been computed for three basic cases 
[7,9]. 
 The first case corresponds to a sudden 
elevator deflection of the step change type and 
is shown in Fig.3-6. Fig.3 shows the increments 
of longitudinal (∆U) and vertical (∆W) speeds, 
elevator deflections δH , kinematic angle of 
attack αkin (angle between vector of the air-flow 
over the airplane and MAC direction), dynamic 
angle of attack  α=αdyn (angle between vector of 
the airplane speed and MAC direction) and the 
normal load coefficient nZ . 

In order to investigate a sensitivity of the 
airplane dynamic response to the speed of 
elevator motion a number of the elevator control 
functions have been defined and used in 
simulations [13,14]. Among these control 
functions there are an exponential function and 
two damped, harmonic-type functions (one of 
them corresponds to a lower-frequency-
deflection and second corresponds to higher-
frequency-deflection). These functions are 
defined as follows: 
- exponential function 
 

{ } k
kt

HH ttife ≤−= − 2)(
0 1δδ  ;      (18) 

and 
{ } k

ttk
HH ttife k >−= −− 2])[(

0 1δδ  ;       (19) 
where tk – instant of time, after which elevator 
deflection decreases to its initial value; k – a 

positive constant; δH0 – amplitude of elevator 
deflection; 
-  harmonic-type function (higher-
frequency-deflection) 

πωωδδ 2*5.0;1)(sin 2
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-  harmonic-type function (lower-
frequency-deflection) 
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 Fig.4-5 (similarly as Fig.3) present the 
increments of longitudinal (∆U) and vertical 
(∆W) speeds, kinematic angle of attack αkin, 
dynamic angle of attack α (i.e. the current angle 
of attack) and the normal load coefficient nZ  - 
all these parameters induced by the elevator 
deflections δH of harmonic-type, either higher or 
lower-frequency. 
 Fig.6 shows a comparison of the time-
dependent elevator deflection curves, computed 
on the basis of formulae (18-22). This figure 
contains also the corresponding increments of 
speed, ∆w. All other parameters change after 
elevator deflection in the same way, i.e. they are 
not sensitive to the type of function describing 
the elevator deflection. 
 The case number two (Fig.7-9) relates to 
the dynamic response following the gust of the 
step change type, acting simultaneously either 
on the whole airplane (Fig.7), or on its selected 
parts. The worst case (Fig.8) is when the 
vertical gust (even a small one of 2 m/s) acts on 
the main wing only. It is involved by the fact 
that even a small increment in the main wing 
load (being not compensated on the tailplane) 
creates a large pitching moment about the mass 
center, being able to rotate the airplane very 
rapidly. It could be very dangerous, however 
such a case is not very likely in a real flight. 
 The case number three (Fig.10-15) 
relates to dynamic response following a 
harmonic gust shape according to the Federal 
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Aviation Regulations specification [4]. The 
shape of the gust is given by the following 
equation: 









−=

c
tVWW

25
2cos1

2
0 π    ,             (23) 

where  W0 - gust velocity amplitude referred to 
by the Federal Aviation Regulations 
specification [4], V - flight speed, c - Mean 
Aerodynamic Chord. 
 Fig.10-11 show selected airplane 
responses: αKIN - kinematic angle of attack, 
αDYN - dynamic (real) angle of attack, ∆W - 
increment of vertical speed, LH - aerodynamic 
tailplane load and nz - normal load coefficient. 
 Fig.12-15 compare selected parameters 
for different gust velocity amplitudes: W0 = 7.5, 
15; -15 & -7.5 m/s. The worst case corresponds 
to the gust of 15 m/s and it means that the 
tailplane load can increase more than 4 times in 
comparison to the static load case. The obtained 
results can be further used for the strain and 
fatigue analysis. 

6. Conclusion 
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Fig.3 Selected kinematic and dynamic parameters versus 

time following the elevator deflection according to 
exponential function 

 
It was found that the most critical state 
corresponds to the case when the gust acts on 
the part of airplane only. A great difference 
arises if the kinematic and dynamic angles of 
attack differ between themselves. Dynamic 
angle of attack (αdyn) for gust acting up is lower 
than that of the kinematic (αkin) and its curve-

course is delayed with respect to αkin. 
Otherwise, the dynamic angle of attack (αdyn) is 
higher (for gust acting down) than the kinematic 
angle of attack (αkin) and its curve-course is also 
delayed with respect to αkin. Dynamic response 
is very sensitive to the amplitude of elevator 
deflection and is not sensitive with respect to 
the speed of elevator deflection – only an 
increment of vertical speed depends slightly on 
the type of elevator motion and only over a 
limited time, very short period of time. During a 
severe gust the dynamic tailplane force can be 
several times greater than that in a steady level 
flight. 
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Fig.4 Selected kinematic and dynamic parameters versus 
time following the elevator deflection according to a 
harmonic-type function (higher-frequency-deflection) 
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Fig.5 Selected kinematic and dynamic parameters versus 
time following the elevator deflection according to a 
harmonic-type function (lower-frequency-deflection) 
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Fig.6 Three different functions of elevator deflection δH 
(exponential, lower-frequency-harmonic-type and higher-

frequency-harmonic-type) and corresponding 
disturbances of vertical speed ∆W  
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Fig.7 Dynamic response of X-2000 airplane following a 
gust of the step change type (acting on the whole 

airplane) 
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Fig.8 Normal load coefficient following a gust of the step 
change type (acting on the main wing, or on the tailplane 

or on the whole airplane) 
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Fig.9 Aerodynamic tailplane load following a gust of the 
step change type (acting on the main wing, or on the 

tailplane or on the whole airplane) 
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EXTREME LOADS OF A TRAINER JET FOLLOWING A SUDDEN
DEFLECTIONOF CONTROL SURFACE
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Fig.10 Dynamic response of the X-2000 airplane 
following vertical gust of the harmonic shape (gust 

amplitude is equal to 15 m/s) 
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Fig.11 Dynamic response of the X-2000 airplane 
following vertical gust of the harmonic shape (gust 

amplitude is equal to -15 m/s) 
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Fig.12 Kinematic angle of attack following vertical gust 
of the harmonic shape with different amplitudes 
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Fig.13 Dynamic angle of attack following vertical gust of 
the harmonic shape with different amplitudes 
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Fig.14 Aerodynamic tailplane force as a function of time 
following vertical gust of the harmonic shape with 

different amplitudes 
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Fig.15 Normal load coefficient as a function of time 
following vertical gust of the harmonic shape with 

different amplitudes 

8  References 
 
[1]  Bertin J.J., Smith  M.L. Aerodynamics for 

Engineers, Prentice-Hall International, Inc. London 
1989. 

[2]  Cook M.V. Flight dynamics principles. 1st edition, 
Arnold, 1997. 

[3]  ESDU - Engineering Sciences Data Unit, Sub-series 
Aerodynamics, 3A, Regent Street, London W1R 
7AD, England (ESDU - Data Sheets). 

[4]  FAR - Federal Aviation Regulations, Part 23, 
Federal Aviation Administration Superintendent of 
Documents, US Government Printing Office. 

[5] Goraj Z., Kulicki P., Lasek M. Aircraft stability 
analysis for strongly coupled aerodynamic 
configuration. Journal of Theoretical & Applied 
Mechanics. Vol.35, 1, pp.137-158, 1997. 

[6]  Goraj Z., Pietrucha J. Basic Mathematical Relations 
of Fluid Dynamics for Modified Panel Methods. 
Journal of Theoretical & Applied Mechanics. Vol.36, 
1, pp. 47-66, 1998. 

[7] Goraj Z., Sznajder J. Rapport BP/39/99 at Institute of 
Aviation: Manoeuvring Loads on M-28 Aircraft 
Tailplane Computed for Fatigue Test, Warsaw, 
Oct.1999, unpublished. 

[8]  Goraj Z. Dynamics of High Altitude Long 
Endurance UAV, ICAS Congress 2000, paper no 
362, 10 pages, Sept. 2000, Haroggate, England. 

[9] Goraj Z., Sznajder J. Extreme Load Calculation 
Following a Sudden Elevator Deflection or Vertical 
Gust, Proceedings of the Fourth International 
Seminar: Recent Research and Design Progress in 
Aeronautical Engineering and its Influence on 
Education. Warsaw University of Technology, Bul. 
No 10, Warsaw 2000, pp.121-130. 

[10] Goraj Z., Sznajder J. Extreme loads acting on 
transport airplane following a sudden change in 
symmetric equilibrium. Aircraft Engineering and 
Aerospace Technology - An International Journal, 
2002 (in the press). 

[11]  Hess J. L., Smith A. M. O. Calculation of potential 
flow about arbitrary bodies, Progress in Aeronautical 
Sciences, Vol.8, (Ed. D.Küchemann), Pergamon 
Press, Oxford, pp.1-138, 1967. 

[12]  Katz J., Plotkin A. Low-speed aerodynamics - from 
wing theory to panel methods. McGraw-Hill, Inc., 
New York 1991. 

[13] Pearson H.A. Derivation of charts for determining the 
horizontal tail load variation with any elevator 
motion, NACA Rep. No 759, Washington DC. 

[14] Pearson H.A., Mc Gowan W.A., Donegan J.J. 
Horizontal tail load in maneuvering flight, NACA 
Rep. No 759, Washington DC. 


