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Abstract

The uniform beam has a curved elastic core. It
is reverse-bent prior to the attachment of the
two stiffer outer-layers. When the bonds are dry
and after the pre-loading bending-moment has
been removed, the residual stresses modify the
internal loads. From strain-compatibility at the
interface, the allowable values of the associated
stresses depend on the material properties and
the geometry of the cross-section. Their
limitations are determined by balancing the
relaxation bending-moments, whilst equating
the strains yields the beam curvatures used in
its fabrication.

The pre-stress is relieved before reaching the
maximum load, when both materials are
designed to arrive at their ultimate stresses
together. Were it not for core shear flexibility,
the values of these stresses would be limited
solely by the ratios of Young's Modulus and the
material's strength. The maximum relaxation
stresses in the outer-layers are made equal to
the opposite load-direction ultimate strengths.
Then for optimal pre-stress, the residual stress
and core flexibility are determinate. This
analysis provides workable limits for the
geometric and stiffness ratios.

It is found that under the design loading, the
static strengths of the regular and pre-stressed
beams are identical, although when loaded in
the opposite direction, the latter has less
strength. However, the pre-stressed beam has
more flexibility, with a greater capacity for
energy absorption. The least structure needed
for absorbing a specific amount of kinetic
energy (such as in a leaf-spring landing gear or
a windscreen post for resisting bird-impacts) is
the pre-stressed beam. Mass savings of up to
50% are theoretically possible, compared to
regular beam designs.

1  Introduction

Pre-stressed ferro-concrete floor-beams have
been used in buildings for many years. They
enable the civil engineers to successfully reduce
the structural mass (and cost) of their designs.
This concept possibly could be used to
advantage in certain other engineering
situations too and its application for use in
flight-vehicles will be examined here. It is
thought that particular kinds of aircraft
structural components could be reduced in mass
by significant amounts, when they employ
designs having this feature.

The past use of pre-stressing in aircraft
structures has been confined to a few specific
applications. Examples are the cold-working of
attachment holes, high squeeze riveting, shot-
peening (used for shaping sheet metal and
improving the resistance to fatigue), pre-
tensioned bolted-joints, the inflation of tires and
shock-absorbers (landing-gears) and pressured
airships (blimps). Except when the inflation
pressure is used to apply the pre-load, these
methods do not result in a significant a degree
of improvement in the structural design; not at
least when compared to the achievement in civil
engineering. The other aeronautical applications
are more localized and, in order to make the
best use of this feature, there is a need to find a
situation which more closely resembles that of
the floor- beams.

In this study, pre-stressing of a symmetric
composite beam will be examined. The three
structural elements of the beam have uniform
cross-sections and behave as if they were
continuous. Advantage will be taken of the
static strength properties of these elements,
whose two materials have different mechanical
strength properties, positions and shapes.
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2  Method of Construction and of
Introducing Pre-Stress

The method of pre-stressing is applied to the
following built-up structure, which is a
composite I-beam of uniform cross-section,
designed to resist a specific bending-moment. It
consists of a central rectangular core and two
equal outer-layers. The core is made from a
comparatively low-density material having a
reduced capacity to resist to the axial loads
(tension and compression), but good shear
strength. The outer top and bottom layers of the
beam are made from a relatively dense material
having high axial strength. However these
facings do not provide much shear resistance.
The beam is shown in side-view in Fig. 1.

                                                          Eo Io
 N.                                                             A.       Ei Ii

  Fig. 1  The Composite Beam

Instead of the usual method of fabrication,
which is to bond the three beam elements
together as straight pieces, the core of the beam
is first formed as a curved member, as shown in
Fig. 2.

                        R1

Fig. 2  The Shape of The Core  

To pre-load the composite-material beam, two
equal bending-moments  Mi  are applied at the
ends of the core to reverse bend it. The situation
is shown in Fig. 3. Here, the + sign shows the
presence of the pre-tensile stress, and the - sign
indicates the pre-compression, both of which
depend on the nature of the imposed strains.

Mi                  R2                            Mi

          _
                                                +
    Fig. 3  Pre-Stressed Condition of The Core

The outer-layers are attached and bonded whilst
the loading continues to be applied, see Fig. 4.

In cases where these layers are very thin they
may be pre-formed flat, because they are easily
bent to suit the upper and lower surfaces of the
core. Thicker layers need to be cured in-situ.

          Mi                                                 Mi

                                        _

                                                    +
Fig. 4  The Fabrication of the Outer-Layers

When the materials have set, the bending-
moments  Mi  are then released and the beam
springs back (or relaxes) to a position that lays
between the previous two extreme curved
forms. The resulting shape may be designed for
an intermediate radius, or it may be straight.
The distribution of tension and compression
relaxation stresses across the beam at a typical
cross-section is shown in Fig. 5. This relaxed
load situation is at a central lengthwise part of
the beam.
                                                        Direct Stress
                                             +         tension
                                     -                  compression
                  N.                             A.  zero
                                        +              tension
       for                   -                 fir    compression

   Fig. 5  The Residual Stress Distribution
              on The Cross-section

Due to the pre-stressing, the inner-core carries a
shear stress and a corresponding strain. After
relaxation, the compatibility of the longitudinal
strains at the interfaces, transfers part of them
from the core to the outer-layers. Across this
interface, the different values of Young's
Modulus produce a significant change in
magnitude of the resulting residual direct-
stresses in these materials. As shown, they vary
linearly with distance from the neutral axis.

By this procedure the beam is internally pre-
loaded. After their application, the external
bending loads on the beam compress the
relaxation-tension side and stretch the
relaxation-compression side. The direct-stress
distribution under full loading is shown in
Fig. 6, the shape of which should be compared
to the previous figure (fi > fir ,  fo > - for ).
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                                                   Direct Stress
                -
                                                   compression
     N.                                A.       zero
                                   fi    fo
                        +                        tension

   Fig. 6  The Fully-Loaded Stress Distribution

As the external loading is applied, the residual
shear stresses between the core and the outer-
layers are affected. These stresses return to zero
before changing sign and increasing in size in
the opposite direction. They are described in
more detail in Section 3.7.

3  Stress and Strain Analyses

To determine in numerical terms how this
process may be used to fabricate a composite
pre-stressed beam, some of its basic structural
properties are required as input. This implies
that the procedure will yield additional
structural properties as design outputs. The
following theoretical algebraic analysis
establishes the relationships between the
significant parameters of both kinds.

3.1 General Approach and the Core
      Pre-Load Bending-Moment  Mi

According to the classical Engineers' Theory of
(Elastic) Bending [1], the general relationships
for beam's direct-stresses and deformation are
shown below:
                      M/I = f/y = E/R                      (1).

where  M  is the applied bending-moment and  I
is the second moment of inertia of the beam's
cross-section, about its centroid  in the plane
containing the bending axis. This is the Neutral
Axis (N.A.) of the cross-section, where the
longitudinal direct stress changes sign. The
resulting stress  f  is felt on a fiber that is spaced
distance  y  from the N.A. Linear elastic
properties are assumed to apply in all of the
analysis.  E  is the value of Young's Modulus
and  R is the change in radius on the center-line.

The general expression for the moment of
inertia  I , when taken about the center-line of a

rectangular cross-section of width  B  and
height  T   is given by :
                                     I = B T³/12
                                                                (2).
and the greatest value of   y = T/2

                        Bi
          To      N.                     A.   Ti

                                Bo

Fig. 7  Cross-Section of The Uniform Beam

The composite beam's cross-section is shown in
Fig.7, having symmetry about it's N.A. The
suffix   i   is used  to  indicate  the uniform
inner  part or core and  the  suffix  o  is for the
outer-layers. It is assumed that sufficient core
breadth/thickness ratio  Bi/Ti  is provided so as
to avoid compression and shear instabilities.

Using these equations, the greatest bending-
moment, which the compound beam can carry:

  M = Mo + Mi = 2 (Io fo /To + Ii fi /Ti)

      = Bo (To³ - Ti³) fo /(6 To) + fi Bi Ti²/6  (2a).

For convenience the ratio of this beam's
thicknesses is written as Ti/To = t  and the ratio
of its breadths is written as  Bi/Bo = b . Then:

         M =  Bo To² fo (1 - t³ + b t² fi/fo)/6    (2b).

The analysis is now presented for the
fabrication process described above. The
magnitude of the stresses  ± p fi  that are felt by
the core, depends on the bending-moment  Mi
initially applied to it. The factor  p  is the pre-
stressing proportion of the ultimate stress  fi
and the size of  p  lays between zero and one.
From equations (1) and (2):

          Mi = p fi Ii/yi = p fi Bi Ti²/6             (3).

Due to  Mi  the radius of curvature changed
from the original amount R1 , to R2  in the
opposite direction, which accounts for the
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negative sign in the following expression, based
on equation (1):
                        Mi = Ei Ii (1/R1 - 1/R2)       (4).

3.2  The Relaxation Bending-Moment Effect

After the materials have cured, the applied pre-
loading bending-moment  Mi  is released. The
curvature that the composite beam then adopts
is due solely to its internal relaxation bending-
moments. Using the suffix  r  to indicate the
relaxed load condition, the bending-moment
Mr  is what remains of   Mi  in the core, and an
equal and opposite amount is carried by the
outer-layers.

In a similar manner to the derivation of
equation (3) , for the core :

           Mr = fir Ii/yi = fir Bi Ti²/6                (5).

We can also write for the outer-layers:

Mr = - for Io/yo = - for Bo (To³- Ti³)/(6 To) (6).

The minus sign has been included due to the
reversal of stress at the interfaces between the
core and  the  outer-layers,  for  is  of  opposite
sign compared to  fir. Using  equations (5)  and
(6), and making   - for  the subject:

        - for = fir To Bi Ti²/(Bo (To³ - Ti³))

                = fir b t²/(1 - t³)                          (7).

The product of the breadth ratio and the
relaxation stress in the core (b fir), depends
exclusively on the thickness-ratio t and the
residual stress in the outer-layers - for. The
value of  (b fir) is normally chosen to be
smaller than - for. Then it is found that the
outer-layers must be relatively thin (t only
slightly less than 1). Table 1 shows this
relationship in numerical terms.

TABLE 1. RELATIONSHIP BETWEEN THE CORE
THICKNESS-RATIO AND THE RELAXATION
STRESS- RATIO USING EQUATION (7).

 t =Ti/To 1.0  0.95 0.90 0.85 0.80 0.75  0.70
 -b fir/for 0.0  0.158 0.335 0.534 0.765 1.028  1.341

The ratio - b fir/for, grows rapidly as the
thickness-ratio t is progressively reduced in
size. Its magnitude exceeds unity when  t  is
slightly less than  0.755 . When  t  is smaller
than this, the core material should be made
stronger (and stiffer) than the outer layers. This
concept lays outside of the original premise and
it does not appear to be useful.

3.3  Compatibility of Relaxation Strains at
       The Interfaces

The smaller equilibrium moment  Mr  with its
reaction are then carried by both kinds of
elements of the composite beam. It will be seen
later that the pre-stress in the core  p fi  is
unable to raise the material to its ultimate value
of stress, and  p < 1 in equation (3).

Equal amounts of added strain occur on both
sides of the interface, where the relaxation

stresses are now developed. In general, strain ε
is equal to f/E. Using this relationship and
equations (1) and (2), the strains at the interface
(laying distance Ti  from the neutral axis) are:

for the core:  εi = (p fi - fir)/Ei

                 = (Mi - Mr) Ti/(2 Ei Ii)               (8).

It is noted that for the core,  Ei  may be an
equivalent value of stress/strain, to include the
effect of core shear flexibility. Similarly for the

outer layers:  εo = t for/Eo

                          = - Mr Ti/(2 Eo Io)            (9).

But for strain compatibility at the interface:

          εi + εo  = 0                                (10),

hence by substitution of equations (8) and (9)
into this:

   (Mi - Mr) Ti/(2 Ei Ii) - Mr Ti/(2 Eo Io) = 0 .

For convenience the ratio of the elasticity
modulii of the core and the outer layers is
written as  Ei/Eo = e , then after substitution for
the moments of inertia and re-arrangement :

         Mi/Mr - 1 = e b t³/(1 - t³)                (11).
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(Note that when both kinds of elements are of
equal bending stiffness,  e b t³/(1 - t³) = 1  and:

t = 1/(1 + e b)1/³ , then  Mr = Mi/2     (11a).)

The ratio of the relaxation to initial stresses
fir/(p fi)  in the core can now be determined by
taking the ratio of the applied bending-
moments, from equations (4) and (5):

      fir/(p fi) = Mr/Mi ,

and we may substitute equation (11) into this to
yield:
            fir/(p fi) = 1/(e b t³/(1 - t³) + 1)
                          = (1 - t³)/(1 - (1 - e b) t³)   (12).

Equation (12) may also be derived from the
stress-related terms in equations (8) and (9),
instead of the bending-moment related ones.
For practical values of  e , b  and  t , all of
which are less than 1 , the residual stress in the
core,  fir  is smaller than the factored ultimate
value  p fi  that was introduced by the first-
applied bending-moment Mi . Also, by using
equation (7) with equation (12):

          - for/(p fi) = b t²/(1 - (1 - e b) t³)    (13),

which can exceed unity when  t  is close to it.

3.4  The Bending Radii Relationships

From the general bending equation (1), it is

easy to show that  ε = y/R . Suppose that the
relaxed beam adopts a radius  Rr , then at the
interfaces:

for the outer-layers: εo = Ti (1/R2 -1/Rr)/2

and similarly for the core:

                                 εi = Ti (1/R1 - 1/Rr)/2  .
From equation (10):

      Ti (1/R1 + 1/R2  - 2/Rr)/2 = 0

 and   Rr = 2/(1/R1 + 1/R2)                     (14).

This enables the value of  Rr  to be design-
controlled. When the relaxed shape of the beam
is straight,  Rr  becomes infinite. Then it is
found that  R1 and  R2  must be of equal

magnitude but opposite in sign. Even when the
linear shear displacements of the core are
included, this result is true.

3.5  The Direct Stresses Under Full External
       Loading

After the full external bending-moment is
applied to the relaxed composite beam, it loads
the outer-layers in opposition to their relaxation
stresses (initially reducing their size), whilst in
the core the direct stresses are simply added to
the relaxation stresses. The pre-stressing
proportion  p  is arranged so that after
relaxation and under the full bending-moment,
the stress levels in the outer layers and in the
core both reach their maximum designed
(ultimate) values together. This is expressed by
the increments of strain in both kinds of
elements being the same at their interface. The
stress increment in the outer layers is  (fo - for) ,
where the value of   for  is negative, resulting in
a comparatively large difference, and the stress
increment in the core is  (fi - fir) , which is
smaller. Then for equal amounts of added
strain:
           t (fo - for)/E = (fi - fir)/Ei ,

which compares with the relaxation equations
(8) and (9).

For the core outer-fibers we can therefore write:

      fi = fir + e t (- for + fo)                     (15),

Using equation (7) to eliminate  fir , the above
expression then becomes:

        fi = - for (1 - t³)/(b t²) + e t (- for + fo)

           = - for (1 - (1 - e b) t³)/(b t²)) + e t fo  (16).

Now substitute for  for  using equation (13):

   fi =  p fi + e t fo                                      (17).

The rising value of external load causes the
core to reach the pre-stress values  ± p fi . At
this moment they act on both sides, without any
load being carried by the outer layers, where the
relaxation effect has just been relieved.
However when the full external load applies,
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these elements subsequently develop the
stresses ± fo and the additional strains at the
interfaces are equal, as indicated above. After
re-arrangement:

                               p = (1 - e t fo/fi)              (18).

For pairs of materials having equal ductility,
e = fi/fo and by equation (18)  p = (1 - t)  and
only a small amount of pre-stressing is possible
(if we want to arrive at  fo and  fi   together).
However in practice, many pairs of structural
materials have a different ratio of their ultimate
stresses compared to the ratio of their values of
Young's Modulii e. These values are even more
separated when an allowance for the effect of
shear flexibility of the core is included.
Consequently we now introduce the factor m to
allow for the requisite general unequal
elongation at ultimate stresses so that
e m = fi/fo . Then equation (18) may be
simplified to give:

     p = (1 - t/m)                                          (19)

and from equation (13) the ratio of - for/fi
becomes:

                     - for/fi = p b t²/(1 - (1 - e b) t³))  .

 With equation (19) it yields:

          - for/fi = (1 - t/m) b t²/(1 - (1 - e b) t³)    (20).

Multiplying by  fi/fo = e m  (from above) on the
left-hand and right-hand sides respectively, this
expression then provides:

      - for/fo = (m - t) e b t²/(1 - (1 - e b) t³))      (21).

When  m = 1  the stress ratios in these two
equations both become small and there appears
to be little structural capacity for pre-stressing.
However, with the physical arrangement of
parallel elements, the core shear flexibility acts
in series with its interfacial strain. The effect of
this spring is to raise the effective value of  m ,
possibly to the amount corresponding to the
ratio of the ultimate stresses.

3.6  The Ideal Relaxation
Condition

The ideal design upper limit for - for/fo  is 1.
This causes the bending-moment capacity of

the outer-layers to double, which is the
maximum amount possible for these elements.
Substituting      - for/fo = 1  into equation (21),
and using the suffix  max   throughout:

                1 = (mmax - t) e b t²/(1 - (1 - e b) t³)   

 or  mmax  = t + (1 - (1 - e b) t³)/(e b t²)    (22).

     and from equation (19):

         pmax = (1 - t/(t + (1- (1 - e b) t³))/(e b t²))

              = 1 - e b t³/(1 - (1 - 2 e b) t³)  ,

or:   pmax = (1 - (1 - e b) t³) /(1 - (1 - 2 e b) t³)
                                                                   (23).

     These values cannot be exceeded. As
previously suggested, the greatest pre-stressing
pmax that can be used is less than unity. It
depends on the structural properties of the
elements, provided that the shear stiffness of
the core is suitably adjusted. From equations
(13) and (23):

    - (for/fi)max =  b t²/(1 - (1 - 2 e b) t³)    (24).

Equations (22), (23) and (24) for the 3  "max"
quantities, are expressed numerically in
Table 2  below.

No value of mmax  is less than 2, but only in
extreme situations are values greater than 3.5
needed (see boundary-lines in the tables).  As
was anticipated the amount of  pmax  required is
severely limited. It lays above  0.5  but does not
usefully approach 1.0 . Similarly the amount of
relaxation in the outer layers compared to the
ultimate strength of the core rarely exceeds
unity. This suggests that it is difficult to make
good use of this compression unless the core
breadth is small. For example, when using the
practical values: e b = 0.40,   t = 0.90 , we find
from the above table that:

        mmax = 2.736 ,  pmax = 0.671,

     - [for/(b fi)]max = 0.948   and using Table 1,

     - (b fir)/for = 0.335.
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These results are due to the ultimate strength
limitations, defined by equation (15) as
presented in equation (21), and the choice for
the maximum value of the stresses in the
relaxed core. Here the outer-layers work out to
be the thinner stronger material, and the core is
more flexible but of a greater cross-sectional
area.

Combining equations (24) with (7):

    (fir/fi)max = (1 - t³)/(1 - (1 - 2 e b) t³)     (25).

This is the resulting stress-ratio in the core after
relaxation. It should be compared to the
corresponding ratio  pmax  that is used for the
pre-stress loading, where the ratios are
(1 - t³)/(1 - (1 - e b) t³)  times greater.  The
values of  (fir/fi)max are shown below in
Table 3.

TABLE 2. RELATIONSHIPS BETWEEN THE CORE THICKNESS-RATIO  t  AND
ITS RELATIVE  STIFFNESS FACTORED BY THE BREADTH-RATIO e b ,
AND THE DERIVED MAXIMUM VALUES OF:  m ,  p   AND  - for/(b fi)  .

  a)  REQUISITE RELATIVE STRAIN AT FAILURE
          mmax = [fi/(e fo)]max                              equation (22)
    e b =  0.20 0.40 0.60 0.80 1.00 1.20
t = 1.00  2.00 2.00 2.00 2.00 2.00 2.00
t = 0.95  2.690 2.295 2.163 2.098 2.058 2.032
t = 0.90  3.473 2.736 2.458 2.218 2.135 2.079
t = 0.85  4.370 3.035 2.590 2.368 2.234 2.145
t = 0.80  5.413 3.506 2.871 2.553 2.363 2.235
t = 0.75  6.639 4.069 3.213 2.785 2.528 2.356
t = 0.70  7.404 4.752 3.634 3.076 2.741 2.517

   b) PRE-STRESS RATIO   p max                  equation (23)
    e b =  0.20 0.40 0.60 0.80 1.00 1.20
t = 1.00  0.50 0.50 0.50 0.50 0.50 0.50
t = 0.95  0.647 0.586 0.561 0.547 0.538 0.532
t = 0.90  0.741 0.671 0.634 0.612 0.578 0.567
t = 0.85  0.802 0.689 0.672 0.641 0.620 0.604
t = 0.80  0.852 0.772 0.721 0.687 0.661 0.642
t = 0.75  0.887 0.816 0.767 0.731 0.703 0.682
t = 0.70  0.905 0.853 0.807 0.772 0.745 0.722

 c)  RATIO OF RELAXED STRESS IN OUTER-LAYERS
TO ULTIMATE STRESS OF THE CORE,
FACTORED BY BREADTH-RATIO

          [- for/(b fi)]max                                       equation (24)
    e b =  0.20 0.40 0.60 0.80 1.00 1.20
t = 1.00  2.500 1.250 0.833 0.625 0.500 0.417
t = 0.95  1.956 1.089 0.770 0.596 0.486 0.410
t = 0.90  1.440 0.948 0.707 0.564 0.468 0.401
t = 0.85  1.144 0.824 0.643 0.528 0.448 0.388
t = 0.80  0.924 0.713 0.581 0.490 0.423 0.373
t = 0.75  0.753 0.614 0.519 0.449 0.396 0.354
t = 0.70  0.617 0.526 0.459 0.406 0.365 0.331
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TABLE 3. RELATIONSHIP BETWEEN CORE THICKNESS-RATIO  t , ITS
RELATIVE STIFFNESS TO INCLUDE THE BREADTH-RATIO  e b
AND THE GREATEST VALUE OF THE CORE RELAXATION
STRESS-RATIO  (fir/fi)max  .

             RATIO OF GREATEST RELAXED STRESS IN CORE TO
ITS  ULTIMATE STRESS  (fir/fi)max           equation (25)

    e b =  0.20 0.40 0.60 0.80 1.00 1.20
t = 1.00 0.0 0.0 0.0 0.0 0.0 0.0
t = 0.95 0.2937 0.1721 0.1217 0.0942 0.0768 0.0648
t = 0.90 0.4817 0.3173 0.2365 0.1885 0.1567 0.1341
t = 0.85 0.6110 0.4399 0.3437 0.2820 0.2391 0.2075
t = 0.80 0.7044 0.5437 0.4427 0.3733 0.3228 0.2842
t = 0.75 0.7741 0.6314 0.5331 0.4613 0.4066 0.3635
t = 0.70 0.8272 0.7054 0.6148 0.5449 0.4892 0.4439

The numerical values are considerably smaller
than those of  pmax  except in the "extreme
situation" region, where the greatest advantage
is taken of the residual stresses.

The numerical values in Tables 2 and 3 are
regarded as non-symmetrical, because a
reversal  of the materials in the core and the
outer layers does not give the same result unless
e b = 1. This is due to the location of the shear
elasticity in the core, being in series with the
stiffest element, which is loaded in parallel with
the least stiff one.

3.7  The Shear Stresses and Strains

For beams having a rectangular cross-section or
a symmetrical I-beam shape, the greatest shear-
loads normally occur on the center-line, at the
neutral axis. For a position on the cross-section
that lays inside the outer fibers, the local shear
is the sum of the end-loads acting outside of its
location. These end-loads include those due to
the residual stresses. This may be expressed as
an integral over the depth of the cross-section.
Then the shear-stress equals this integral
divided by the local width  B  and length  L  of
the beam, which is the distance between the
supports or from the external load to its support
position.

The integral applies even when the outer layers,
consisting of material having greater stiffness
and strength, after they are bonded top and

bottom. However, at the junction of the two
kinds  of materials there is a change in the slope

of the distribution (or rate of end-load
development with depth co-ordinate). For a
regular beam design without the pre-stress,
these distributions of direct and shear stresses
are illustrated in Fig. 8.

                   _
                         fi = e t fo                           τo
N.                                     A.
                       +               fo

               DIRECT                      SHEAR
   Fig. 8  Regular Beam, Distribution of Direct

and Shear Stresses

For the pre-stressed beam design the
distribution of the relaxation loads leads to the
direct and shear distributions as shown in
Fig. 9.

                   _
    N.                                 A.
     for                            fir
             _

                 DIRECT                     SHEAR
   Fig. 9   Relaxation,  Distribution of  Direct

and Shear Stresses

When the beam is fully loaded, these
distributions are indicated by the modifications
to this diagram that are shown in Fig. 10. It is
seen that the shear-stress at the interface has
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changed sign but is no greater in magnitude
than when the regular beam stresses were
carried.

                      _                                                τo
         - fi
      N.                                     A.
                                                                         τi
                                +             fo

                      DIRECT                     SHEAR
 Fig. 10  Fully Loaded Beam,  Distribution of
              Direct and Shear Stresses

 
In considering the bond strength it is seen that
actually there is no influence in the size of the
fully loaded stresses due to the use of a pre-
stressed design. The only change that results
from pre-stressing, is in the increment of direct
stresses in the core itself. Here they increase
from:   (e t fo)  to  fi = (e t fo + p fi)  see
equation (17), as described in section 3.5 . An
allowance for this must be made by the choice
of suitable core materials.

The numerical values of the shear stress  τ  are
determined below. From Figs. 8 and 10 the
maximum shear stress occurs on the neutral
axis N.A., even for the pre-stressed beam
situation. In general the shear stress is found
from the integral of the longitudinal stress over
the depth after dividing by the width and length
of the beam L .                             To/2                                   To/2

      τo = 1/(L Bo)∫ y fo dy = fo /(L Bo)[y²/2]
                             Ti/2                                     Ti/2

            =  fo To² (1 - t²)/(8 L Bo)                    (26).

     For the regular beam, the greatest value of
shear stress, due solely the distribution of
longitudinal loads in the core, may be derived
in a similar manner and is:

                                    Ti/2

        τi -τo = 1/(L Bi)∫ y (e t fo) dy

                                   0
                                      Ti/2

    = e t fo/(L Bi)[y²/2]= e t fo Ti²/(8 L Bi)                                  
                                   0                                (27).                

     The sum of these is the total maximum shear
stress at the center-line N.A. :

       τi  = fo To² (1 - t² + e t³/b)/(8 L Bo)

          τi = fo To² (1 - t² (1 - e t/b))/(8 L Bo)  (28).
For the pre-stressed beam the corresponding
shear stresses are determined by similar

methods. At the interface the value of  τo  is
the same as in equation (28). However due to
the pre-stressing effect on  fi  in the core, there
is a greater contribution. This is included by a
modification to the relevant part of the
maximum shear stress, which is found by
dividing  fi  by (1 - p) . This follows from the
discussion that was given below Fig. 10,  and:

             τi  = τmax

     =  fo To² (1 - t² (1 - e t/(b (1 - pmax))))/(8 Bo L)

Then using equation (19), this simplifies to:

τi  = fo To² (1 - t² (1 - e mmax/b))/(8 Bo L) (29).

Only for very short beams where L is
comparable to To, does the shear stress
approach the  magnitude of the longitudinal
stress.

The shear strain  εis  is obtained from this by
dividing by the shear modulus  Gi . Hence:
   εis =  fo To² (1 - t² (1 - e mmax/b))/(8 Gi Bo L)
                                                                     (30).

When the shear strain is included, the relative

ductility  m  =  (fi/Ei + τi/Gi)/(fo/Eo + τo/Go).

In this expression the dominant term is  Gi  the
value of which may be made small by suitably
tailoring the material of the core. By this means
the greatest advantage can be taken of values of
m  exceeding unity (see Table 2 a)), when the
full pre-stress properties of the complete beam
become available for exploitation.

4  Static Strength and Energy-Absorption
Comparisons Between Regular and Pre-
Stressed Beams

4.1  General Bending-Moment Capacity
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The bending-moment BM, is carried by a beam
of rectangular or I cross-section, as shown in
Fig. 7. This beam has a symmetric arrangement
of core and outer-layer composite materials of
thickness-ratio Ti/To= t. In the following
expressions  n  is used to indicate either
element, thus  En  equals  Eo  for the outer-
layers or  Ei  for the core.  The size of  BM  is
then found by the calculation of the beam's
bending resistance. This can be obtained by
integrating the first moment of linearly varying
stress across the depth of the cross-section. For
the full capacity, using the ultimate stress
levels:
                             +To/2

      BM = 2 I f/T =∫ Bn y fn (2 y/Tn) dy

                             - To/2
                 +To/2

            = 4∫ Bn (fn/Tn)  y² dy                (31).

                  0
The symmetrical   y²  term permits the range of
the integration to be halved. This variable
includes the moment-arm of the elemental area
Bn dy  and the linear stress distribution, which
is zero on the neutral axis. The integration
interval applies to the particular element. On
the outer-layer it actually starts at  Ti/2  and not
at  0 .

4.2  Regular Beam

For this design of beam (without pre-stressing),
the maximum stresses in the outer fibers of  the
outer-layers and the core are  fo  and  fi
respectively.  When equation (31) is applied to
the two regions :
                                To/2                      Ti/2

BMR = 4 [Bo (fo/To)∫ y² dy + Bi (fi/Ti)∫ y² dy]

                                Ti/2                        0

After integration, curly brackets are used here
to indicate the terms over which the limits
apply:
                                      To/2                 Ti/2
BMR = 4 (Bo/To)[fo {y³/3} + fi (b/t) {y³/3}]
                                      Ti/2                     0

BMR = (Bo/To)[fo (To³ - Ti³) + fi (b/t) Ti³)]/6

        = Bo fo To² [(1 - t³ + (fi/fo) b t²]/6       (32).

Although it has been obtained here by
integration, equation (32) in fact is the same as
equation (2b).

4.3  Pre-Stressed Beam and Static Strength
      Comparison

For this design of beam, the same geometry is
taken as before. Under the external loads, the
outer layers carry the same stresses at ultimate
load as in the case of the regular beam.
However, the way that the stresses are
developed is different. They change from the
relaxed values to the ultimate ones. For the
outer layers this change is from   for  to  fo  and
for the core it is from  fir  to  fi , see Figs. 9 and
10. Thus when re-writing the above analysis for
the pre-stressed situation it is necessary to
replace  fo  by  (fo - for)  and  fi  by  (fi - fir).
From equation (32):
BMP =
         Bo To² [(fo - for) (1 - t³) + (fi - fir) b t²)]/6

     =  Bo fo To² [(1 - t³ + (fi/fo) b t²]/6
          - Bo To² [ for (1 - t³) + fir b t²)]/6

But from equation (7): - for = fir b t²/(1 - t³),
which results in the second term in the square
brackets becoming zero.  Hence:

 BMP = Bo To² [(1 - t³ + (fi/fo) b t²]/6 = BMR
                                                                     (33).

Then the comparative static strengths of the
pre-stressed and regular composite beams are
identical.

 4.4  Stiffness and Energy Capacity
        Comparisons

An outer fiber of the pre-stressed beam changes
its stress from  for  (a relaxed stress of opposite
sign) to  fo  when fully loaded. This compares
with a change of only  fo  in the case of a
regular beam. The two kinds of beams are
assumed to have linear elastic properties.
Suppose that they are made from the same
materials and have the same physical
dimensions. Then the ratio of their maximum
strains or deflections is equal to that of these
direct stresses  (- for + fo)/fo . Consequently the
flexibility of the pre-stressed beam is greater by
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the same proportion, when compared to a
similar regular beam. However the maximum
possible amount of pre-stress is when this ratio
equals 2, see Section 3.6 . Hence in practice for
the same ultimate load capacity, the pre-
stressed beam can deflect by up to twice as
much as a regular beam. Advantage of this
feature may be taken, for the design of
particular bending structures needing to absorb
specific amounts of kinetic-energy.

5   Design Considerations for Energy-
     Absorbing Beams

5.1  General Capacity of The Beam

Before examining the beneficial effect of the
pre-stress, it is useful to determine how a
general beam is to function, which is designed
to resist the impact of a mass by energy-
absorption. Suppose that the beam is a
cantilever of uniform rectangular cross-section,
of breadth B , thickness T  and length  L .  At its
free end, the ratio of an applied local force to its
displacement, is known to be its stiffness  K .

Then: K = 3 E I/(L)³   see [1].                   (34) .

The second moment of area (also called the
moment of inertia) used in bending is:

          I = B T³/12 ,  see equation (2) .

When this is substituted into equation (34):

       K =  B E (T/L)³/4                                (35).

The kinetic-energy (to be absorbed) is Q ,
which in terms of strain-energy is:

    Q =  force x deflection/2

        =  force²/(2 x force/deflection) = F²/(2 K)  .

(Using linear elastic properties, this implies that
the pre-stressed beam of equal cross-section but
half the stiffness of the regular beam, develops
an applied force and an associated stress level
that are 0.7071 times that of the regular beam,
and a displacement of 1.4142 times as much.)
Then making  F  the subject of the formula:

       F = √ 2 Q K  = √Q B E (T/L)³/2          (36).
However at the attachment location of the beam
the greatest bending moment:  M = (F  L) , and
from equations (1) and (2), taking this to result
in  the ultimate stress:

        f =  M (T/2)/ I = 6 F L T/(B T³)

   and using equation (36):

          f = 6 √(Q B E (T/L)³/2)  L T/(B T³)

            = 3 √ 2 E Q /(B T L)                     (37),

where the square root of the terms on the right-
hand side, also has the dimensions of stress.

Then for a design problem where stress  f ,
energy  Q  and beam length L are all held
constant, the combination of "design variables"
(B T/E)  is fixed.  This means that for a specific
material, the cross-sectional area (B T) is
constant and it is impossible to save mass by
varying the proportions of its breadth to
thickness. Consequently, the choice of these
two quantities here, is based only on the need to
load the rest of the aircraft to a limiting value
which is consistent with its overall structural
features.

5.2  Comparison of a Regular Beam  with  a
       Pre-Stressed Design

It has been shown in Section 4 that under a
steady load a pre-stressed beam develops the
same stresses at ultimate load as its regular
beam equivalent. If this is the sole design
criterion there is no advantage - it would be
achieved by using the same cross-section.
However under dynamic loading from the
impact of a mass, it has also been found that the
pre-stressed beam can absorb up to twice as
much energy as the regular beam of equal size
and shape.

In terms of the analysis given in Section 5.1 for
general beams, the effective stiffness modulus
E  of the pre-stressed beam is reduced by a
factor of up to 2. Then from equation (37), in
the extreme case of design to full pre-stress,
only half the cross-section is necessary to
contain the same amount of kinetic-energy from
the dynamic load situation.
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Suppose that the breadth and width of the pre-
stressed beam's cross-section were reduced in
equal proportions. Then the deflection would be
greater and the maximum dynamic load and
stress levels smaller, than those experienced by
a regular beam that performs the same role. But
in practice for cases of energy-absorption by
means of this structure, there are design limits
on the permitted amounts of load and
displacement. For example, the maximum
vertical displacement of a leaf-spring landing-
gear must provide the necessary ground
clearance (which is associated with a specific
maximum load). Consequently it is of interest
to examine the way that the proportions of
breadth and thickness can be modified so that
these two results remain unchanged.

The stiffness ratio is directly proportional to the
moment of inertia of the structure  I = B T³/12 .
Now consider the necessary changes to  B  and
T  for the same stiffness to be maintained. The
stiffness is proportional to the product E I .
Then for the old and new designs:

    Eold Iold = Enew Inew ,

  but  Enew = Eold/2    consequently:

   Inew/Iold = 2 = (Bnew/Bold) (Tnew/Told)³  (38).

But the ratio of areas:

      (Bnew/Bold) (Tnew/Told)  = 1/2             (39),

because the capacity to absorb energy is
otherwise proportional to it, and unless there is
a change to the dimensions it can now absorb
twice as much. Then by substitution of equation
(39) into (38):

   Tnew/Told = 2    and   Bnew/Bold = 1/4   (40) .

Example of a leaf-spring main landing-gear
typical of that used on light aircraft [2], the
cross-section at the root was:

Told = 1.25 inches  and   Bold = 4.80 inches.

Then: Tnew = 1.25 x 2 = 2.50 inches and       
          Bnew = 4.80/4 = 1.20 inches, from
                                                      equation (40).

The shape of the original leaf-spring was
tapered, and changes along the length of the
new design should also be in similar
proportions. The mass of this spring previously
was 22 lb. This suggests that with full pre-stress
a reduction to 11lb. is likely. It now becomes
practical to modify the cross-section as shown
in Fig. 11.

OLD DESIGN                            NEW DESIGN
(regular beam)                      (pre-stressed beam)

  1.25
                                                     2.5

                              4.8
1.2

Fig. 11  Comparison  of cross-sections of
             leaf-springs,  dimensions are in inches.

In practice there are some secondary
engineering considerations, such as the need for
the addition of aerodynamic fairings, which will
reduce the considerable weight saving. Never-
the-less by pre-stressing the energy-absorbing
beam, a significant mass reduction is possible
compared to the regular beam design. The
changes in the cross-section and the resulting
mass reduction are proportional to the amount
of pre-stress employed.

6  Review and Discussion

This paper presented four kinds of activities:

Section 2 - method of beam fabrication,
Section 3 - algebraic analyses including details
        of how to obtain the pre-stress in practice,
Section 4 - strength/energy comparison,
Section 5 - design for weight-saving.

They are summarized in more detail in Table 5.

Although the ranges of the variables  m ,  t  and
e b  are limited, as was indicated in Tables 2
and 3, the practical range of data shows that it is
possible to achieve a significant advantage,
when pre-stressing is employed and the beam is
allowed to relax before loading. In terms of
design to resist the energy of an impact, this
results in a saving in structure mass.
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TABLE 5.  STAGES IN THE ANALYSIS AND DESIGN

PARA-
GRAPH

NECESSARY
 FEATURE ANALYTIC  RESULT EQUATION(S)

3.1 Pre-stress ratio  p  is applied
to the core.

Applied bending-moment  Mi  and the
curvature (1/R1 - 1/R2) .

(3) and (4).

3.2 Equal relaxation bending-
moments are developed in
the core and outer layers.

Ratio of relaxation stresses, variation with
the beam geometry.

(7).

3.3 Strains at the interfaces are
made compatible.

Relation between the relaxation stresses in
the core and outer layers and the geometric
and stiffness properties of the beam.

(12) and (13).

3.4 Effect of equal interfacial
strains.

Relationship between and values of the radii
of curvature, during fabrication.

(14).

3.5 External load is applied.
Relaxation stresses in outer
fibers set to ultimate strength.

The magnitude of pre-stress  p  that is
possible and the introduction of  m  to
provide for it.

(18) and (19).

3.6 Idealization of the ratio of
enlongations at failure,
including the effects of shear
in the core.

Relationship of the relaxation stresses in
outer-layers to their ultimate stresses.
Maximum shear flexibility  mmax  and the
resulting pre-stress ratio  pmax.

(22), (23), (24)
and  (25).

3.6 Determination of shear
stresses and strains.

Confirmation of the range of the variable m ,
where optimum values are likely.

(29) and (30).

4. Comparison between the
static strengths of the pre-
stressed and regular beams.

The maximum bending moments BMR and
BMP, which are found to be equal.

(32) and (33).

5. Study of design for the
absorption impact energy.

Comparison of cross-sections of old and
new designs and their associated masses.

(37) and (40)

From the practical example in Section 5, the
structure mass reduction works out to be 50%,
which is large enough to be very useful. Its
value is dominated by the use of the effect of
shear flexibility of the core, where a value of
mmax  of about 2.75 is needed. It is possible to
obtain this value by careful design of the core
material, particularly when using composite
materials. No allowance for shear diffusion
effects in the flanges has been included. This
effect will reduce the ability to pre-stress the
outer layers to their ideal values. It becomes
significant when the value of  b is less than
about 0.5 and  t  approaches 1, and it should be
determined by finite-element numerical
techniques in combination with experimental
methods.

7  Conclusions

The concept of pre-stressing of symmetric
composite beams has been examined. It was

found that by careful design of the components
including the shear flexibility of the core, it is
possible to modify the beam's structural
properties. The comparative static-strength of
two beams of the same cross-section, one
having pre-stress, is the same, but the stiffness
of the latter is less. This is an advantage when
the structure is required to absorb the energy of
impact, where a useful saving in weight of up to
50% is possible.
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