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r, a strapdown inertial navigation 
S) error model is introduced, and 
bility of the SINS error model is 
en, on the basis of this SINS error 
he analysis of computer simulation 
st and precision initial alignment 
the multiposition is proposed for 
ionary base. Consequently, the time 
nment is reduced, and the precision 
 alignment is improved greatly. The 
imulation results illustrate the 

ion 
trapdown inertial navigation system 
eing used more widely for the 
nd navigation of aeroplanes, ships, 
d vehicles, etc. The purpose of 
ent of SINS is to get a coordinate 

on matrix from body frame to 
 frame, and drive the misalignment 
fortunately, the goal can never be 
a practical system. From the control 
point of view, the basic difficulty 
ith the self-alignment technique is 
tem is not completely observable. 

ents of SINS initial alignment are 
cy and speed. However, since the 
 of SINS is weak, and the fast 
ment contradicts the accuracy of 
t can be observed that the SINS 
ix may be manipulated by changing 
tion or equivalently by rotating 
, i.e., the multiposition alignment 

2]. Thus, by choosing different 
tion, the observability of SINS 

system can be improving. It is demonstrated that 
the alignment errors in SINS can be drastically 
reduced by employing the multiposition 
technique, but the speed of the multiposition 
alignment technique is rather slow. One 
question arises, that is, how can the best 
accuracy using the multiposition alignment be 
obtained in the shortest time ? 

We introduce the SINS error model for the 
stationary alignment, and describing a  
simplified observability rank test of piece-wise 
constant time varying system and show that 
optimal two-position alignment not only 
satisfies complete observability condition but 
also minimizes alignment errors. Then, on the 
basis of the analysis of computer simulation 
results of the multiposition alignment technique 
[2], a fast estimation method of the azimuth 
error is integrated with the multiposition 
alignment method of SINS on stationary base. 
This method greatly accelerates the convergence 
rate of the Kalman filter that is used for 
estimation of error angles of the multiposition 
alignment. Consequently, the time of initial 
alignment is reduced, and the precision of the 
initial alignment is improved greatly. 
Simulation results are given to illustrate the 
efficiency of the method. 

2  SINS Error Model  

Here, a local level  (North-East-Down) 
frame is used as the navigation frame and 
position and vertical velocity errors are ignored. 
The SINS stationary error model augmented 
with sensor errors can be written [2][3]
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The state vectors consist of  
T

DENEN VVX ],,,,[1 ΦΦΦ= δδ , 
T

DENENX ],,,,[2 εεε∇∇= , and the process 
noise vector , T

VV DENEN
WWWWWW ],,,,[ ΦΦΦ= δδ

where  and  are velocity and attitude errors, 
respectively,  is the accelerometer error,  is 
the gyro error, and the subscripts ,  and  
denote the body axes.  and  are zero 
matrice of indicated dimension, and 
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The measured signals during the stationary 
alignment are the horizontal velocity errors. 
Thus consider the observation model as follows 

)()()( ttHXtY ν+=  (2) 

And, 
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In order to estimate the state vectors of error 
model by Kalman filter, the observability 
analysis of error model must be performed. 

 

107][ 92 <=iii HAHAHAHRank L  
Due to the system is not completely 

observable, therefore, only 7 states are 
observable (the estimation value of state is 
convergent by Kalman filter); the other 3 states 
are not observable. 

3 Observability Analysis   

3.1 Observability Rank Test  
Observability analysis of a dynamic system 
indicates the efficiency of a Kalman filter 
designed to estimate the states of the system. 
While the observability analysis of a time 
invariant system is rather simple, analysis of a 
time varying system is difficult. If the time 
varying system is replaced by piece-wise time 
invariant system, the observability analysis can 
be performed simply by the stripped 
observability matrix (SOM) suggested by 
Meskin and Itzhack [5]. Their work is 
summarized by the following theorem. 

Theorem 1 if  
then [1]: 

riANullVNull ii ≤≤⊂ 1),()( ,

)()( VsNullVNull ⊂  (3a) 

)()( VsRankVRank ⊂  (3b) 

For the notations in the theorem, consider the 
continuous piece-wise time invariant system 

),()( txAtx i=&   ri ,,2,1 K=

           )()( tHxtz =
(4) 

Where,  is the number of the segments. The 
total observability matrix (TOM) for 
investigating the observability properties of (4) 
is constructed as follows. 
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Where, 
TTn

i
T

i
T

i HAHAHV ])(,,)(,[ 1−= K  (6) 

i∆  is the time interval of segment , And the 
SOM is defined as follows. 

i

[ ]TT
r

TTT VVVVVs L321=  (7) 

If the sufficient condition of Theorem 1 is 
satisfied, we can examine the observability 
using the null space of the SOM rather than that 
of the TOM. However the condition of Theorem 
1 is quite restrictive. We now show that the 
SINS error model defined in (1) and (2) satisfies 
the sufficient condition. 
Proposition 1 The SINS error model defined in 
(1) and (2) satisfies the sufficient condition of 
theorem 1. 
Rewriting the SINS error model given in (1) and 
(2) 
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]000[ 3222322 ×××= IH  (9) 

Where,  and 0 are identity and zero matrices 
of indicated dimensions. Since the observability 
matrix  for (8) and (9) is simplified by 
elementary row operation as follows. 
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Suppose that ; that is )( '
0 iVNullx ∈

00
' =xVi

 (11) 

When partitioning  into four equal parts, as 
follows 

0x

TTTTTT xxxxx ][ 040302010 =  (12) 

And when using (10) and (12), (11 ) yields 

001 =x  (13a) 

0~
0302 =+ xCxF n

bi
 (13b) 

00402 =+ xCFxWF n
biii

 (13c) 

00402
2 =+ xCWFxWF n

biiii
 (13d) 

                         M
Using (8) and (12), yields 
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It is evident, from (13), yields 
0~~

030201 =++ xCxFxW n
bii  

0402 xCxW n
bi + =0 

Namely, 
00 =xAi  

In other words if  then also 
 and that is true for any segment . 

)( '
0 iVNullx ∈

)(0 iANullx ∈ i
Consequently  

)()()( '
iii ANullVNullVNull ⊂=     .  1 ri ≤≤

The above proposition tells that the complete 
observability of the 2-position alignment can be 
tested by the SOM instead of the TOM. 

3.2 Degree of Observability  
Rank test of observability matrix can determine 
whether the system is completely observable or 
not, but it cannot determine the degree of 
observability. Complete observableness may not 
supply enough information when numerically 
implementing a Kalman filter. That is why we 
have to consider the degree of observability. 
The error covariance matrix of the Kalman filter 
can be a good performance index for the degree 
of observability of a system [2]. For the piece-
wise constant time varying system the error 
covariance matrix i  is obtained by calculating 
the discrete Riccati equation, 

P
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Where, the subscript  means the number of 
segment and  is the state 
transition matrix from time to  on the -
segment. 

i
iiAkj

i ekj ∆−=Φ )(),(
k j i

The optimal position of the multiposition 
alignment is determined so that the error 
covariance matrix is minimal. Since the error 
covariance matrix in the Kalman filter does not 
have an analytic solution, we have to rely on a 
numerical solution using (14). 

4 Optimal Multiposition  
The rank of observability matrix obtained from 
SINS model (1) and (2) is 7, i.e., the system is 
not completely observable system. Additional 
measurements are needed in order to perform 
alignment. Since the measurements of attitude 
or sensor error are difficult to obtain, we intend 
to get the completely observable system by 
introducing some changes into the 
transformation matrix between the body frame 
and the navigation frame instead of adding more 
sensors. There are two ways [2] that we can 
bring the transformation matrix into change at 
rest. One is to change the attitude of the vehicle, 
and the other is to rotate the IMU. 

Two-position alignment is to perform the 
alignment from an initial position of SINS using 
Kalman filter by changing its position once. 
Using the 2-position alignment, it is possible to 
estimate all the state variables because the 
system becomes completely observable. The 
following theorem illustrate the observability. 

Theorem 2   Given the pair ( ) of (1) and 
(2), where  is non-zero, let  be the 
TOM obtained by 2-position. Here  and  
denote Euler angles for the first and second 
position, respectively. Then the rank of the 
TOM for one axis rotation becomes [2], 

HAi ,

NΩ ),( 21 ααV

1α 2α

1)     10)),(( 21 =ψψVRank (15a) 
2)     8)),(( 21 ≤θθVRank (15b) 

3)     10)),(( 21 ≤φφVRank (15c) 
Where,Ф , and denote roll, pitch and 

heading angle, respectively. Theorem 2 shows 
the rank of the  observability matrix of 2-
position alignment which is obtained by rotating 
SINS with respect to one axis from the initial 
position where the body and the navigation 
frames are coincided. In theorem 2, the change 
of heading angle always results in a completely 
observable system. And the change of the pitch 
angle causes rank deficiency in occasion. 
However, when we assume that the vehicle is 
only leveled at rest, the effect of the pitch and 
the roll axis rotation may be reversed according 
to the initial heading angle. Therefore, 2-
position alignment which changes the heading 
angle is better than the other. Moreover it is 
easier to implement. 

The optimal position in the 2-position 
alignment can be calculated by changing 
heading angle [2]. The optimal position is the 
one minimizing error covariance matrix defined 
in Section 3. Since the SINS error model used in 
fixed position alignment is not completely 
observable for an arbitrary position, the error 
variance of unobservable state variables remain 
constant or decrease very slowly. But 2-position 
alignment causes the system to be completely 
observable resulting in a fast decrease of error 
variance. 

In order to obtain an optimal 2-position 
alignment, numerical calculations of the Riccati 
equation given by (14) are performed by 
varying heading angle. An initial covariance 
matrix, spectral density matrix of process noise, 
and measurement noise covariance matrix  
are set to do the numerical calculation. In this 
work, , and  for a medium-grade 
SINS are chosen. And they are 

R
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Fig.1 Tradition Multiposition Alignment  Method 
 

The number of iteration performed for 
calculating  is 600, which is equivalent to 
600s in time-scale [2]. Heading axis rotation is 
introduced at 300s. Since the heading error 
converges slowly to a large value, it is one of 
the most crucial state variables in SINS. 
Therefore 2-position alignment is focused on 
the convergence rate and value of the heading 
error. Fig.1 illustrates how to seek the optimal 
position for heading angle rotation. The figure 
shows the 1-

iP

value of the heading error at 
600s for the various heading angle rotation 
ranging from 0 deg to 360 deg at an interval of 
15 deg. As seen from the figure, the second 
position with the least error and the best 
sensitivity to position change is obtained when 
the heading angle is rotated by 180 deg. After 
600s,the heading error has decreased down to 
3.7 .It is due to unobservable state , but the 
estimation accuracy and speed of  and  
is very high. In order to accelerate the 
multiposition alignment, the convergence rate of 

 has to be increased. 

Eε

NΦ EΦ

DΦ

5 Effective Fast Azimuth Alignment Method  
From the first four formula of the SINS 
stationary error model (1) yields: 

)(2
g

gVV N
EEDN

∇
+Φ+Ω= δδ &  (16) 

)(2
g

gVV E
NNDE

∇
−Φ−Ω−= δδ &  (17) 

EEDN ε+ΦΩ=Φ&  (18) 

EDNNDE ε+ΦΩ+ΦΩ−=Φ&  (19) 

Base on formula (16) and (17), estimates of  
and  can be written, 

NΦ
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)2(1ˆ
NDE

E
NN VV
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δδ Ω+−=

∇
−Φ=Φ &  (20) 
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EDN
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EE VV
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δδ Ω−=

∇
+Φ=Φ &  (21) 

(18) adds to (19), yields 
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Notices  NN Φ=Φ &&̂
EE Φ=Φ &&̂

L
N

D tan−=
Ω
Ω substituting (20) and (21) into 

(22), the best estimation of azimuth becomes to 

)]ˆˆ[(1

tanˆ

NDE
N

E

N

E
DD L

g

ΦΩ+Φ
Ω

=

∇
+

Ω
+Φ=Φ

&

ε
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Where,  and  are the estimates of the 
leveling error about north axis and the leveling 
error rate about east axis. Equation (23) shows 
the azimuth error can be computed directly from 
the estimates of  and . Therefore, the 

convergence rate of  can be greatly 
increased, which shows that the azimuth error 
can be computed from the estimates of the 
leveling error about north axis and the leveling 

NΦ̂ EΦ&̂

NΦ EΦ

DΦ̂
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error rate about east axis. Note that the 
estimation of azimuth error does not explicitly 
depend upon gyro output signals. This 
phenomenon can be used in an alternate filter 
design for leveling and azimuth multiposition 
alignment simultaneously. 

It is evident, from (20)-(21) and (23),  that the 
errors in the estimation are 

g
E

N
∇

−=Φδ  
(24) 

g
N

E
∇

=Φδ  
(25) 

.tan L
g

E

N

E
D

∇
+

Ω
=Φ
εδ

 
(26) 

This result is identical with the accuracy that 
is often shown in the self-alignment schemes [4]. 
It should be pointed out that only when  is 
nearly stable, can  be changed to the input of 
the digital low-pass filter, and  is estimated 
by (23). 

EΦ̂

EΦ̂

DΦ̂

6 Computer Simulation Results 
In term of the initial conditions of the above 
Kalman filter and multiposition alignment 
method ,  is alternated to the low-pass filter, 
and the estimation of  is performed by (23). 
The computer simulation results are showed in 
Fig.2. It is obviously observed that the 
convergence rate and precision of  is greatly 
accelerated,  nearly converges 
simultaneously with  and , and the error 
of azimuth is reduced to about 1.9

EΦ̂

DΦ̂

DΦ̂

DΦ̂

NΦ̂ EΦ̂
. 

Consequently, the time of multiposition 
alignment of SINS is reduced, and the precision 
of the initial alignment is improved greatly. 

Since in this paper, a new multiposition 
alignment method has been proposed to 
improve the performance of the stationary 
alignment of SINS. The above results show that 
the fundamental limitation of the tradition 
multiposition alignment can be successfully 
accomplished by a new azimuth estimation 
method using to it. In other words, SINS at rest 
can be fast and precision converted to the 

navigation mode since the initial alignment rate 
and precision are considerably improved by the 
new multiposition alignment. 
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    Fig.2  A New Multiposition Alignment Method 
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