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Abstract
Successful selection of propulsion system
technologies for development and incorporation into
new engine designs requires careful balance among
many competing design objectives (i.e. performance,
cost, risk, etc.).  One seldom has sufficient
development resources available to fully explore all
promising concepts and must therefore choose a few
technologies that show the greatest promise to meet
program objectives.  This paper describes a method
of selecting optimal combinations of engine
technologies.  This method employs a technology
impact forecasting environment in conjunction with
genetic algorithms to find Pareto-optimal
technology solution sets.  These results are
illustrated using Technology State Transition
Diagrams to show how technologies move into and
out of the Pareto-optimal sets.  An edge search
procedure is introduced as a means to efficiently
characterize the objective space, the results of which
are presented in the form of ternary plots.  These
plots show how technologies benefit multiple (often-
conflicting) objectives and help find robust or
compromise technology combinations.  Finally,
these methods are applied to select engine
technology combinations for a commercial engine
system of current interest.

1.  Introduction
As tomorrow’s aircraft engines become more

complex and pressure for reduced design cycle times
grows, it becomes increasingly difficult to evaluate
and select engine technologies.  These issues in the
aircraft engine industry are driving the need to
develop advanced analysis methods to assist
decision-makers in product development and
resource allocation.  The objective is to select sets of
engine technologies that will deliver the most “bang
for the buck” so as to meet performance goals within

program budget and schedule constraints.  This need
is particularly important in light of the extremely
high capital investment that usually accompanies a
technology development decision.

Engine technology selection can be thought of
as a constrained combinatorial optimization
problem.  The objective is to select an optimal set of
technologies from a list of discrete technology
choices.  Optimal in this context means those
technologies that represent the best fit to a given set
of conflicting requirements and program objectives.
Program objectives typically encompass competitive
advantage, time and budget constraints, and
minimization of development risk. Some
technologies may be incompatible with program
objectives, incompatible with other technologies, or
be dependent upon others in complex ways.
Additionally, the number of permissible technology
combinations grows geometrically with the number
of technology options available such that it is
usually unfeasible to investigate every possibility.  It
is therefore imperative to efficiently search for
technology combinations that best fit the given
requirements, account for incompatibilities, enforce
enabling relationships, and do so with a high level of
accuracy and confidence in the analysis.

Roth et al. [1] and Kirby & Mavris [2] have
shown that genetic algorithms used within the
Technology Identification, Evaluation, and Selection
(TIES) method are an extremely effective means of
solving this constrained combinatorial optimization
problem described above.  The method works by
using a response surface representation for the
impact of any given technology in terms of system-
level figures of merit (FoMs).  This technology
impact model is then interrogated using a genetic
algorithm (GA).  The GA works by creating a pool
of technology combinations and evaluating them in
the technology impact model to yield estimates of
how each technology combination performs in the
system.  These combinations are then compared to
one another and the best combinations are kept in
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the pool while the worst are discarded.  The
surviving combinations are then used as “parents” to
create a new generation of combinations that replace
the discarded combinations in the pool.  This process
is repeated over many generations until the
population has converged to an optimal set of
technologies.  The surviving technology
combinations are taken to be the best solutions for
the given objective function.

This approach to technology selection is useful
for several reasons.  First, it allows one to create a
generic technology model that can easily be
extended to include new technology options as they
emerge.  Moreover, this model can be created at
minimal expense and incorporates a combination of
expert opinion and analytical data.  Third, the
genetic algorithm is an analytically repeatable means
of obtaining an optimal technology solution set for a
given technology model.  Finally, it is very easy to
incorporate many types of data into the genetic
algorithm objective function, including subjective
data, analytical data, non-numerical data,
probabilistic data, etc.

This technique has already been demonstrated in
prior work, using a single objective function
weighting.  In reality, explicit objective function
weightings are seldom given, and one is usually
interested in finding those technologies that are the
most robust compromise to conflicting objectives.

The objective of this study is to show how the
TIES method can be used to find optimal technology
solutions over the spectrum of without the need to
explicitly define objective weights. The GA-enabled
TIES technique is used to investigate parametric
variations in objective function weightings.  The
result is a Pareto front, which represents the
technology frontier (or range of optimal solutions)
achievable with a given list of technology
candidates.  The technology Pareto front goes
beyond a simple technology ranking by showing
how the set of optimal technologies changes with
shifting objectives, a key to understanding
compromise and robust designs.  Finally, this
technique is applied on a technology selection
problem for commercial turbofan engines based on
that previously described by Roth et al.1  The ideas
developed and demonstrated herein are motivated by
aircraft engine technologies and systems.  However,
they are broadly applicable to any complex system
where the problem is to meet objectives by selecting
a subset of optimal technologies.

2.  Pareto Fronts and Technology Frontiers
A sample technology Pareto front for a two-

objective optimization problem is illustrated in Fig.
1., where the axes represent mission fuel burn and
technology risk.  We may postulate that the
minimum risk and fuel burn scenarios occur when
there is no consideration of the other objective (i.e.
sub-optimization).  As the relative weighting of a
combined objective function is parametrically varied
between each extreme, the technology mix will
gradually evolve from a minimum risk set to a
performance-optimal set.  The locus of fuel burn-
cost points formed by these optimized solutions is
the Pareto front.  It represents the bound of approach
to the ideal solution and gives a clear visual
indication as to how closely one may approach it.
The payoff comes as one uses the Pareto front to
tailor the performance-cost technology mix, and find
maximum desirability.

An interesting feature of technology frontiers is
that they are discontinuous and are formed by an
essentially infinitesimal set of technology
combinations taken from a large but finite solution
space.  To understand this, consider a typical
technology optimization problem consisting of 40
technology candidates.  If one presumes that each
technology can either be selected or rejected* and
ignoring any compatibility constraints, then there are
240 or ~1.1 trillion possible technology
combinations.  Since there are a finite number of
technology combinations, it follows that the Pareto
front must consist of several hundred technology
combinations—the Pareto set.  It is these technology
combinations that represent the locus of optimal
technology solutions (the proverbial needle).  The
remaining trillion+ possible combinations are non-
optimal solutions (the haystack).



* This assumption of binary discrete states is usually adequate for most
technology problems.  For those cases where there may be more than
one technology option (e.g. – material selection) it may be useful to
model the technology as having more than two possible states.
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Statistically speaking, one can think of the
points in the Pareto set as being the outliers in a
group of 1.1 trillion points.  Fig. 2 illustrates this
idea by showing a grouping of 10,000 randomly
selected technology combinations plotted on the
technology risk versus fuel burn axes (grouped at the
upper right).  The string of points at the lower-left of
the figure defines the Pareto set, and is found by
using a combined GA-TIES model.  It is clear from
this figure that the best solutions found using 10,000
random trials do not even approach the optimal
solution set.  This is because the 10,000 randomly
selected technology combinations constitute one
millionth of one percent of the total technology
space.  It can be shown statistically that the only way
to have high confidence in finding the outliers in a
population by taking random samples is to make the
sample size so large as to constitute essentially the
entire population.[3]  This quickly becomes
infeasible as the number of technologies increases,
so it is necessary to use an “intelligent” search
algorithm to find the outliers defining the Pareto set.

The use of TIES in conjunction with a GA is a
powerful means of selecting technologies because it
allows one to visualize the technology frontier and
intuitively make tradeoffs among the objectives
without the need to specify objective weights.  For
instance, the technology frontier shown in Fig. 2
shows the entire spectrum of trade-offs amongst two
objectives.  One can easily select the point along this
frontier that is the best fit with overall objectives and
interrogate the model to determine what
technologies correspond to that point.  Moreover,
this figure gives a good indication about the absolute
limits for the technologies under consideration.  For
instance, Fig. 2 clearly shows that no combination of
technologies considered in this example can yield
more than a 7% improvement in mission fuel burn.
Although Fig. 2 shows trade-offs for only two
objectives, the basic method can be extended to
more dimensions.

3.  Method
The Pareto-optimal technology selection method

consists of four basic steps: 1) create a TIES
technology model, 2) implement a GA Pareto
search, 3) an edge search, and 4) visualize the
results.  The basic analysis flow is depicted in Fig. 3.
Note that each step builds upon the previous, and
steps 2 and 3 in particular involve recursive
application of previous steps.  However, it should be
noted that each step provides useful results in its

own right, so one can obtain useful information
during each stage of the analysis.

3.1.  Step 1: TIES Technology Model
The first step in the analysis process is to create

a TIES technology model.  The TIES modeling
process has been described extensively in Refs. 1
and 2.  For the purposes of this paper, it is sufficient
to regard the TIES model as a function that takes a
binary technology vector of the form:
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and maps it into a response vector of the form:
{ }n1 r. . .rR =

r
(2)

where n is the number of objectives of interest for a
given problem.  A properly constructed TIES model
is a compact and accurate representation of
technology impact for arbitrary technology
combinations.  The Pareto-GA relies on the ability to
use this model to perform quick function calls, as the
GA requires many technology evaluations.

3.2.  Step 2: GA-Pareto Front Procedure
The second step is to “wrap” a GA routine

around the TIES model constructed in the previous
step.  As described in Ref. 1, the resulting GA-TIES
model can be regarded as a function whose input is
an objective function weighting of the form:

{ }n1 o. . .oO =
r

(3)
where oi is the objective function weighting on
objective ‘i’ with 1=O

r
.  The outputs from this

function are in the form of a binary vector
containing the optimal technology solution set:
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and a pair of objective values that form the x-y
coordinates of a point on the Pareto front.

The purpose of this GA-TIES model is to
efficiently solve the combinatorial selection problem
to yield an optimal technology solution set for any
given objective function weighting.  The objective
function is implemented in the GA evaluation
routine by using the objective weights as
probabilities governing how frequently the various
objectives are selected by the GA during pair-wise
tournaments amongst population members.  The
result is a robust, compact, and efficient means of
incorporating competing evolutionary pressures in
the genetic algorithm.

Once this GA-TIES model is in place, one can
create a technology Pareto front by parametrically
varying objective weights over a series of GA
optimizations.  This iterative Pareto front technique
is used instead of more efficient techniques (such as
the niched-Pareto method) because it yields explicit
information relating optimal technology sets to
specific objective weightings.  The result is a Pareto
front describing the frontier between two objectives,
as shown in Fig. 2, and a series of optimal
technology solution sets, one for each Pareto case.

The evolution of the optimal technology solution
set can be described in terms of a technology state
transition diagram.  This can be thought of as a grid
plot having technology index on the abscissa versus
objective function on the ordinate.  Boxes in the grid
represent the technology state.  A shaded box means
the technology is part of the optimal set, while an
empty box means it is not.  This plot illustrates how
the optimal technology set evolves as objective
weights change.

3.3.  Step 3: Edge Search Procedure
Up to this point, a method has been defined

which allows one to find and examine the outlying
(Pareto) points in an objective space.  This
procedure is valid for any number of technologies
and any number of competing objectives.  If there
are three objectives, the Pareto front shown in Fig. 2
becomes a Pareto surface.  For four or more
objectives, one must think in terms of a Pareto
hypersurface.  The GA-TIES function described

previously finds optimal technology sets that
correspond to points on this hypersurface.  The
Pareto front method described in the previous
section allows one to find a line on the hypersurface.
The next logical step is to use this tool to build up a
comprehensive characterization of the entire Pareto
hyperspace and the underlying technology
combinations that give rise to it.

We are typically interested in those technologies
that occupy the largest area of the Pareto
hypersurface (best satisfy all objectives).  It
therefore follows that one must have a means to
estimate the hypersurface area over which each
technology is a member of the optimal solution set.
One possible means of doing this is to use a grid
search procedure wherein each dimension of the
objective function is discretized and a GA
technology optimization is run for all combinations
of objective weights.  However, the drawback to this
approach is that the number of points to be run
increases as dn, where d is the number of discrete
points per objective and n is the number of
objectives.  For problems with three or fewer
objectives, this is relatively easy.  As the number of
objectives increases, the dimensionality of the
problem makes an exhaustive search impractical.

One way to circumvent this problem is to
employ an edge search procedure.  The idea behind
an edge search procedure is to examine the
periphery of an area and use that information to
interpolate across the area.  Since edges are an
essentially infinitesimal portion of the entire area,
one can evaluate them at minimal cost, yet still get a
very good idea of what lies between the edges.  So
for a technology selection problem involving n
objectives, the number of edges to be examined is:

22
1 CnEdges nn

n
=−=∑ =

(5)

where each edge is essentially a Pareto front
between two objectives.  Thus, one can recursively
apply the Pareto procedure described in step 2 to
obtain a good estimate of how much “Pareto
hypersurface area” each technology covers and do so
at minimal computational cost.

Step 1:
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Step 2:GA-Pareto Procedure
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Optimal
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Ternary Plot
Tech Rankings
etc.

Next Edge
Fig. 3  Pareto-Optimal Technology Selection Method.
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3.4.  Step 4: Results Visualization
The final step in the technology analysis process

is to present the results in a form that is useful for
making technology decisions.  As mentioned
previously, a Pareto front and a technology state
transition diagram are sufficient to completely
characterize the optimal technology set along one
edge.  If only two objectives are being optimized,
then these two plots characterize the entire objective
space.

For problems involving three objectives, the
objective space has three edges (Pareto fronts), and
can be visualized in the form of a ternary plot, as
shown in Fig. 4.  The ternary plot has three vertices,
each representing a pure-optimal solution for one of
the objectives.  For instance, the vertex labeled
objective 1 in Fig. 4 represents an optimal
technology solution having 100% weighting on
objective 1.  Contours of constant objective
weighting plot as straight lines parallel to one of the
sides, as shown in Fig. 4.  The area inside the
triangle represents every possible combination of
weightings between three objectives.  Therefore, at
every point inside the triangle, a given technology
will either be part of the optimal set or it will not.
The best “all around” technologies are those that
cover the most area inside this triangle.

This technique will be demonstrated later in this
paper for a commercial engine technology selection
problem involving three conflicting objectives.
Although the ternary plots become cumbersome for
problems involving more than three objectives, the
basic method still applies.  However, the resultant
hypersurface area of n-objective problems cannot be
visualized as easily and it quickly becomes more
practical to express technology desirability in terms
of numerical hypersurface area.

4.  Implementation
This section details an application of the ideas

described previously to a technology selection
problem for a commercial turbofan engine.  This
study is typical of those conducted during the
preliminary design stages of engine development
and involves 40 engine technologies as possible
candidates for implementation into a next-generation
commercial aircraft engine.  It is not feasible to
incorporate all of these technologies into a single
design, so the objective is to determine the subset of
technologies representing the optimal compromise
between increased performance (reduced fuel burn),
reduced manufacturing cost, and lowest possible
development risk.

The specific example cited in this paper is based
on a study described in detail in Ref. 1.  It is
important to note that GEAE technologists evaluated
the technologies considered in this study and the
study was conducted in close cooperation with
GEAE designers.  This study therefore represents an
actual industrial application of the techniques
described herein, and not merely an academic study.

4.1.  Problem Description
The baseline engine used for this study is a

current technology large commercial turbofan
engine.  This engine was modeled using GEAE
analysis tools and incorporates thermodynamic cycle
and flowpath analyses.  This model also includes
provisions for modeling engine technologies such
that their impact can be estimated.  The primary
outputs of interest from this analysis are engine
performance data (an engine deck), engine weight,
and fan diameter.  The latter impacts engine
installation, so the base aircraft configuration is
adjusted as the engine weight and nacelle drag vary.
The aircraft model characterizes a typical mission,
which is used to assess the impact of engine
technologies on the engine/airframe system.

The baseline aircraft used in this study is a 300
passenger, twin engine, long-range transport.  The
aircraft empty weight (less engine weight) is fixed
for the purposes of this study and standard
commercial mission rules and assumptions are
applied.  The aircraft mission was modeled using a
standard mission analysis code and reflects current
technology for this class of aircraft.  The primary
aircraft performance figure of merit used in this
study is fuel burn for a 6,000 nmi (6K) mission.

Manufacturing cost and technology risk were
also important considerations in this study.  Since
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expediency was a key requirement, a very simple
technology readiness model was devised.  This
involved first estimating technology risk using
NASA’s technology readiness level (TRL) rating
system. [2]  Next, technology risk is calculated by
taking the compliment of technology readiness (i.e.
risk = 10-TRL).  Finally, cumulative technology risk
for an arbitrary group of technologies is assumed to
be the sum of the individual risk scores.

In like fashion, manufacturing cost was rated
based on expert opinion using a “relative
manufacturing cost index.”  In this scheme, the
manufacturing cost of today’s state-of-the-art
turbofan engines is taken as the baseline and
assigned a score of zero.  Each technology is then
rated relative to the baseline, with numbers less than
0 indicating decreased cost of manufacture, and
vice-versa.  The relative cost of an arbitrary group of
technologies is then taken to be the sum of the
individual cost scores.  This provided a suitable
mechanism to capture technology impact on
manufacturing cost while avoiding the need to create
complicated engine cost models.  It is important to
note that the ability to simultaneously optimize on
analytical data as well as qualitative scores is one of
the chief strengths of the GA approach to technology
selection.

4.2.  Analysis Method
The analysis method used to evaluate these 40

engine technologies is that described in Ref. 1, with
some minor additions.  The first step was to create a
TIES model for the technology set.  This was
accomplished using GEAE analysis tools in
conjunction with GEAE technologists.  For this
example, the model was validated and found to be
reasonably accurate in predicting technology impact
on system (i.e. aircraft) performance.

This model was implemented in the MATLAB®
environment such that it could be used as part of a
larger “technology toolbox”.  In addition, a
tournament-style genetic algorithm was
implemented in MATLAB® to find optimal
technology solution sets using the TIES model as its
evaluation function.  A Pareto front generation
routine was developed to calculate technology
skylines and find Pareto fronts.  This Pareto routine
works by recursively calling the GA-TIES routine
for a variety of objective weights.  As a practical
matter, it usually requires 30-50 objective weighting
cases along a Pareto front to get a good definition of
the technology skyline.  Therefore, one should

regard the ‘d’ parameter mentioned previously in the
method section as being on the order of 40 for most
technology studies of practical interest.

5.  Results
Results for the 40-technology commercial

turbofan technology optimization problem are
shown in Fig. 2.  Recall that this figure depicts a
technology frontier for cumulative technology risk
versus 6,000 nmi mission fuel burn for the 40
technologies.  Mission fuel burn is given as a
percentage, relative to the baseline (no technology)
case.  Fig. 2 clearly shows that the best 6K fuel burn
achievable using these 40 technologies is roughly a
7% reduction relative to the baseline.  This reduction
comes at the expense of considerable technology
risk.  This plot also shows that if risk is a concern,
one could elect to use a technology set that yields a
6% reduction in fuel burn while having 60% less
technology risk than the optimal fuel burn
technology set.  If risk is a major concern, a 4%
reduction in fuel burn with minimal technology risk
might be an acceptable solution.  Fig. 2 shows that
such a solution is possible.

Fig. 2 was created by parametrically varying the
relative weighting between reduction in fuel burn
and technology risk.  Therefore, the points in the
upper left corner of this figure represent solutions
for the pure fuel burn case while those in the lower
right corner represent the minimum technology risk
solutions.  Each point on this figure therefore
represents one possible combination of technologies.
It is useful to know how this optimal technology
solution set changes from one extreme to the other.

The change in optimal technology solution set as
a function of relative objective weightings can be
described in terms of a technology state transition
diagram, as shown in Fig. 5.  The abscissa of this
figure is a listing of technologies, numbered 1
through 40.  The ordinate shows the objective
function weighting.  Technology state is depicted as
a grid of squares in the figure, with a black square
indicating that the technology is part of the optimal
solution set.  It is evident from this figure that no
technologies are optimal for the 100% risk-weighted
case (which corresponds to the lower right corner of
Fig.2).  As the relative weighting is parametrically
shifted towards a pure fuel burn-weighted solution,
most of the technologies are eventually subsumed
into the optimal solution set (corresponding to the
upper left in Fig. 2).
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Fig. 5 shows that almost all technologies
considered in this study provide a beneficial impact
on fuel burn.  Note that the state transition point is
roughly centered around 50% weighting, but the
exact transition point for any given technology may
be quite far from the mean.  This point is punctuated
by the fact that some technologies never reach a
transition point, an indication that they are not
beneficial to either reduced risk or fuel burn
(technologies 5, 18, 24, 26, and 30).

If the same Pareto analysis is run multiple times,
the exact transition point of each technology may
fluctuate slightly due to the stochastic nature of the
GA, but these fluctuations are on the order of a 1-2%
shift in objective weightings.  This suggests that the
“technology skyline” shown in Fig. 5 is a function of
the risk to benefit ratio provided by each technology.
Low risk/benefit technologies are among the first to
enter the optimal set, while high risk/benefit
technologies are slow to be included in the optimal
set.  Consequently, the height of each dark band in
the technology skyline can be used as an ordinal
measure of technology desirability, and is even
useful as a quantitative measure of desirability.

A similar exercise can be used to examine the
Pareto optimal set describing the frontier of 6K fuel
burn versus relative manufacturing cost, shown in

Fig. 6.  This figure looks qualitatively very similar to
Fig. 2 in that the best fuel burn reduction is still on
the order of 7% better than the baseline.  However,
note that even the manufacturing-optimal solutions
exhibit a 1% reduction in fuel burn in addition to
being less expensive than the baseline.  This is
because several of the technologies considered in
this study have a beneficial impact on both fuel burn
and manufacturing cost, and are therefore always
part of the Pareto optimal set regardless of objective
weighting.  Fig. 6 is an explicit illustration of how
new technologies can drive the frontier of propulsion
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capabilities into regions previously unreachable
using older technology.

The technology state transition diagram for fuel
burn versus manufacturing cost is shown in Fig. 7.
This figure shows that technologies 5, 22, 24, 26, 27,
35, and 38 are desirable for reducing both fuel burn
and engine manufacturing cost.  Technologies 5 and
35 are desirable for reducing manufacturing cost, but
do so at the expense of increased fuel consumption,
and so exhibit state transition opposite to that
exhibited by most other technologies.  Technologies
18 and 30 are not beneficial to either fuel
consumption or manufacturing cost, and are
therefore never part of the Pareto optimal set.

A third Pareto front of interest is risk versus
manufacturing cost.  This can be constructed in like
fashion to the previous two, and is shown in Fig. 8.
This figure shows that it is possible to reduce
relative manufacturing cost considerably below the
baseline, but only by incurring considerable
technology risk.  Conversely, one can reduce

technology risk to zero, but only for the trivial
solution.  The state transition diagram corresponding
to this is shown in Fig. 9.  Once again, there are no
technologies present in the optimal risk solution set,
as it is the trivial solution.  The optimal
manufacturing cost solution set contains
technologies 5, 22, 24, 26, 27, 35, and 38, just as it
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Fig. 8  Pareto Front of Cumulative Technology
Risk Versus Relative Manufacturing Cost.
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did before in Fig. 7.  Not surprisingly, most
technology transitions occur near the 50% weighting
case.  The skyline of Fig. 9 shows that technologies
26 and 38 are the most desirable from a combined
cost and risk perspective.

It is possible to categorize each technology’s set
membership based on the results of the previous
three Pareto analyses.  Specifically, the 40
technologies considered herein can be divided into
three overlapping optimal sets: fuel optimal, risk-
optimal, and cost-optimal sets, as shown in Fig. 10.
The technologies present in all three sets are the
most desirable, followed by technologies contained
in two sets and lastly, those contained in only one
set.  Those technologies not contained in any set are
not desirable under any set of objective weightings.

The state transition diagram shown in Fig. 9
indicates that no technologies are desirable from a
risk point of view.  This solution is trivial and
relatively obvious: any new technology, even if it is
a mature technology, presents some degree of risk
from an implementation point of view.  Therefore, if
risk is the only concern, the best thing to do is
nothing.  However, the trivial solution of no
technologies is not particularly interesting.  One
could alternatively define technologies with a TRL
of 9 to be risk optimal, for after all, a TRL of 9 is the
best possible risk for a technology.†  If this is the
case, then there are three technologies that are part
of the risk-optimal set: 3, 8, and 34.  Examination of
Fig. 5 shows that these technologies are also part of
the fuel burn-optimal set, as reflected in Fig. 10.

It is evident from Fig. 10 that most of the
technologies considered in this study are primarily


† This definition of risk optimality has an implied assumption that the
collective TRL of a technology group is equal to the sum of its part and
there are no interactions between TRLs.  This is not always a valid
assumption, but it is satisfactory for the purposes of this study.

beneficial only to fuel burn, while two technologies
are beneficial only to manufacturing cost.  Only a
handful of technologies belong to overlapping sets.
Technologies 18 and 30 are undesirable for any
combination of fuel burn, risk, and cost weighting.

This “technology set representation” is useful
for classifying each technology according to the type
of benefit it yields.  Non-contributing technologies
are clearly identified, and contributing technologies
are classified according to their usefulness in
improving the three objectives.  However, this set
membership representation does not show any
information as to the degree of membership to each
set.  Rather, it is valid only at the extreme
weightings: pure fuel burn-optimal, pure risk-
optimal, etc.  Yet, the weighting scenarios having
near-equal balance are the ones that are of the most
practical interest because the design objective in
selecting technologies is to find the set yielding a
balance amongst many conflicting objectives.

Since this is a three-objective problem, the
global behavior of the optimal technology solution
set can be depicted using ternary plots as discussed

 Fuel-Optimal
Technology Set
1, 2, 4, 6, 7, 9-17,
19-21, 23, 25, 28,
29, 31-33,
36, 37,
39, 40

Risk-Optimal
Technology Set
none

Cost-Optimal
Technology Set
5, 35

22, 24, 26
27, 38

none

TRL = 9
3, 8, 34

none

Non-Optimal
Technology Set
18, 30

Fig. 10  Set Membership of Fuel, Cost, and Risk-
Optimal Technology Solution Sets.
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previously.  If an edge search procedure is used, one
need only create Pareto fronts along three edges (as
done previously in this section).  The technology
state transition data in Figs. 5, 7, and 9 is all that is
necessary to characterize the technology space.

The result is a set of 40 ternary plots, one for
each technology, as shown in Fig. 11.‡  These
figures each have a shaded region, and this region
represents the portion of the objective space over
which that technology is part of the optimal solution
set.  For example, if the entire triangle were solid
black, it would mean that the technologies were
desirable for any possible combination of weights.
Conversely, a white triangle indicates that the
technology is not optimal for any weighting
scenario.  This figure visually shows which are the
best “all around” technologies and which are not.

This same set of plots can be superimposed on
one another to give a better feel for the relative area
covered by each technology, as shown in Fig. 12.
This figure shows the 40 technologies stacked in
order of increasing desirability, with the best
technologies being on bottom and the least desirable
technologies being on top.  Note that two
technologies (18 and 30) do not cover any space in
the ternary plot, as one might expect based on the
result from Fig. 10.

Figs. 11 and 12 clearly show the order of
desirability for all 40 technologies.  The dominant
technologies are 22, 38, 27, 26, 5, 40, and 8.  These
technologies were selected without need to specify
objective weightings, but are rather the technologies
that exhibit the broadest and most robust utility over
the range of all possible objectives.  One could
therefore think of these as the “robust” optimal
technology set.  This set should be the point of



‡ Note that in addition to three edges, and fourth Pareto front was run to
get data along the perpendicular bisector between fuel and cost.  This
was done to test how much curvature is actually in the boundaries.  The
results of Fig. 11 show that the curvature is small, thus giving some
measure of confidence that the results obtained with an edge search are
accurate.

departure for detailed technology studies prior to a
final down-select on engine technologies.

6.  Conclusions
This paper illustrated a GA-TIES approach to

quickly  analyze combinatorial optimization
problems typically encountered in technology trade
studies.  It was shown that this technique: 1)
simultaneously optimizes quantitative and
qualitative technologies, 2) can handle any number
of technologies, and 3) can evaluate against any
number of objectives (though visualization becomes
more complicated).  This technique allows
visualization of technology optimality over wide
ranges of objective weightings, and this was
demonstrated using ternary plots for the 40-
technology commercial engine problem.  If used
properly, this approach circumvents the need for
explicit objective weightings, shows the limits of a
given technology set, and provides a metric to
measure robustness.
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