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Abstract
During control law synthesis for aircraft
autopilot there is applied the linear or linearized
model of the aircraft. Taylor series method is
used for linearization of the aircraft model. The
aircraft mathematical model mainly determined
for the rigid-body case. In this particular case
the high frequency oscillations of the fuselage
elastic motion are omitted.

There are some types of nonlinear
effects, which can be experienced during
modeling of elements of automatic flight control
systems. These nonlinearities are dead-zone,
saturation, relay characteristics or theirs
combination etc, which dynamics should be
considered during controller synthesis.

In this paper aircraft dynamics will be
considered with its elastic motion of the
fuselage. The elastic motion dynamics is added
to the rigid aircraft model as the additive type
uncertainty. The nonlinear element to be
considered during controller synthesis will be
dead-zone plus saturation, which represents
typical nonlinear transfer characteristics of the
two degree-of-freedom electromechanical
gyroscopes.

Considering fuselage elastic motion and
nonlinearity the control law for the aircraft
autopilot will be synthesized. The pitch angle
control system will be used for control law
synthesis and test of the designed system.

1 Introduction
Most of real physical systems are nonlinear
ones. Dynamic processes are described with
nonlinear models. Elements of control systems

can be considered for nonlinear ones due to its
principle of working, structure etc. Most
commonly met nonlinear effects are hysteresis,
dead-zone, saturation, backlash, relay
characteristics, switch, rate limiter, transport
delay, geometry of coordinate transformation.

If there is a smooth nonlinearity it can be
treated by using a linearized model. The widely
applied time domain method for linearization is
the Taylor series method based on the small
perturbation principle.

The other important method widely
applied in control theory is the describing
function method, which means harmonic
linearization of the unavoidable nonlinearities.

2 Time Domain Linearization of Nonlinear
Systems
In case of small perturbations of the nonlinear
systems it is possible to linearize the control
system. Dynamics of the nonlinear control
system can be represented by the following
equation [9]:

)x ,... ,x,x,x(gg n31 2=            (2.1)
In eq (2.1) g  represents the output of the

system, ix  is the state variable, or input of the
control system. Let us consider the following
steady-state conditions:

)X ,... ,X,X,X(gG n31 2=            (2.2)
Using theory about small perturbations

nonlinear function (2.1) can be rewritten as
follows:
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In eq (2.3) small perturbations can be
defined as:

Ggg −≈∆ , iii Xxx −=∆            (2.4)
The linearized equation for g∆  can be

derived as:
G)xX,...,xX(gg nn −∆+∆+=∆ 21            (2.5)

In other manner we have:
)x,...,x(gg n∆∆∆=∆ 1            (2.6)

In general, the Taylor series of the
nonlinear function can be derived as:
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Neglecting higher order terms in eq (2.7)
we have:
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Eq (2.1) can be represented in the
following scalar-vector manner:

)(gg x=          (2.10)
After linearization of eq (2.10) we have:
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in other manner:
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In eq (2.12) 
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Eq (2.12) with respect to eq (2.13) can be
rewritten as follows [??]:
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xxgradx TTT ∆=∇∆=∆≈∆ (2.14)

In case of multi input multi output
systems its dynamics is defined by the system of
equation given below:
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System of equation (2.15) can be written
in the following vector-vector form [9]:

)x(gg =          (2.16)
Neglecting higher order terms of the

Taylor series of equation (2.16) it can be derived
as:
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Using eq (2.17) the MIMO nonlinear
control system (2.15) can be linearized and we
can get a linear model based on small
perturbations of the nonlinear functions.

3 Frequency Domain Linearization of
Nonlinear Systems – Harmonic Linearization
This method allows analysis of the nonlinear
systems in case of large amplitude of sinusoidal
input signals. Let us consider the nonlinear
control system represented in Fig 1.

Figure 1 Block Diagram of the Nonlinear
Control System

In Figure 1 )s(G  represents the linear
part of the control system, )e(n  is the resulting
static nonlinearity of the closed loop system.
Respecting zero reference signal the error signal

)t(e  can be given using following formula
[6,9]:

t sinE)t(e ω=            (3.1)
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In general, output signal of the
nonlinearity )t(u  is not the pure sinusoid so its
Fourier series expansion can be derived as [6,9]:

( )∑ ++=
∞

=1n
nno t nsinBt ncosAA)t(u ωω    (3.2)

For symmetric nonlinearity coefficients
of the Fourier series are as follows [9]:
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In general case takes place the following
equations

)j,E(B),j,E(A nn ωω == ,            (3.4)
i. e. they depend on input signal amplitude and
the frequency. Applying the describing function
method it is supposed that all high frequency
overtones are damped on the linear part of the
control system, which has low-pass nature, i. e.
we can write that

t cosAt sinB)t(u ωω 111 +=            (3.5)
Let us introduce following equations:

B2
1

2
11 += AC ,            (3.6)

CAsin 1
111
−=ϕ , CBcos 1

111
−=ϕ            (3.7)

Using eqs (3.6) and (3.7) eq (3.5) may be
rewritten as follows [6]:

)t sin(C)t(u
111 ϕω +=            (3.8)

The input signal and the out put signal of
the nonlinearity may be represented using
following equations from electrotechnics [6,9]:

t jt j BeIme)j(EIm)t(e ωωω ==            (3.9)
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From eqs (3.9) and (3.10) we have:
,B)j(E =ω 1

11
ϕω jeC)j(U =          (3.11)

Generally, describing function can be
defined as follows [9]:

)j,E(je
B

)j,E(C
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         (3.12)
From eq (3.12) it is easily can be seen

that it depends on amplitude E  and the

frequency ω . It must be noted that equations of
describing functions of nonlinearities can be
simplified if they are considered to be single-
valued odd symmetric ones. Describing
functions are widely applied for stability
analysis of nonlinear systems.

4 Nonlinearities of Control Systems
Conventional automatic flight control system is
for automatic stabilizing of the aircraft spatial
motion and includes many sensors, amplifiers,
motors and actuators. Block diagram of the pitch
attitude control system can be seen in Figure 2.

Figure 2 Block Diagram of the Pitch Attitude
Control System

The pitch angle autopilot is based upon
the pitch rate stability augmentation system. In
case of the so-called full state feedback this loop
is realizes the feedback by pitch rate. For
measuring of the pitch rate in conventional
systems pitch rate gyro is widely used.

Most common nonlinearities of elements
of autopilots are dead zone, saturation, rate
limiter, transport delay, relay characteristics,
backlash and their linear or nonlinear
combination. In this article three types of
nonlinearity, namely dead zone, saturation and
rate limiter will be taken into account.

Dead zone of the potentiometer of the
rate gyro is installed especially to minimize
noises from vibrations. In this particular case
dead zone of 40,±  deg/s will be considered.
Saturation and rate limiter is defined by
maneuverability of the aircraft, which are 18±
deg/s and 81,± , respectively. During automatic
control of the pitch attitude the limited angular
deflection of the elevator is considered. It is
supposed to be limited to the value of 1±  deg.
Block diagram of the nonlinear transfer
characteristics of the conventional pitch rate
gyro can be seen in Figure 2.
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Figure 2 Nonlinearity of the Pitch Rate Gyro

Real aircraft behaves elastically. Any
elevator deflection or external disturbance e. g.
turbulent air can lead to elastic motion. There
are two main methods for modeling of the
elastic aircraft. First one is the classical transfer
function method [1,2,4]. Second one is the state
space representation method [3,5,7]. This paper
deals with classical representation of the elastic
motion of the aircraft.

5 Mathematical Model of the Elastic Aircraft
It is easily can be seen that output signal of the
pitch rate sensor can be determined as follows:

)s( 
ss

sK)s( EEz δ
ωωξ

ω
2
111

2
1

2 ++
=            (5.1)

In eq (3.1) 1K  is gain of the ith elastic
degree of freedom, 1ω  and 1ξ  are natural
frequency and damping ratio of the ith elastic
degree of freedom, respectively.

In [1,8] parameters of the first overtone
of the fighter fuselage bending motion are given
as follows:

0501010 1
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1 ,  ,s    ,s K  === −− ξω            (5.2)
It is supposed that the longitudinal

motion control system is affecting only the short
period motion. The simplified mathematical
model of the longitudinal motion of the aircraft
for the flight conditions H=1000 m and M=0.4 is
given as [1,8]:

( ) )s( 
ss

sTA  )s( ERz δ
ωωξ

ωω
ααα

αθ
22

2

2
1

++

+
−=           (5.3)

In eq (5.3) let us consider the following
parameters of the aircraft:

505251 11 , ; s  ; s T ; s ,A ==== −−
ααθ ξω      (5.4)

The resulting output signal of the pitch
rate gyro can be determined as a sum of the rigid

and elastic aircraft output signals defined by eqs
(5.1) and (5.3), respectively. We have:

)s()s()s(
RE zzz ωωω +=            (5.5)

Transient response of the open loop pitch
rate of the elastic and the rigid aircraft can be
seen in Figure 3.

Figure 3 Step Response of the Aircraft
Rigid Aircraft Elastic Aircraft

From Figure 3 it is easily can be seen
that the elastic aircraft behaves oscillatory to
reference input. The pitch rate goes to its final
value through its large peaks and the response
time is too large.

Frequency domain behavior of the rigid
and elastic aircraft can be seen in Figure 4.

Figure 4 Bode Diagram of the Elastic Aircraft

From eq (5.5) it is easily can be seen that
pitch rate sensor measures pitch rate of the rigid
and the elastic aircraft. Some of conventional
aircraft are supplemented with autopilot without
filters in the feedback path of the pitch rate. First



CONTROL LAW SYNTHESIS FOR AIRCRAFT AUTOPILOT WITH NONLINEAR ELEMENTS

574.5

and second order filters are often involved to
eliminate effects from elastic motion of the
aircraft.

6 Numerical Example
Let us consider aircraft pitch attitude

control system given in Figure 2. The rigid plant
model is given by eq (5.3) and the elastic plant
model is given by eq (5.1). Eqs (5.1) and (5.3)
are to be considered with their parameters given
by eqs (5.2) and (5.4). The rigid and elastic
models are grouped in one block in the Simulink
model. The NCD Toolbox is attached to output
of the control system. The constraints upon the
output signal can be seen in Figure 5.

Figure 5 Constraints on Pitch Angle Behavior

It is well - known that parameters of the
elastic motion overtones depend on flight
parameters e. g. height of the flight, airspeed etc.
During PID-controller synthesis for the pitch
attitude control system it was supposed that
nominal value of the gain 1K  varies in the range
of its ±  5 %. Control problem to be solved can
be formulated as follows: find the PID-
controller for the outer loop of the pitch attitude
control system with block diagram represented
in Figure 2.

Dynamic performances of the closed
loop control system may be determined using
flying and handling qualities of piloted airplanes
MIL-F-8785C.

7 Conclusions
The paper deals with basic equations of the
nonlinear systems. The time domain Taylor
series method and the frequency domain
harmonic linearization method were outlined for
SISO and MIMO control systems. Future work
will be made in the field of design application.
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