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Abstract  

This paper examines the use of Kalman filters 
and variants of the standard Kalman filter in 
guidance and navigation systems. In particular, 
the paper is concerned with the properties of a 
filter that has been developed recently for use 
with systems with non-Gaussian stable noise or 
where the noise converges slowly to the 
Gaussian limit. In such situations, minimisation 
of the estimated variance (which is the basis of 
the standard Kalman filter) is not compatible 
with the minimisation of the large errors that 
could be associated with collateral damage. 

1  Introduction  

The optimality of the Kalman filter is well 
known for the estimation of observed quantities 
in linear systems in the presence of white, 
Gaussian noise. For more complicated nonlinear 
systems the nonlinearities can often be 
linearised to produce a piecewise linear model 
that can be used as the basis of the extended 
Kalman filter. However, the situation is not 
quite so clear when the noise is non-Gaussian or 
correlated. In some situations, where the noise 
can be represented by a nonlinear process, the 
extended Kalman filter can be used to include 
the dynamics of the noise. This, and the use of 
the basic Kalman filter itself, is based upon the 
validity of the central limit theorem [1]. That is, 
the errors in the estimated state of the system 
will tend toward a Gaussian distribution, even if 

the errors in the individual observations are non-
Gaussian.  

This version of the central limit theorem 
is valid in the limit of infinite observations and 
for noise distributions with finite variance. For 
situations where the number of observations is 
finite the tail of the error distribution can be 
significantly non-Gaussian [2], and in situations 
where the noise processes have an infinite 
variance the error distribution converges to a 
stable Levy distribution [2] (a Gaussian being 
the most common example of a stable Levy 
distribution). These considerations, together 
with the fact that many physical phenomena 
seem to have noise distributions that obey a 
generalised non-Gaussian Levy law, have 
inspired recent work on generalisations of the 
Kalman filter to include situations where the 
underlying distributions have infinite variance 
[3,4] and where the convergence of the tail of 
the error distribution toward a Gaussian tail is 
very slow [2]. One such example is the Kalman-
Levy filter recently proposed by Sornette and 
Ide [5]. 
 Whilst the Kalman filter aims to 
minimise the variance of the estimated 
quantities (which usually correspond to the 
‘small’ errors toward the centre of the 
distribution), the Kalman-Levy filter aims to 
minimise the ‘large’ errors in the tails of the 
distributions. In their paper, Sornette and Ide 
demonstrate that the simultaneous minimisation 
of the small and large errors is only possible 
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when the underlying distributions are Gaussian.  
For situations where the variance is 

infinite, or where the tails have incompletely 
converged to the Gaussian limit, the 
minimisation of the large errors is non-optimal 
in the sense of minimum variance. This fact has 
profound implications in the study of weapon 
guidance [6] and the design of advanced 
targeting systems [7], since it implies that it is 
not possible to maximise the terminal accuracy 
(minimised variance or ‘small’ errors) and to 
minimise the risk of collateral damage 
(minimised tails or ‘large’ errors) unless the 
errors are sufficiently Gaussian, and the system 
is sufficiently linear, for the differences to be 
negligible. This paper examines the implications 
of this result for the types of guidance-
navigation systems used in advanced air-to-
ground weapons. 

2  Filters and α -Stable Processes 

The representation of a series of measurements 
in the presence of noise by a stochastic process 
should be familiar to most people with a 
technical or scientific background. Such a 
process is normally represented by a Probability 
Density Function (PDF) that can be 
characterised in several different ways: either 
using an explicit analytical form, a set of 
moments of the distribution, or a characteristic 
function (the Fourier transform of the PDF). In 
many cases, it is assumed that the underlying 
value to be measured is fixed (or at least slowly 
varying when compared to the noise) and that 
the measurement noise is responsible for 
fluctuations about this mean value. By taking 
more measurements and constructing some sort 
of average, it is possible to improve the estimate 
of the measured quantity or system state. The 
conventional way to do this is to weight 
different measurements according to their 
expected error; penalising less accurate 
measurements. (Although the state to be 
measured is usually assumed to be slowly 
varying, different sensors may be employed 
with different noise characteristics and the noise 
in any sensor can vary from measurement to 
measurement). This is the basis of the widely 

used Kalman filter, which calculates a weighted 
average that minimises the variance (or 
covariance) of the measurement noise.   
 The variance is the standard measure for 
the expected error. Its usefulness is based on the 
Central Limit Theorem, which (in its most 
popular form) says that the distribution of a sum 
or average of random variables tends toward a 
Gaussian or Normal distribution as the number 
of random variables in the sum is increased. 
This is important because a Gaussian 
distribution has a well defined mean value 
(which will hopefully represent the desired 
measurement), a finite variance (representing 
the square of the expected error), and zero 
higher-order moments. This means that the 
distribution of the weighted average should end 
up being the same, whatever the original noise 
distribution (or distributions). All that is 
required is an estimate of the variance of the 
noise and sufficient measurements for the 
distribution of the average to converge 
sufficiently close to the desired Gaussian form. 
 Unfortunately, the popular form of the 
Central Limit Theorem is a simplification of the 
true situation. There is a larger class of 
distributions that are non-Gaussian and stable 
under addition. These are the α-stable 
distributions (often referred to as Levy 
distributions) that do not converge to a Gaussian 
limit when summed and have an infinite 
variance, which makes them harder to 
characterise by an expected error value in the 
conventional sense. As noise, they are 
distinguished by occasional very large 
fluctuations, giving rise to a very long tailed 
distribution. 

Many systems contain noise that can be 
approximated by Gaussian distributions when 
the fluctuations are small enough for the system 
to be almost linear. However, most systems are 
nonlinear to some extent and will contain some 
form of non-Gaussian noise, although not all 
will be α-stable. In cases where the 
nonlinearities are large and/or where 
multiplicative noise is present, the fluctuations 
can have a Levy distribution (or an approximate 
or ‘truncated’ Levy distribution).  
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2.1 Symmetric α -Stable Processes 

Most probability distributions can be 
characterised by an infinite set of moments 
about the mean value (variance, skewness, 
kurtosis and other higher order moments). In 
some cases, the higher order moments are either 
zero (as with the Gaussian distribution) or are 
related to the lower order moments (as is the 
case with the Poisson distribution). For some 
distributions, such as the log normal 
distribution, this representation in terms of 
moments can lead to ambiguities because they 
are not defined uniquely by their moments, but 
these distributions are not considered here. For 
other distributions, including the α-stable 
distributions, some or all of the moments are 
infinite. The Gaussian distribution is the only 
stable distribution that has a finite variance, and 
some α-stable distributions do not even have a 
well-defined mean. To make matters worse, 
there are only a few cases where the PDF for a 
Levy distribution can be written in closed form.  
 Instead, the most common way to 
specify an α-stable distribution is through its 
characteristic function (0 < α ≤ 2) [8]: 
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(1) 

which contains four important quantities: 

− α, the index of stability. 
− β , the skewness parameter. 
− γ, the scale parameter. 
− µ, the location parameter. 

The index of stability determines the behaviour 
of the tail of the distribution, the smaller the 
value of α, the longer the tail. The skewness 
parameter determines the asymmetry of the 
distribution, but in the cases considered in this 
paper attention will be restricted to situations 
where β  = 0 and the distributions are symmetric. 

The scale parameter determines the width of the 
distribution compared to some length scale l ≈ 
C1/α, where C is referred to as the scale 
parameter or ‘tail covariance’ and is defined by 
[2,5]: 

( )2
2 sin)1( απαα

πγ
−Γ

=C  (2) 

The location parameter is the equivalent of the 
mean value. For 1 < α ≤ 2, the mean is defined 
and is equal to µ. However, for 0 < α ≤ 1 the 
mean is not well-defined whilst the location 
parameter is defined and it plays an equivalent 
role. For simplicity’s sake, all of the examples 
discussed in this paper will be centred on µ  = 0, 
but the generalisation to other situations is 
straightforward. 

It is worth noting that for the special 
case α = 2, the distribution reduces to the 
Gaussian case, where the tail covariance reduces 
to the variance and the characteristic length 
scale is equal to the standard deviation 
associated with the variance. 
 Although there are only a few examples 
where an α-stable distribution can be written in 
closed form, it is possible to say some general 
things about their general form. In particular, 
the tail of the distribution P(x) is always a 
power law, that is 

α+
≈

1
)(

x

C
xP  

(3) 

for x → ± ∞ (for β  = 0 and µ  = 0 at least). 

2.2 Almost Stable Processes 

As mentioned in a previous section, systems 
which contain multiplicative noise or which 
exhibit very nonlinear behaviour are most likely 
to contain noise that has a Levy distribution. 
However, in many cases the noise will only 
approximate to an α-stable distribution. The 
very large tails that are present in α-stable 
distributions can contain very large fluctuations, 
and whilst the theoretical noise distribution goes 
to infinity, there will generally be some upper 
cut-off that limits the size of the fluctuations 
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present in any real system. Reference 2 gives 
the distribution of energy in earthquakes as an 
example, where the energy released in an 
earthquake is approximately Levy distributed, 
but an infinitely long tail would require the 
presence of earthquakes with an infinite energy. 
 The result of these physical limitations 
or cut-offs would be that the Levy distribution 
predicted by whatever theoretical model was 
used to simulate the behaviour of the system 
would be truncated at some point. The resultant 
truncated Levy distribution would always have 
a finite variance and would not be α-stable. 
However, for situations where the 
approximation to a true α-stable distribution is 
fairly good (i.e. the cut-off is very large 
compared to the characteristic length scale) the 
convergence to a Gaussian stable distribution 
can be very slow. In fact, for many applications 
with a finite number of measurements, the 
convergence to a Gaussian stable distribution 
could be hardly noticeable. 
  For some types of cut-off the 
convergence rates can be calculated [2]. As a 
general rule, the maximum expected value of a 
Levy process increases with the number of 
measurements N as (NC)1/α. As long as the cut-
off is significantly larger than this length scale, 
so that the cut-off has a negligible effect, the 
truncated distribution should be a good 
approximation to a true Levy distribution [2]. 

2.3 Unstable Distributions with Power Law 
Tails 

In practice, the distribution of the sum or 
average of noisy measurements tends to 
converge to a Gaussian distribution from the 
middle outwards. This means that even a 
distribution with a power law tail that vanishes 
quicker than a Gaussian distribution (α > 2 in 
equation 3) may not be sufficiently converged 
after a finite number of measurements for the 
result of a Kalman filter to have a Gaussian 
distribution.  
 Reference 2 calculates the cross over 
between the Gaussian centre of the distribution 
and the power law tails using a power series 
expansion of the characteristic function. The 

crossover for a series of N independent and 
identically distributed measurements is found to 
be approximately proportional to NN ln .  
 This property is important in the context 
of this paper because it is the tail of the 
distribution that is mainly associated with the 
risk of collateral damage. For advanced 
targeting systems and autonomous guided 
weapon systems, very large deviations from the 
desired trajectory or impact point are more 
likely to cause collateral damage. As a result of 
the finite number measurements that can be 
taken, any guidance system that is based around 
a Kalman filter is likely to have state estimates 
that have distributions with non-Gaussian tails 
(either due to incomplete convergence to a 
stable Gaussian distribution or due to the 
presence of α-stable noise). This is a general 
property of linear filters, including the Kalman-
Levy proposed by Sornette and Ide [5]. The 
difference between the Kalman-Levy filter and 
conventional Kalman filters (including extended 
Kalman filters that work by linearising a 
nonlinear system of equations about a set of 
state estimates) is that the Kalman-Levy filter 
aims to minimise the weight associated with the 
tails of the distribution by minimising the tail 
covariance C.  

3 The Kalman-Levy Filter 

The general form of the Kalman-Levy filter is 
similar to the standard Kalman filter in that is 
consists of a series of steps that can be 
associated with: 

1. State and error prediction. 
2. Measurement prediction. 
3. Calculation of the Kalman gain. 
4. State and error update. 

In the Kalman filter, the Kalman gain matrix is 
calculated by minimising the estimated 
covariance (error) matrix. In the Kalman-Levy 
filter, the Kalman gain is calculated by 
minimising the tail covariance matrix.  
 To simplify things, this paper will be 
restricted to one-dimensional problems, 
although the general form of the filter is given 
in reference 5. The multi-dimensional filter is 
slightly more complex to implement, but the 
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one-dimensional case embodies all of the 
principal properties of the algorithm.  

3.1 Tail Covariance 

At the heart of the filter is the parameter C that 
characterises the weight associated with the tails 
of the distribution (see equation (3)). Rather 
than estimating the variance of the errors in the 
state estimates, as in the Kalman filter, the 
Kalman-Levy filter predicts and updates an 
estimate of the tail covariance associated with 
the state estimates. The important properties of 
the tail covariance are that it represents the 
characteristic length scale l ≈ C1/α associated 
with the errors in the states, and the tail 
covariance of the sum of two random variables, 

21 BxAxx +=  (4) 

with the same index of stability (α) is given by 
[2], 

21 CBCAC
αα

+=  (5) 

This is an important result when calculating the 
tail covariance for a system with noise that has a 
power law tail for the Kalman-Levy filter (see 
equations (7) and (11)), and for calculating the 
expected tail covariance for the outputs from a 
Kalman filter in the presence of Levy noise.   

3.2 The Kalman-Levy Filter 

As with the Kalman filter, the Kalman-Levy 
filter contains five internal vectors and matrices, 
and requires five inputs. The five internal 
quantities are: 
(i). The state vector {xi} for each time step or 

measurement, i = 0… n. 
(ii). The state tail covariance matrices {Ci}.  
(iii). The Kalman gain matrices {Ki}, which are 

used to weight of the state updates. 
(iv). The predicted state vectors {xi|i-1}.  
(v). The predicted state tail covariance matrices 

{Ci|i-1}. 
Whilst the five inputs are: 
(i). A series of measurement vectors {yi}.  

(ii). The measurement tail covariances {Yi}.  

(iii). The measurement matrices {Hi} to relate 
the measurements yi to the estimated state 
vectors xi. 

(iv). The dynamical matrices {Mi} to predict the 
time evolution of the system states.  

(v). The dynamical noise (tail covariance) 
matrices {Ni} to allow for errors in the 
(linear) dynamical prediction process.  

Of course, for a one-dimensional filter, the 
vectors and matrices are simply numbers. 
 For α > 1, the four steps of the Kalman-
Levy filter are given by: 
1. State and error prediction 

111 −−− = iiii xMx  
(6) 

1111 −−−− += iiiii NCMC
α

 (7) 

2. Measurement prediction 

11 −− = iiiii xHy  
(8) 

3. Calculation of the Kalman gain 
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4. State and error update 

iiiiiii yKxHKx +−= −1)1(  
(10) 

iiiiiii YKCHKC
αα

+−= −11  (11) 

The main differences between the Kalman-Levy 
filter and the standard Kalman filter, in the α > 
1 regime, are the calculation of the Kalman gain 
and the way in which the error matrices (tail 
covariances) are calculated, using equation (5). 
For situations where α ≤ 1, the absolute 
deviation from the mean and the mean are not 
well defined, and the Kalman-Levy update 
reduces to accepting the single measurement 
with the lowest value of the tail covariance, at 
the expense of all other measurements [5].  
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3.3 Optimality 

The Kalman-Levy filter reduces to the standard 
Kalman filter when α = 2, and will provide an 
optimal estimate of the state when the input 
noise is Gaussian or when there are sufficient 
measurements for the tails of the distribution for 
the state estimate to have converged to a 
Gaussian distribution. In more general cases, the 
Kalman filter will minimise the variance (if it is 
well defined) and the Kalman-Levy filter will 
minimise the weight of the tail through the tail 
covariance. It can be proved that the Kalman-
Levy filter minimises the tail covariance and 
that this minimum is unique [5]. It is also shown 
that simultaneously minimising the variance and 
the tail covariance is only possible when the 
measurement noise is Gaussian. If a filter is 
required to minimise the weight of the power 
law tails of a distribution, then it must be a 
Kalman-Levy filter, whether or not the power 
law is α-stable or Gaussian stable. 

4 Comparison of Kalman-Levy and Kalman 
filters  

One of the problems in proposing modifications 
to the basic Kalman filter is that the 
performance of the Kalman filter itself is 
generally very good. Even in situations where 
the performance is not optimal, it normally 
offers a good estimate of the system states that 
is fairly robust to errors in the system 
parameters (dynamical prediction matrix or 
measurement noise). By comparison, the 
estimates generated by the extended Kalman 
filter for nonlinear system can be very sensitive 
to errors in some of these parameters.  
 As suggested by section 3.3, the 
Kalman-Levy filter does offer an improvement 
over the standard Kalman filter for situations 
where the underlying distributions are non-
Gaussian and have power law tails, but the 
average performance benefits are relatively 
small, typically less than about 10% [5]. The 
main advantages are that the estimated/predicted 
errors are far more accurate in the Kalman-Levy 
filter and that the performance is less sensitive 
to errors in the estimates of the error matrices.  

The covariance is very difficult to 
estimate in the presence of α-stable noise or 
truncated Levy noise. In the presence of true α-
stable noise, the second order moment is 
infinite, but the ratio of the variances needed for 
the standard Kalman filter can be found. 
However, the ratio is frequently unreliable. In 
the case of truncated Levy noise, the variance is 
finite and, for a sufficiently large sample, it has 
an expected value that is proportional to Cδ 2−α 
[2], where δ is the cut-off. The ratio of the 
variances should therefore converge to the ratio 
of the two tail convergences. However, the fact 
that these distributions include very large 
fluctuations means that the ratio of the variances 
calculated from some finite sample drawn from 
a truncated Levy distribution is very unreliable. 
In fact, the fluctuations in the estimated ratio 
increase as the cut-off is increased. 

In situations where α is larger than 2, in 
the Gaussian stable regime, the variance of the 
noise is well defined and can be estimated 
directly from the noise characteristics or from a 
finite sample of the noise. However, the ratio of 
covariances used in the Kalman filter is not 
necessarily equal to (or even similar to) the ratio 
of tail covariances used in the Kalman-Levy 
filter. The variance of the noise is dependent on 
the properties of the whole distribution, the 
centre of the distribution and the tails, whilst the 
tail covariances are only dependent on the tails 
of the distribution. In fact, due to the rapid 
decay of the tails in this regime, the variances 
tend to be dominated by the centres of the 
distributions.  
 In this paper, three separate cases are 
examined: 

1. Constant measurement errors. 
2. Alternating measurement errors. 
3. Linearly reducing measurement errors. 

Each of these examples is chosen because it 
represents a case that might occur in an 
autonomous guidance system. For simplicity, all 
noise is scaled so that the characteristic length 
scale of the initial measurement noise is one, 
and so that the ratio of the tail covariances is 
equal to the ratio of the variances. The second 
of these assumptions means that the differences 
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between the Kalman and Kalman-Levy filters 
will be relatively small. In practice, because of 
the unreliability of the estimates of the variances 
for α < 2 and the dominance of the centre of the 
distribution for α > 2, the actual differences 
would be expected to be much greater than 
shown here.  
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Figure 1 – Expected characteristic length scale 
(l ≈ C1/α, log scale) as a function of time step for 
constant measurement error (α = 1.5): output 
error for Kalman filter (circles), output error 
for the Kalman-Levy filter (crosses), the 
estimated error for the Kalman-Levy filter (solid 
line), and the estimated error for the Kalman 
filter (dashed line). 

4.1 Constant measurement errors  

The simplest case is where the measurement 
errors have a constant variance or tail 
covariance. In this case, the true output error (as 
distinct from the output error estimated by the 
filters) is equal for the Kalman and Kalman-
Levy filter. This is because each of the filters 
gives equal weight to each of the measurements, 
as should be expected, leading to identical 
Kalman gains at each time step. The difference 
is in the estimated error produced by each filter. 
The estimated error produced by the Kalman-
Levy filter is equal to the true error in the 
output, but the estimated error is significantly 
smaller than the true error for Kalman filter for 
α < 2 (see figure 1 for an example with α = 1.5) 
and significantly larger than the true error for α 

> 2. This means that the Kalman filter does 
produce an optimum output for this simple case, 
but that its own estimate of the expected error is 
wildly inaccurate. This can be very important 
since it can give the filter an undue confidence 
in the state estimate, which may be particularly 
important if this error estimate is to be used by 
another system for combining or fusing 
information from different sources.  
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Figure 2 – Expected characteristic length scale 
(l ≈ C1/α, log scale) as a function of α for 
alternating measurement errors after 50 time 
steps: output error for Kalman filter (dashed 
line), output error for the Kalman-Levy filter 
(solid line), and the difference between the 
Kalman and Kalman-Levy errors (dotted line). 

4.2 Alternating measurement errors  

In cases where measurements are being 
combined from several sensors, each sensor is 
likely to have a different characteristic error. 
The second example is intended to reflect this 
process, where the measurement errors alternate 
between two values. Figure 2 shows the 
characteristic length scale of true (output) error 
for both the Kalman and Kalman-Levy filters, 
together with the difference between the two, as 
a function of the index of stability (α). Since the 
tail covariance and the characteristic length 
scale of the noise process are related by l ≈ C1/α, 
then one or the other must be fixed for 
comparison. In Figure 2, the characteristic 
length of the input errors is fixed and alternates 
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between one and one-half at successive 
measurements. 
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Figure 3 – Kalman gain (linear scale) as a 
function of time step for alternating 
measurement error (α = 1.5): Kalman filter 
(dotted line) and the Kalman-Levy filter (solid 
line). 

As can be seen in Figure 2, the 
difference between the two filters is greatest 
when α << 2 or when α >> 2. Near α = 2, the 
differences disappear, as required. Even so, the 
differences are not extremely large, but this is 
due to the fact that the ratio for the variances in 
the Kalman filter is chosen to give an optimal 
Kalman filter solution. In practice, the Kalman 
filter would produce significantly worse output 
errors, for the reasons outlined above. 

4.3 Linearly reducing measurement errors  

The third example is most likely to reflect the 
type of errors that might occur in an advanced 
targeting system or an autonomous guidance 
system. Many systems use angle and/or angle 
rate sensors to estimate positions, either the 
relative positions of airframes and potential 
targets or the position of objects relative to 
some reference datum (target localisation). 
Examples of these types of system are passive 
ranging algorithms based on angle rate 
measurements and active (laser) targeting. In 
these cases the angular errors (e.g. sensor-
airframe alignment errors, errors due to angular 
resolution limitations) are approximately 
constant but the distance between the object and 

the sensor may vary as a function of time. If the 
sensor is approaching the object the positional 
error should decrease approximately linearly 
with distance. This type of situation is 
represented in Figures 4 and 5. The 
characteristic length scale associated with the 
measurement tail covariance decreases linearly 
so that the tail covariance is given by,  

( )αiYi 02.01−=  (12) 
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Figure 4 – Expected characteristic length scale 
(l ≈ C1/α, log scale) as a function of α for 
linearly reducing measurement errors after 49 
time steps: output error for Kalman filter 
(dashed line), output error for the Kalman-Levy 
filter (solid line), and the difference between the 
Kalman and Kalman-Levy errors (dotted line). 

K
al

m
an

 G
ai

n

Time Step

1.0

0.0
0 50

K
al

m
an

 G
ai

n

Time Step

1.0

0.0
0 50

 
Figure 5 – Kalman gain (linear scale) as a 
function of time step for linearly reducing 
measurement error (α = 1.5): Kalman filter 
(dotted line) and the Kalman-Levy filter (solid 
line). 
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MINIMISING THE RISK OF COLLATERAL DAMAGE WITH THE 
KALMAN-LEVY FILTER

In this case the measurement error reduces to 
zero at the 50th time step, but immediately prior 
to this (the 49th time step) the differences 
between the Kalman filter and the Kalman-Levy 
filter are relatively large (see Figure 4). These 
differences are due to the undue confidence that 
is associated with the estimates and predicted 
states in the Kalman filter. When α << 2, the 
Kalman filter is over confident in the 
current/predicted state estimate and gives a 
larger weight to the predicted state vector than it 
should do (indicated by the lower Kalman gain 
values in Figure 5). During the 49 time steps, 
the effect of this over confidence accumulates, 
giving rise to the comparatively large expected 
error for the Kalman filter in Figure 4. When α 
>> 2, the reverse is true. Rather than being over 
confident, the Kalman filter is over cautious 
about the predicted state estimates. 
 

5 Collateral Damage and Terminal Accuracy 

The Kalman filter aims to minimise the variance 
of the state estimates, whilst the Kalman-Levy 
filter aims to minimise the tail covariance of the 
state estimates. It is the tail covariance that 
governs the weight of the power law tails, and 
therefore the amount of probability that is found 
in these tails. It will therefore determine the 
expected number of solutions that have large 
deviations from the desired solution. For 
applications involving guided weapon systems 
[6] or advanced targeting systems [7] such large 
deviations are far more likely to be concerned 
with collateral damage than the small deviations 
around the desired solution.  
 For Gaussian stable noise, the small 
deviations dominate the variance because they 
are normally far more frequent, and when one 
attempts to maximise the accuracy of a guidance 
or targeting system it is these small deviations 
that tend to influence the optimisation process. 
Such issues are likely to become more important 
as these systems become more sophisticated. 
Recent advances in information and data fusion 
[7,9,10] and autonomous guidance and 
navigation systems [11] offer significant 
advantages in terms of flexibility and 

performance. However, as these systems 
become more sophisticated, they tend to become 
more reliant on the accuracy and availability of 
estimates for the noise present in the underlying 
processes, and as they become more complex 
the nature of this noise becomes harder to 
characterise. For example, one of the new 
techniques that has been developed for both 
weapon guidance and air-to-ground targeting is 
scene-matching and area correlation [7,11]. This 
type of system correlates a database of ground 
features (normally generated from maps and/or 
reconnaissance imagery) with imagery 
generated by an onboard camera. This allows 
the position of objects found in the onboard 
imagery to be referenced against an external 
database and can be used to assist the aircraft’s 
navigation system. In a guided weapon system it 
can also be used for terminal phase aim point 
optimisation. The problem with characterising 
the noise in this type of system is that the 
properties of the noise are very dependent on 
the features that appear in the scene. For 
example, areas of ground with a grid plan layout 
tend to pose particular problems for scene-
matching algorithms because there are generally 
a large number of possible ways to maximise 
the correlations between the database and the 
imagery. As such, these systems might be 
expected to generate noise distributions with 
very large tails, of the type discussed in this 
paper, and therefore be good candidates for the 
Kalman-Levy filter. 

6 Conclusions 

This paper has considered the use of a variant of 
the conventional Kalman filter, the Kalman-
Levy filter proposed by Sornette and Ide, for the 
minimisation of the risk of collateral damage. 
This filter aims to minimise the weight of the 
tails of the error distributions associated with 
the filtered state vectors. As a result the 
Kalman-Levy filter minimises the errors 
associated with large fluctuations, which are 
more likely to be associated with collateral 
damage.  
 Where the measurement noise is 
Gaussian, the Kalman-Levy filter reduces to the 
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conventional Kalman filter, but where the 
measurement noise has a power law tail the 
Kalman-Levy filter minimises the weight of the 
tail. This is true if the noise has either a long (α-
stable) tail or a short (α > 2) tail. However, in 
the case of the short tail, this minimisation is at 
the expense of an increase in the variance of the 
state estimates. In that case of a long tail, the 
variance is not strictly defined, and any estimate 
of the variance used in the Kalman filter is 
likely to be unreliable.  
 The interesting aspect of this filter is that 
it shows that the desire to maximise the 
accuracy of a sensor or guidance system (as 
characterised by the variance) is incompatible 
with the desire to minimise the large deviations 
unless the measurement noise is Gaussian. Of 
course, in many situations the differences 
between the Kalman filter and the Kalman-Levy 
filter can be small, but there are some situations 
where the differences are significant. Given the 
widespread desire to reduce the risk of collateral 
damage, this fundamental incompatibility needs 
further consideration. 
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