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Abstract

This paper examines the use of Kalman filters
and variants of the standard Kalman filter in
guidance and navigation systems. In particular,
the paper is concerned with the properties of a
filter that has been developed recently for use
with g/stems with non-Gaussian stable noise or
where the noise converges slowly to the
Gaussian limit. In such situations, minimisation
of the estimated variance (which is the basis of
the standard Kalman filter) is not compatible
with the minimisation of the large errors that
could be associated with collateral damage.

1 Introduction

The optimdity of the Kdman filter is wel
known for the estimation of observed quantities
in linear systems in the presence of white,
Gaussan noise. For more complicated nonlinear
sygdems the nonlinearities can often  be
linearised to produce a piecewise linear mode
that can be used as the bass of the extended
Kamen filte. However, the dgtudion is not
quite so clear when the noise is non-Gaussan or
corrdlated. In some dStugtions, where the noise
can be represented by a nonlinear process, the
extended Kaman filter can be usad to include
the dynamics of the noise. This, and the use of
the basc Kdman filter itsdf, is based upon the
vaidity of the centrd limit theorem [1]. That is,
the errors in the edtimated date of the system
will tend toward a Gaussan digribution, even if

the errors in the individua observations are non
Gaussan.

This versgon of the centrd limit theorem
is vdid in the limit of infinite obsarvaions and
for noise didributions with finite variance. For
dtuations where the number of observations is
finite the tall of the error digribution can be
ggnificantly nonGaussan [2], and in Stuations
where the noise processes have an infinite
variance the eror digtribution converges to a
dable Levy digribution [2] (a Gaussan being
the mos common example of a dable Levy
digribution). These congderations, together
with the fact tha many physcd phenomena
seem to have noise didributions that obey a
gengrdised nonGaussan Levy law, have
inspired recent work on generdisations of the
Kdman filter to incdude dtuations where the
underlying didtributions  have infinite variance
[3,4] and where the convergence of the tal of
the error didribution toward a Gaussan tal is
very dow [2]. One such example is the Kaman
Levy filter recently proposed by Sornette and
Ide[5].

Whilg the Kadmen filter ams to
minimise the vaiance of the edimated
quantities (which usudly correspond to  the
‘samdl’ erors toward the centre of the
digribution), the KamanlLevy filter ams to
minimise the ‘large earors in the tals of the
digributions. In their paper, Sornette and Ide
demondrate that the Smultaneous minimisation
of the smdl and large erors is only possble
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when the underlying digtributions are Gaussan.

For dtuations where the variance is
infinite, or where the tals have incompletdy
converged to the Gaussan limit, the
minimisation of the large errors is non-optima
in the sense of minimum variance. This fact has
profound implications in the study of wegpon
guidance [6] and the dedgn of advanced
targeting sysems [7], snce it implies that it is
not possble to maximise the termina accuracy
(minimised variance or ‘smdl’ erors) and to
minimise  the risk of collaerd damage
(minimised tals or ‘large erors) unless the
arors ae fficently Gaussan, and the system
Is sufficiently linear, for the differences to be
negligible. This paper examines the implications
of this result for the types of guidance
navigaion sysems used in advanced ar-to-
ground wespons.

2 Filtersand a -Stable Processes

The representation of a series of measurements
in the presence of noise by a stochastic process
should be familir to most people with a
technicd or sdetific background. Such a
process is normaly represented by a Probability
Densty Function (PDF) that can be
characterised in severd different ways either
udng an explict andyticd form, a st of
moments of the didribution, or a characteristic
function (the Fourier transform of the PDF). In
many cases, it is assumed that the underlying
vaue to be measured is fixed (or a least dowly
varying when compared to the noise) and that
the measurement noise is responsble for
fluctuations about this mean vdue. By taking
more measurements and congructing some sort
of average, it is possble to improve the estimate
of the measured quantity or sysem dae The
conventiond way to do this is to weght
different measurements according to ther
expected error;  pendisng less  accurate
measurements.  (Although the dae to be
measured is usudly assumed to be dowly
vaying, different sensors may be employed
with different noise characteristics and the noise
in any sensor can vary from measurement to
measurement). This is the bads of the widdy
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used Kadman filter, which cdculates a weighted
average tha minimisess the vaiance (or
covariance) of the measurement noise.

The variance is the sandard measure for
the expected error. Its usefulness is based on the
Centrd Limit Theorem, which (in its mog
popular form) says that the digribution of a sum
or average of random variables tends toward a
Gaussan or Normd didribution as the number
of random variables in the sum is increased.
This is important because a Gaussan
digribution has a wel defined mean vaue
(which  will  hopefully represent the desired
measurement), a finite variance (representing
the square of the expected eror), and zero
higher-order moments. This means tha the
digribution of the weighted average should end
up being the same, whaever the origind noise
digribution (or didributions). All  that is
required is an edimate of the variance of the
noise and sufficient messurements for the
digribution of the average to converge
aufficently close to the desired Gaussian form.

Unfortunatdy, the popular form of the
Centrd Limit Theorem is a amplification of the
true dtuation. There is a lager cdass of
digributions that are nonGaussan and dable
under addition. These ae the a-dable
digributions (often refered to as Levy
digributions) that do not converge to a Gaussan
limt when summed and have an infinite
vaiance, which makes them hader to
characterise by an expected eror vdue in the
conventiond sense. As  noise, they ae
didinguished by occasond vey lage
fluctugtions, giving rise to a veay long taled
digtribution.

Many systems contain noise that can be
goproximated by Gaussan didributions when
the fluctuations are smdl enough for the system
to be dmog linear. However, most systems are
nonlinear to some extent and will contain some
foom of nonGaussan noise, dthough not dl
will be a-dgable In cases where the
nonlinearites ae  lage andlor  where
multiplicative noise is present, the fluctuations
can have a Levy digribuion (or an gpproximate
or ‘truncated’ Levy digtribution).
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2.1 Symmetric a -Stable Processes

Mot  probability  didributions can  be
characterised by an infinite set of moments
about the mean vaue (variance, skewness,
kurtoss and other higher order moments). In
some cases, the higher order moments are ether
zero (as with the Gaussan didribution) or are
related to the lower order moments (as is the
case with the Poisson didribution). For some
digributionss, such a the log norma
digribution, this representation in terms  of
moments can lead to ambiguities because they
are not defined uniquely by ther moments, but
these didtributions are not considered here. For
other didributions, induding the a-dable
digributions, some or dl of the moments are
infinite. The Gausdan didribution is the only
dable digribution that has a finite variance, and
some a-dable digributions do not even have a
wel-defined mean. To make matters worse,
there are only a few cases where the PDF for a
Levy digtribution can be written in closed form.

Intead, the most common way to
oecify an a-dable didribution is through its
characterigtic function (O < a £ 2) [8]:
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which contains four important quantities:

- a,theindex of gahility.

- b, the skewness parameter.
- g, thescade parameter.

- mthelocation parameter.

The index of dability determines the behaviour
of the tal of the digribution, the smdler the
vdue of a, the longer the tal. The skewness
parameter determines the asymmetry of the
digribution, but in the cases conddered in this
paper atention will be redricted to gtuaions
where b = 0 and the distributions are symmetric.
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The scde parameter determines the width of the
digtribution compared to some length scae | »
CY@ where C is refered to as the scde
parameter or ‘tall covariance and is defined by
[2,5]:
P9
“a’Gla - 1)sn(=) )

The location parameter is the equivdent of the
mean vaue. For 1 < a £ 2, the mean is defined
and is equa to m However, for 0 < a £ 1 the
mean is not wdl-defined whilgt the location
parameter is defined and it plays an equivaent
role. For smplicity’s ske, dl of the examples
discussed in this paper will be centred on m =0,
but the genedisation to other dtudtions is
sraightforward.

It is worth noting tha for the specid
case a = 2, the didribution reduces to the
Gaussan case, where the tall covariance reduces
to the variance and the characterigic length
scde is equd to the dandard deviation
associated with the variance,

Although there are only a few examples
where an a-dable digribution can be written in
closed form, it is possble to say some generd
things about their generd form. In paticular,
the tal of the didribution P(x) is dways a
power law, thet is

P(X) »

C
X" €)
forx® +¥ (forb =0and m =0 at least).

2.2 Almost Stable Processes

As mentioned in a previous section, systems
which contan multiplicative noise or  which
exhibit very nonlinear behaviour are most likdy
to contan noise tha has a Levy didtribution.
However, in many cases the noise will only
goproximate to an a-dable didribution. The
vay lage tals tha ae present in a-stable
digributions can contain very large fluctuations,
and whilgt the theoreticd noise digtribution goes
to infinity, there will generdly be some upper
cut-off thet limits the dsze of the fluctuaions
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present in any red system. Reference 2 gives
the digribution of energy in eathquakes as an
example, where the energy reessed in an
earthquake is approximately Levy distributed,
but an infinitdy long tal would require the
presence of earthquakes with an infinite energy.

The result of these physicd limitations
or cut-offs would be that the Levy didribution
predicted by whatever theoreticd modd was
used to smulate the behaviour of the system
would be truncated a some point. The resultant
truncated Levy didribution would dways have
a finite variance and would not be a-sable.
However, for dtugtions  where  the
goproximation to a true a-dable didribution is
farly good (i.e the cut-off is vey lage
compared to the characterigtic length scade) the
convergence to a Gaussan dable didribution
can be very dow. In fact, for many applications
with a finite number of measurements, the
convergence to a Gaussan dable digtribution
could be hardly noticegble.

For some types of cut-off the
convergence rates can be caculated [2]. As a
generd rule, the maximum expected vdue of a
Levy process increases with the number of
meesurements N as (NC)*2. As long as the cut-
off is ggnificantly larger than this length scae,
s that the cut-off has a negligible effect, the
truncated didribution should be a good
approximation to atrue Levy digtribution [2].

2.3 Ungtable Digtributions with Power Law
Tails

In practice, the didribution of the sum or
average of noisy measurements tends to
converge to a Gaussan didribution from the
middle outwards. This means tha even a
digribution with a power law tal that vanishes
quicker than a Gaussan didribution (a > 2 in
equation 3) may not be sufficiently converged
after a finite number of measurements for the
reult of a Kdman filter to have a Gaussan
digtribution.

Reference 2 cdculates the cross over
between the Gaussan centre of the digtribution
and the power law tals usng a power series
expandon of the characteridic function. The
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crossover for a series of N independent and
identically digtributed measurements is found to
be approximately proportiona to 4/NInN .

This property is important in the context
of this paper because it is the tal of the
digribution that is manly associaed with the
risk of collaerd damage. For advanced
targeting sysems and autonomous guided
wegpon systems, very large deviations from the
desired trgectory or impact point are more
likedy to cause collaterd damage. As a result of
the finite number messurements that can be
taken, any guidance system that is based around
a Kdman filter is likdy to have dae estimates
that have didributions with non-Gaussan tals
(either due to incomplete convergence to a
dable Gaussan didribution or due to the
presence of a-dable noise). This is a generd
property of linear filters, including the Kaman
Levy proposed by Sornette and Ide [5]. The
difference between the Kaman-Levy filter and
conventional  Kaman filters (including extended
Kdmen filters that work by linearisng a
nonlinear system of equations about a st of
date edimates) is that the KamanLevy filter
ams to minimise the weght asociated with the
tals of the didribution by minimisng the tal
covariance C.

3 TheKaman-Levy Filter

The generd form of the KamanLevy filter is
gmilar to the sandard Kadman filter in that is
conssts of a series of deps tha can be
associated with:

1. State and error prediction.

2. Messurement prediction.

3. Cdculation of the Kdman gain.

4. State and error update.
In the Kdman filter, the Kdman gan matrix is
cdculaed by minimsng the edimated
covariance (error) matrix. In the Kaman-Levy
filter, the Kdman gan is cdculaed by
minimisng the tail covariance metrix.

To gamplify things this paper will be
resricced to  one-dimensond problems,
dthough the gened form of the filter is given
in reference 5. The multi-dimensond filter is
dignly more complex to implement, but the
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one-dimendona case embodies dl of the
principa properties of the agorithm.

3.1 Tail Covariance

At the heart of the filter is the parameter C that
characterises the weight associated with the tails
of the didribution (see equation (3)). Rather
than esimating the variance of the errors in the
date edimates, as in the Kaman filter, the
KdmanLevy filter predicts and updates an
edimate of the tall covariance associated with
the date estimates. The important properties of
the tall covariance are that it represents the
characteristic length sce | » CY® associated
with the erors in the daes, and the tall
covariance of the sum of two random variables,

- AaBe @

with the same index of gdability (a) is given by
[2],
- |A|a C,+ |B|a C, ©)

This is an important result when cdculating the
tall covariance for a syssem with noise that has a
power law tal for the KdmanLevy filter (see
equations (7) and (11)), and for cdculaing the
expected tal covariance for the outputs from a
Kaman filter in the presence of Levy noise.

3.2 The Kalman-Levy Filter

As with the Kdman filter, the KdmanLevy
filter contains five internd vectors and mairices,
and requires five inputs The five internd
quantities are:
(). The state vector {x;} for each time step or
measurement, i = 0... n.
(ii). The gatetal covariance matrices{Ci} .
(iii). The Kdman gan matrices {Ki}, which are
used to weight of the state updates.
(iv). The predicted state vectors {Xiji-1} .
(V). The predicted state tal covariance matrices
{Ciji-a} -
Whilst the five inputs are:
(). A series of measurement vectors{y}.
(i1). The measurement tail covariances{Y}.
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(iii). The messurement matrices {H;} to relate
the measurements y; to the estimated State
vectors X;.

(iv). The dynamicd matrices {M;} to predict the
time evolution of the system dates.

(v). The dynamicd noise (tal covaiance)
matrices {N;} to dlow for erors in the
(linear) dynamicd prediction process.

Of course, for a one-dimensond filter, the

vectors and matrices are Smply numbers.

For a > 1, the four steps of the Kaman-

Levy filter are given by:

1. State and error prediction

Xi|i—1 = Mi—lxi—l

(6)
|||1_|M|1| C +N (7)
2. Measurement prediction
yi|i 1= H|X||| 1 (8)
3. Cdculdion of the Kdman gain
-1
K, = H,
c 'y 96‘9
cl+ Y Lo ©)
g ng ||| 1g ;
4. State and error update
X, =(1- K, Hi))ﬂ“-l +Kyy, (10)
|1 K. H| CIII +|Ki| Y, (11)

The main differences between the KamanLevy
filter and the standard Kamean filter, in the a >
1 regime, are the caculation of the Kdman gan
and the way in which the error matrices (tall
covariances) are caculated, usng equation (5).
For gtuations where a £ 1, the absolute
deviation from the mean and the mean ae not
well defined, and the KamanlLevy update
reduces to accepting the sngle measurement
with the lowest vdue of the tall covariance, a
the expense of al other measurements[5].
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3.3 Optimality

The Kdman-Levy filter reduces to the standard
Kadmen filter when a = 2, and will provide an
optima edimate of the dae when the input
noise is Gaussan or when there are sufficient
measurements for the tals of the distribution for
the date etimate to have converged to a
Gaussan digribution. In more generd cases, the
Kdmen filter will minimise the variance (if it is
well defined) and the KadmanLevy filter will
minimise the weight of the tal through the tal
covariance. It can be proved that the Kaman+
Levy filter minimises the tal covariance and
that this minimum is unique [5]. It is dso shown
tha smultaneoudy minimisng the variance and
the tall covariance is only possble when the
measurement noise is Gaussan. If a filter is
required to minimise the weght of the power
law tals of a didribution, then it must be a
Kaman-Levy filter, whether or not the power
law isa -stable or Gaussian stable.

4 Comparison of Kalman-Levy and Kalman
filters

One of the problems in proposng modifications
to the basc Kaman filter is that the
peformance of the Kdmen filter itsdf is
generdly very good. Even in dtuations where
the peformance is not optimd, it normdly
offers a good edtimate of the system dates that
is farly robus to erors in the sysem
parameters  (dynamicad  prediction matrix  or
measurement  noise). By compaison, the
edimates generated by the extended Kaman
filter for nonlinear system can be very sendtive
to errorsin some of these parameters.

As suggested by section 3.3, the
Kaman-Levy filter does offer an improvement
over the dandard Kdman filter for Stuations
where the underlying didributions are non
Gaussan and have power law tals but the
average peaformance benefits ae redivey
gndl, typicaly less than about 10% [5]. The
main advantages are that the estimated/predicted
erors are far more accurate in the Kaman-Levy
filter and that the performance is less sengtive
to errorsin the estimates of the error matrices.
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The covaiance is vey difficult to
edimate in the presence of a-dable noise or
truncated Levy noise. In the presence of true a-
dable noise, the second order moment is
infinite, but the ratio of the variances needed for
the dandad Kadmaen filter can be found.
However, the ratio is frequently unrdiable. In
the case of truncated Levy noise, the variance is
finite and, for a sufficiently large sample, it has
an expected vaue that is proportiond to Cd %@
[2], where d is the cut-off. The raio of the
variances should therefore converge to the ratio
of the two tal convergences. However, the fact
that these didributions include vey large
fluctuations means that the ratio of the variances
cdculated from some finite sample dravn from
a truncated Levy didribution is very unreliable.
In fact, the fluctuations in the edimated ratio
increase as the cut- off isincreased.

In Stuations where a is larger then 2, in
the Gaussan dable regime, the variance of the
noise is wdl defined and can be esimaed
directly from the noise characterigtics or from a
finite sample of the noise. However, the rétio of
covariances used in the Kaman filter is not
necessxily equd to (or even amilar to) the retio
of tal covariances used in the Kaman-Levy
filter. The variance of the noise is dependent on
the propetties of the whole digribution, the
centre of the digribution and the tals, whilst the
tal covariances are only dependent on the tals
of the didribution. In fact, due to the rapid
decay of the tals in this regime, the variances
tend to be dominated by the centres of the
digributions.

In this paper, three separate cases are
examined:

1. Constant measurement errors.

2. Alternating measurement errors.

3. Linearly reducing measurement errors.
Each of these examples is chosen because it
represents a case that might occur in an
autonomous guidance system. For smplicity, al
noise is scded S0 that the characteritic length
scde of the initid messurement noise is ore,
and 0 that the ratio of the tall covariances is
equa to the ratio of the variances. The second
of these assumptions means that the differences
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between the Kaman and KamanLevy filters
will be rdaivdy smdl. In practice, because of
the unrdigbility of the edtimates of the variances
for a < 2 and the dominance of the centre of the
digribution for a > 2, the actua differences
would be expected to be much greater than
shown here.
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Figure 1 — Expected characteristic length scale
(I » C'2, log scale) as a function of time step for
constant measurement error @ = 1.5): output
error for Kalman filter (circles), output error
for the Kalman-Levy filter (crosses), the
estimated error for the Kalman-Levy filter (solid
line), and the estimated error for the Kalman
filter (dashed line).

4.1 Congtant measurement errors

The dmplest case is where the measurement
erors have a condant vaiance or tal
covariance. In this case, the true output error (as
diginct from the output error estimated by the
filters) is equad for the Kdman and Kaman
Levy filter. This is because each of the filters
gives equd weight to each of the measurements,
as should be expected, leading to identica
Kdman gans a each time sep. The difference
IS in the estimated error produced by each filter.
The edtimated error produced by the Kaman
Levy filter is equd to the true eror in the
output, but the edimated eror is dgnificantly
gndler than the true eror for Kamean filter for
a < 2 (seefigure 1 for an example with a = 1.5)
and dgnificantly larger then the true error for a
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> 2. This means tha the Kaman filter does
produce an optimum output for this Smple case,
but that its own estimate of the expected error is
wildly inaccurate. This can be very important
gnce it can give the filter an undue confidence
in the date edimate, which may be particularly
important if this error estimate is to be used by
aother sygem for combining or fusng
information from different sources.

__________

001 N

Characteristic Length Scale

M ; ] ]
Index of Stability, a
Figure 2 — Expected characteristic length scale
(I » C¥2, log scale) as a function of a for
alternating measurement errors after 50 time
steps:. output error for Kalman filter (dashed
line), output error for the Kalman-Levy filter
(solid line), and the difference between the
Kalman and Kalman-Levy errors (dotted line).

0.001

1 5

4.2 Alternating measurement errors

In cases where measurements are  being
combined from severd sensors, each sensor is
likdy to have a different characteridic error.
The second example is intended to reflect this
process, where the neasurement errors aternate
between two vaues. Figure 2 shows the
charecterigtic length scale of true (output) error
for both the Kaman and KadmanLevy filters,
together with the difference between the two, as
a function of the index of stability @). Since the
tal covariance and the characterigic length
scale of the noise process are related by | » CY2,
then one or the other must be fixed for
comparison. In Figure 2, the characterigtic
length of the input errors is fixed and dternates
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between one and one-hdf a Successve

measurements.

1.0 | { T T

Kaman Gain

0.0 | 1 |

0 Time Step

Figure 3 — Kalman gain (linear scale) as a

function of time step for alternating

measurement error (a = 1.5): Kalman filter

(dotted line) and the Kalman-Levy filter (solid
line).

50

As can be sen in Fgure 2, the
difference between the two filters is greatest
when a << 2 or when a >> 2. Near a = 2, the
differences disgppear, as required. Even o, the
differences are not extremdy large, but this is
due to the fact that the ratio for the variances in
the Kamen filter is chosen to give an optimd
Kaman filter solution. In practice, the Kaman
filter would produce dgnificantly worse output
errors, for the reasons outlined above.

4.3 Linearly reducing measurement errors

The third example is mogt likely to reflect the
type of errors that might occur in an advanced
targeting syssem or an autonomous guidance
sygem. Many sysems use angle and/or angle
rale sensors to edimate podtions, ether the
relaive pogtions of arframes and potentiad
targets or the podtion of objects reative to
some reference datum (target  locdisation).
Examples of these types of system are passve
ranging dgorithms based on  angle rate
measurements and active (laser) targeting. In
these cases the angular erors (eg. sensor-
arframe dignment errors, errors due to angular
resolution  limitations)  ae  agpproximatey
congtant but the distance between the object and
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the sensor may vary as a function of time. If the
sensor is gpproaching the object the postiona
aror should decrease approximatdy linearly
with digance. This type of dtuation is
represented in Figures 4 and 5. The
characterigtic length scde associated with  the
measurement taill covariance decreases linearly
s0 that the tail covariance is given by,

Y, =(1- 0.02 ) (12)

0.1,

0.01

Characteristic Length Scale

0.001 i

! Index of Stability, a

Figure 4 — Expected characteristic length scale

(I » C¥ log scale) as a function of a for

linearly reducing measurement errors after 49

time steps. output error for Kalman filter

(dashed line), output error for the Kalman-Levy

filter (solid line), and the difference between the
Kalman and Kalman-Levy errors (dotted line).

10 T f T T

5

Kaman Gain

0.0 | ““;“ | - |
0 Time Step
Figure 5 — Kalman gain (linear scale) as a
function of time step for linearly reducing
measurement error (a = 1.5): Kalman filter
(dotted line) and the Kalman-Levy filter (solid

line).
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In this case the measurement error reduces to
zero at the 50" time step, but immediately prior
to this (the 49" time sep) the differences
between the Kaman filter and the Kaman-Levy
filter are redivey lage (see Figure 4). Thee
differences are due to the undue confidence that
is associated with the edtimates and predicted
dates in the Kdman filter. When a << 2, the
Kdmen filter is over confident in the
current/predicted date edtimate and gives a
larger weight to the predicted dtate vector than it
should do (indicated by the lower Kadman gan
vaues in Figure 5). During the 49 time Steps,
the effect of this over confidence accumulates,
giving rise to the comparatively large expected
eror for the Kadman filter in Figure 4. When a
>> 2, the reverse s true. Rather than being over
confident, the Kaman filter is over cautious
about the predicted state estimates.

5 Collateral Damage and Terminal Accuracy

The Kdmean filter ams to minimise the variance
of the date edimates, whilst the KamanLevy
filter @ams to minimise the tal covariance of the
date estimates. It is the tal covariance that
governs the weight of the power law tals, and
therefore the amount of probability that is found
in thee tals It will therefore determine the
expected number of solutions that have large
deviations from the desred solution. For
goplications involving guided wegpon systems
[6] or advanced targeting systems [7] such large
deviations are far more likely to be concerned
with collaterd damage than the smal deviations
around the desired solution.

For Gaussan dable noise, the smdl
deviations dominate the variance because they
ae normdly far more frequent, and when one
attempts to maximise the accuracy of a guidance
or targeting system it is these amdl deviaions
that tend to influence the optimisation process.
Such issues are likely to become more important
as these sysems become more sophisticated.
Recent advances in information and data fusion

[7910] and autonomous guidance and
navigation sysems [11] offer  ggnificant
advanteges in  tams of flexibility and
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peformance. However, as these sysems
become more sophisticated, they tend to become
more reliant on the accuracy and availability of
edimates for the noise present in the underlying
processes, and as they become more complex
the nature of this noise becomes harder to
characterise. For example, one of the new
techniques that has been developed for both
wegpon guidance and ar-to-ground targeting is
scene-matching and area correlation [7,11]. This
type of system correlates a database of ground
features (normaly generated from maps and/or
reconnaissance imagery) with imagery
generated by an onboard camera. This alows
the pogtion of objects found in the onboard
imagery to be referenced agangt an externd
database and can be used to asss the arcraft’'s
navigation system. In a guided wegpon system it
can aso be used for termind phase am point
optimisation. The problem with characterisng
the noise in this type of sysgem is tha the
properties of the noise are very dependent on
the features that appear in the scene. For
example, areas of ground with a grid plan layout
tend to pose particular problems for scene-
meatching agorithms because there are generdly
a large number of possble ways to maximise
the corrdations between the database and the
imagery. As such, thee sysems might be
expected to generate noise didributions with
veay lage tals, of the type discussed in this
paper, and therefore be good candidates for the
Kaman-Levy filter.

6 Conclusions

This paper has consdered the use of a variant of
the conventiond Kadman filter, the Kaman
Levy filter proposed by Sornette and Ide, for the
minimistion of the risk of collaerad damage.
This filter @ms to minimise the weght of the
tals of the eror didributions associated with
the filtered date vectors As a result the
KdmanLevy filter minimises the drors
associged with large fluctuations, which are
more likdy to be associaed with collaterd
damage.

Where the measurement noise is
Gaussan, the Kaman-Levy filter reduces to the
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conventiond Kadman filter, but where the
measurement noise has a power law tal the
Kaman-Levy filter minimisss the weght of the
tal. This is true if the noise has ether a long @-
gable) tall or a short (a > 2) tal. However, in
the case of the short tail, this minimisation is &
the expense of an increase in the variance of the
date esimates. In that case of a long tal, the
vaiance is not drictly defined, and any estimate
of the variance used in the Kdmen filter is
likely to be unrdidble.

The interesting aspect of this filter is that
it shows tha the dedre to maximise the
accuracy of a sensor or guidance system (as
characterised by the variance) is incompetible
with the desre to minimise the large deviaions
unless the messurement noise is Gaussan. Of
course, in many dtuations the differences
between the Kaman filter and the Kaman-Levy
filter can be smdl, but there are some Stuations
where the differences ae ggnificant. Given the
widespread desire to reduce the risk of collatera
damage, this fundamentad incompatibility needs
further consderation.
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