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Abstract

This paper presents a new practical
technique to design stabilizing locally-
robust nonlinear controllers using ideas
from feedback linearization theory. The
asymptotic stability of the nonlinear closed
loop system is achieved by constructing
outputs for the linearized plant at a given
equilibrium point. A method is presented to
locate transmission zeros of the linearized
plant, so as to stabilize the linear closed
loop system and guarantee optimal modal
robustness. Outputs are then constructed to
place the transmission zeros of the
linearized plant at these locations. The
nonlinear feedback for the nonlinear system
is then constructed from these outputs.

1 Introduction

This paper presents a new technique to
design stabilizing and locally robust
nonlinear controllers for nonlinear systems
that are affine in input. The nonlinear
controller is constructed in the same manner
as in the feedback linearization theory.

Feedback linearization has become a very
popular technique for control system design
of nonlinear systems. (See Isidori [1],

Nijmeijer and Van der Schaft [2],
Vidyasagar [3]). In essence, this technique
utilizes state feedback and coordinate
transformations to cancel nonlinearities and
render the closed loop system linear in the
input-output behaviour. Linear control
techniques can then be applied to address
various design issues. Historical
developments of this technique are given in
the bibliographical notes of Isidori [1], and
Nijmeijer and Van der Schaft [2]. 

Various issues of internal stability in
feedback linearization are well understood.
For plants where relative degree of the
nonlinear system is the same as the system
order, the closed loop system can be
completely linearized and later stabilized
with another linear state feedback. However,
for plants in which the relative degree is
lower than the plant order, internal stability
is governed by stability of the zero
dynamics. Zero dynamics are a by-product
of closing the loop with linearizing
feedback. If the zero dynamics are unstable,
the resultant closed loop system is internally
unstable. Since the zero dynamics modes are
uncontrollable from reference inputs, they
cannot be stabilized by any additional
feedback. 
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Zero dynamics are inherently nonlinear. It is
possible to linearize these dynamics around
the equilibrium point of interest. It has been
shown in Isidori [1] that the eigenvalues of
linearized zero dynamics are the same as the
transmission zeros of the Jacobian
linearization of the nonlinear plant at the
equilibrium point. Hence, to stabilize zero
dynamics, it is sufficient that the linearized
plant has stable transmission zeros. The
location of transmission zeros of a linear
system changes when the output matrix is
changed. Hence, a new technique has been
proposed in this paper for constructing
output matrix to place transmission zeros of
the system desired locations. The same
outputs are then used for constructing
feedback for asymptotically stabilizing the
nonlinear system. This approach is useful
when stability of the closed loop system is
of primary concern and not linearization
obtained by virtue of the design. 

The problem of locating transmission zeros
by constructing the output matrix has
presumably not been addressed previously.
Locations of transmission zeros of a
physical system are usually determined by
the location of sensors and actuators on the
system. As a result, none of the standard
techniques like static/dynamic feedback,
redistribution of inputs/outputs, etc., can
change transmission zero locations. While
much research has been done to understand
the properties of transmission zeros, (for
example, see Davison and Wang [4], Kailath
[5], Chen [6], and Patel and Munro [7]) not
much work has been done on the placement
of transmission zeros. The only reference
found that deals with a similar problem is
Misra and Patel [8]. In this reference, the
problem of transmission zero assignment is
reduced to the problem of eigenvalue
assignment using output feedback. The
inverse of this feedback compensator is then

used as a feed-through term to place
transmission zeros. 

The possibility of reassigning the output
matrix of the system to place transmission
zeros is not usually considered because this
matrix cannot be changed for a physical
system after the sensors have been located.
In feedback linearization approach, full state
feedback is used. Outputs are only notional
and hence construction of a new set of
outputs results in a very simple yet powerful
technique.

Consider a linear system of order n, with m
inputs and m outputs,

x Ax Bu
y Cx
= +
=

For such a system only n-m transmission
zeros exist (Davison [4]). Therefore, a
maximum of n-m zeros can be assigned by
changing the matrix C. The remaining zeros
are automatically assigned at infinity. The
problem of transmission zero assignment
has been cast in this paper as an eigenvalue
assignment problem using state feedback. A
state feedback is designed to place n-m
eigenvalues at the desired zero locations and
the remaining m eigenvalues at the origin.
The matrix C is constructed from this
feedback matrix. 

The problem of optimally locating the
transmission zeros is then addressed.
Practically, it is desirable that closed loop
poles of the system are robust to
perturbations in system parameters. Such
robustness issues have been very effectively
addressed in the theory of eigenstructure
assignment (see Srinathkumar [9] and
Kautsky et al. [10]). A two-step procedure is
proposed in this paper to ensure stability and
maximization of local robustness of the
closed loop system. In the first step, n-m
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eigenvalue locations are obtained using
optimization techniques to minimize the
condition number of a certain eigenspace
matrix. In the second step, a state feedback
matrix is constructed so as to place m
eigenvalues at the origin and the remaining
at the optimal locations obtained from the
first step. Thus, this two-step process
ensures optimal robustness of the linear
closed loop system. The feedback gain
matrix is then used to generate the required
matrix C. 

This paper is divided into four sections.
Section 1 is the Introduction, Section 2
formally defines the problem addressed in
the paper. Section 3 presents the systematic
procedure to construct outputs of a linear
system so that the system has desired
transmission zeros. Section 4 addresses
robustness issues and describes how to
choose transmission zero locations and the
state feedback so that the closed loop system
is stable and optimally robust. Section 5
contains an example to describe the
technique presented in Sections 3 and 4.
Section 6 finally presents conclusions of the
paper.

2 Problem statement
Consider a multi-input nonlinear system in
the affine form:

( ) ( )x f x g x ui i
i

m

= +
=
∑

1

= f(x) + g(x) u (1)

where x ∈ Rn are the states, ui ∈ R, i ∈ {1,
… , m} are the m inputs,  f: Rn → Rn defines
the basic dynamics of the plant, gi: Rn → Rn,
i ∈ {1, … , m} are m vector fields through
which the control inputs enter the system.
Define g(x) = [g1(x) g2(x) … gm(x)] and u =
[u1 , … ,um]T. Both f and g are assumed to be
sufficiently smooth and f(0) = 0. Consider

the following linearization of the nonlinear
system (1) about the origin:

x Ax Bu= + (2)

where x ∈ Rn, u ∈ Rm, y ∈ Rm.  A: Rn → Rn,
B: Rm → Rn. Let the outputs of the system
(1) as well as (2) be defined by 
  

y = Cx (3)

where C: Rn → Rm. Let v ∈ Rm denote
external reference input vector. System (1)
can be feedback linearized in some small
neighborhood around the origin by the
following feedback function: 

u x Cg x v Cg x Cf x( ) =   -  -1 -1( ) ( ) . ( )b g b g (4)

provided CB is invertible [1]. The
linearizing feedback also stabilizes the
closed loop system if the system (1), (3) has
stable zero dynamics. Since the eigenvalues
of zero dynamics are the same as
transmission zeros of the linearized system
(2), (3) [1], the following problem is solved
in this paper: 

Construct a matrix C such that (i) CB is
invertible and (ii) the system (2),(3) has
stable transmission zeros. In addition, it is
desired that the closed loop system using
feedback as in (4) be locally optimally
robust, in the sense that, the perturbation of
elements of A matrix should minimally
affect the closed loop eigenvalue locations.

3 Assignment of transmission zeros of
a linear system 
This section presents a procedure to
construct linear outputs to place the
transmission zeros of the system at desired
locations. These linear outputs can later be
used to construct a nonlinear feedback that
locally stabilizes the nonlinear system.
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To define the transmission zeros of system
(2), (3), consider a new output 

~y y Cx CAx CBu= = = + , (5)

and assume that CB is an invertible matrix.
The set of transmission zeros ZT for the
system (2), (3) satisfies:

ZT  ⊂ λ(A – B(CB)-1CA). (6)

where, λ(A – B(CB)-1CA) denotes the
spectrum of matrix A – B(CB)-1CA. Since
the new outputs ~y  are just the derivatives
of the output y, a total of m eigenvalues of
the above set would have to lie at the origin.
The other n-m eigenvalues define the
transmission zeros for the system (2) and
(3).

The main result that shall be proved in this
section is stated in the following theorem:

Theorem 1.  If the system (2) is controllable
and B is a full rank matrix, then the (n-m)
transmission zeros of the system (2),(3) can
be arbitrarily assigned by a choice of the
output C matrix.

The proof of this theorem requires some
more results, which are stated and proven
first. Formally, the problem of construction
of outputs of the form (3) to place n-m
system transmission zeros can be stated as
:Find a C matrix such that transmission
zeros of (2), (3) are placed at  Z ={z1, z2, z3,
… , zn-m}, where z1, z2, … , zn-m are distinct
non zero complex numbers and Z is a self
conjugate set.

The following lemma describes a procedure
that can be adopted to place the transmission
zeros. Define a new set Z ′={ z1, z2, … , zn-m,
0, … ,0} which is constructed by
augmenting the set Z with m zeros.

Lemma 1.   Suppose there exists a gain
feedback m× n matrix K such that, 
i) λ(A-BK)= Z ′, and
ii) the geometric multiplicity of the

eigenvalue at the origin of (A-BK) is
same as its algebraic multiplicity,

then, any full rank m× n matrix C which
satisfies the condition C(A-BK)=0, places
the transmission zeros of system (2), (3) at
Z.
The proof of this lemma requires a result on
the canonical forms of closed loop matrices,
which is stated in Lemma 2 below. Let the
linear coordinate transformation that
transforms A and B matrices of the system
(2) into the controllable canonical form [12]
be denoted by T: Rn → Rn. Let k1, k2, … , km
be the size of the m individual blocks of the
matrix A*=T-1AT corresponding to m inputs.
Denote B* = T-1B. Let K be any feedback
gain matrix, and let K*= KT. Then for some
constants ci,j , i∈{1,…,m}, j∈{1, … , n},
the canonical form of the closed loop matrix
can be written as: The canonical form A*-
B*K* in equation (7) is valid for all possible
feedback matrices K. For the special
feedback as defined in Lemma 1, this
canonical form has a special structure. The
following Lemma describes this special
structure.

Lemma 2. Suppose a matrix K satisfies
conditions (i) and (ii) of Lemma 1, then in
the canonical form of the closed loop matrix
as described by Equation (7), all the entries
in the column numbers 1, k1+1, k1+k2+1, …
, n-km+1 are zero.

Proof. The complete proof of this lemma is
lengthy and shall be reported elsewhere.
Basically the matrix A*-B*K* is diagonalized
and rearranged to shift all row vectors
containing ci,j  terms to the bottom of the
matrix. Now columns 1, k1+1, k1+k2+1, … ,
n-km+1 of the right diagonalizing matrix can
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be easily shown to be zero. As a result the
corresponding columns of A*-B*K* also turn
out to be zero.

    

A B K

c c c c c c c

c c c c c c c

c c c c

k k k k n

k k k k n

m m m m

* * *

, , , , , , ,

, , , , , , ,

, , ,

− =

+ +

+ +

0 1 0 0
0 0 1 0

0 0 0
0 0 0 1

0 1 0 0
0 0 1 0

0 0 0
0 0 0 1

0 1 0 0
0 0 0 0 0 1 0

0 0 0 1

1 1 1 2 1 3 1 1 1 1 1

2 1 2 2 2 3 2 2 1 2 2

1 2 3

1 1 1 2

1 1 1 2

, , , ,

( )

k m k m k k m nc c c
1 1 1 21

7

+ +

L

N

MMMMMMMMMMMMMMMMMMMMMMMMM

O

Q

PPPPPPPPPPPPPPPPPPPPPPPPP
  

We now construct the m-dimensional left
null space of the matrix A*-B*K*. By
inspection, the following C* matrix satisfies
the condition C*(A*-B*K*)=0:

  C

c c c
c c c

c c c

k

k k k k

m n k m n k m nm m

*

, , ,

, , ,

, , ,

=

− − −
− − −

− − −

L

N

MMMMM

O

Q

PPPPP

+ + +

− + − +

1 2 1 3 1

2 2 2 3 2

2 3

1

1 1 1 2

1 0 0
0 1 0

0 0 0 1

(8)

Proof of Lemma 1. 
The feedback matrix K is assumed to satisfy
conditions (i) and (ii) of Lemma 1.
Condition (ii) ensures that the closed loop
matrix A-BK has an m-dimensional null
space. In other words, there exists a full
rank m×n matrix C such that 

C(A-BK) = 0. (9)

For the C matrix as constructed above, 

   CA – CBK = 0,

   CBK = CA,

and finally, the K matrix itself can be
written as 

K = (CB)-1 CA. (10)

 provided CB is invertible. 
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Therefore, if CB is invertible, A-BK is
effectively A-B(CB)-1CA for this newly
defined C. By the definition of transmission
zeros (eq. (6)), all the eigenvalues of the
matrix A-BK other than the m eigenvalues at
the origin are the transmission zeros of
system (2) and (3), with the output matrix C
as defined by equation (9).

Now, it only needs to be shown that, with
such a choice of C, CB is invertible. For
this, consider again the controllable
canonical form (A.7) and C* as defined in
eq.(8). The product C*B* results in an
identity matrix and hence C*B* is invertible.
Define  *C C T=  where T is the coordinate
transform as used in Lemma 1. By
transforming the coordinates back we get
C B=C*TT-1B*. Hence, C B is invertible and
satisfies the condition C (A-BK) = 0. C  is a
full rank matrix and so for any full rank C
that satisfies condition (9) there exists an
invertible transformation M such that
C=M C . Therefore CB=M C B is also
invertible.   

Remark 1. Though it is assumed in the
initial problem statement that the set Z
contains unique non-zero complex numbers,
this condition can be further relaxed. The
only requirement is that K should be chosen
in such a way that for each repeated
eigenvalue of (A-BK), the geometric
multiplicity and the algebraic multiplicity
should be the same.   

Now, it is possible to prove Theorem 1.

Proof of Theorem 1. As can be seen from
the structure of the canonical form (A.7),
the condition that “K should be such that,
(A-BK) must have m eigenvectors
corresponding to the eigenvalue at the
origin”, is identical to the condition that, “K
should be such that each input places one
eigenvalue at the origin”. This is certainly

possible in a system which is controllable
and where B is a full rank matrix. Therefore,
the theorem has been proven.

4 Feedback linearization as a standard
linear feedback design problem 
In this section it is shown that if the system
outputs can be reassigned, a feedback
linearization based controller can be viewed
as a nonlinear extension of a linear
feedback. This results in a systematic
procedure to design nonlinear controllers
that satisfy local design requirements.

4.1 Linear design and feedback
linearization
First we show that if outputs can be freely
chosen then around an equilibrium point
feedback linearization becomes a standard
linear feedback design with some
constraints on pole locations. Consider the
nonlinear affine system (1) and its
linearization (2). Let the outputs be defined
by (3) where the matrix C has been
constructed using Lemma 1 to place
transmission zeros of the linearized system.
The dynamics of the closed loop system
using the standard linearizing feedback as in
(4) are:

[ ]( )( )
[ ]

1

1

( ) ( ) ( ) ( )

( ) ( )

x f x g x Cg x Cf x

g x Cg x v

−

−

= −

+
. (11)

Note that this closed loop system is not
linear because the zero dynamics of this
system are n-m dimensional and nonlinear.
If these closed loop dynamics are  linearized
(by Taylor series truncation at the
equilibrium point), the linearized closed
loop system would be: 

 ( ( ) ) ( )x A B CB CA x B CB v= − +− −1 1 . (12)
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Now, since C is constructed using Lemma
1, the feedback gain matrix K used to
construct C satisfies condition (10).
Therefore, the local dynamics of a feedback
linearization based design can be rewritten
as:

( ) ( )x A BK x B CB v= − + −1 . (13)

where K is chosen such that it satisfies
conditions of Lemma 1. 

Hence it can be concluded that the choice of
matrix K that is used to construct the matrix
C in Lemma 1, effectively designs the
linearizing feedback locally. This result is
very useful because it identifies the
feedback linearization based controller
design close to an equilibrium point, with a
linear feedback design. 

4.2 Design for linear robustness
In this section, the procedure to design a
feedback for optimal robustness is presented
using ideas from the eigenstructure
assignment technique. The aim is to place
eigenvalues of a multi-input linear system
using a full state feedback in such a way
that the closed loop system is robust. Here
robustness is used in the sense that, the
closed loop eigenvalues are optimally
insensitive to perturbations of matrix A
elements. The main ideas for robustness
have been derived from Kautsky et al. [10],
where the following problem is addressed: 

Given the controllable system (2) with a full
rank matrix B, and a self conjugate set of
desired eigenvalues {λ1, …, λn}, find a
nonsingular matrix X of eigenvectors and a
full state feedback K satisfying 

(A-BK)X = XΛ, (14)

such that some measure of robustness is
optimized. Here Λ corresponds to the
diagonal matrix with λ1, …, λn as its entries.
Minimization of condition number of X is
chosen as the measure to improve
robustness.

To solve this problem, it is first necessary to
characterize which eigenvectors for a given
eigenvalue λj, can be assigned by feedback.
The space in which these eigenvectors can
lie is known as the eigenspace of the
eigenvalue and can be characterized in the
following way. Let the B matrix be written
as 

B U U
Z

=
L
NM
O
QP0 1 0

, 

with U=[U0 U1] an orthogonal matrix and Z
a nonsingular mxm matrix. This
decomposition of B can be obtained using
singular value decomposition or QR
decomposition of B.

Lemma 3. ([10]):  The eigenvector Xj of A-
BK corresponding to the assigned
eigenvalue λj must belong to the space 

S Nj
T

jU A I= −1 ( )λn s (15)

where N{.} denotes the null space.

Proof.  Refer [10]

Kautsky et al. [10] describe various
numerical algorithms to assign poles while
minimizing the condition number of the
matrix of assigned eigenvectors. The lower
bounds of the condition number of matrix X
can also be calculated in the following way.
Let Sj (λj) be the matrix of m orthogonal
vectors lying in the space S j. Consider the
eigenspace matrix S obtained by the
concatenation of matrices Sj (λj) for j=1, …,
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n. Then the condition number K(X) for all
possible eigenvector matrices X, is bounded
by:

min K(X) ≥ K(S)/√(n).

After testing on numerous design examples,
Kautsky et al. have shown that their
algorithms work quite well when K(S) is
small. It has been observed that the
condition numbers K(X) of the assigned
eigenvectors X are generally close to the
optimal bound K(S)/√(n). 

Srinathkumar [9] generalized the ideas from
[10] to assign both eigenvalues and the
eigenvectors for maximizing robustness.
The following two step approach is
suggested. 

a. Optimal location of eigenvalues is
searched in a pre-specified region of left
half complex plane to minimize the
condition number K(S). 

b. Algorithms in [10] are used to find a
feedback, that assigns the poles at
optimal locations and finds eigenvector
matrix X so as to minimize K(X).

This approach results in a optimally robust
linear state feedback and can be easily
adopted to design the feedback linearization
based controller. Therefore, in summary, the
following procedure can be adopted to
design a feedback linearization based
controller to satisfy the locally robust
stability requirements:
1. Construct the linear system (2) from the

original nonlinear system (1).
2. Search for a self conjugate set of stable

pole locations {z1, z2, … , zn-m, 0, … ,0}
to minimize K(S). 

3. Design a feedback K using methods
from [10] to minimize K(X) and satisfy
requirements of Lemma 1.

4. Find C as in Lemma 1.

5. Define the linearizing feedback as in (4)
and obtain the closed loop system (11). 

Though the feedback controller designed in
Step 3 is linear, Step 5 results in a closed
loop system with a nonlinear feedback. The
nonlinear closed loop system would locally
meet the design requirements of stability
and robustness. 

5 Example
The example chosen here to demonstrate the
controller design technique has been taken
from the thesis by El-Shaer [11]. This thesis
presents a detailed model of double inverted
pendulum on an inclined rail. The thesis also
presents a few linear and nonlinear
controllers designed to stabilize the system
and simulation results. The states considered
in the model are the cart position and
velocity along inclined rail, angular position
and velocity of lower pendulum, and angular
position and velocity of upper pendulum. El.
Shaer [11] considers only the force on cart
as the single input. Here, torque on the lower
pendulum is considered as an extra input.
The equilibrium condition for this model is
chosen as the origin [0 0 0 0 0 0]′. The linear
model at the origin is then represented by
the following A and B matrices

A =

L

N

MMMMMMM

O

Q

PPPPPPP

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 2 3237 0 0670 4 6244 0 0139 0 0047
0 48 3060 13 2765 133909 0 3762 01860
0 53 2614 49 2099 15488 0 6688 0 4591

- . . - . . - .
. - . . - . .

- . . - . . - .

B =

L

N

MMMMMMM

O

Q

PPPPPPP

0 0
0 0
0 0

23 0561 4 7655
66 7640 99 0676
7 7219 109 2304

. - .
- . .

. - .

.

The eigenvalues of matrix A are [0, 8.2334,
4.5058, -9.3105, -5.6946, -3.1939] and the
plant is clearly unstable. 



DESIGN OF STABILIZING AND LOCALLY-ROBUST NONLIN. CONTROLLERS FOR A CLASS OF NONLIN. SYSTEMS

     544. 9

Feedback linearization based stabilizing
controller is designed for this plant by
constructing the output matrix C. The
eigenvalues of the closed system need to be
located. Since the plant in this example has
two inputs, it is required to place two
eigenvalues at the origin to construct a C
matrix. In the final closed loop, it is not a
good idea to keep two eigenvalues at the
origin. Hence the total feedback can be
modified in the following way [1]:

-1

1-1

2

( )= ( ( ))  

0
- ( ( )) . ( )

0

u x Cg x v

Cg x Cf x Cx
λ

λ
  

+  
  

.(16)

This feedback would then place the two
eigenvalues at -λ1, -λ2 instead of the origin.
The procedure adopted to locate eigenvalues
in this example is slightly different from the
one suggested in Section 4.2. Optimization
based techniques are used to locate all the
six eigenvalues, two of which namely, λ1

and λ2 are constrained to be real and other
four (λ3, …, λ6) are constrained to lie in a
sector of the complex plane bounded by
minimum damping of 0.2. In each step of
optimization the following computations are
carried out. 
(i) K matrix is constructed using place

command in MATLAB to place
eigenvalues at (0 , 0, λ3, …, λ6). 

(ii) C matrix is obtained by constructing
null space of (A-BK).

(iii) The closed loop matrix is
constructed as 

A A B CB CA Cc = − +
L
NM

O
QP

L
NM

O
QP

( -) .1 1

2

0
0
λ

λ
.(17)

(iv) The condition number of the
eigenvector matrix of the closed loop
matrix Ac is computed.

This condition number is minimized during
optimization. Using this approach it is
possible to locate all the system eigenvalues
and design the feedback, simultaneously.
For the double inverted pendulum, the final
eigenvalue locations obtained are:  -3.0200
± 14.7683i,  -0.5971 ± 2.9320i,  -9.9345,  -
5.5889. The corresponding C matrix is given
by

C =
L
NM

O
QP

0 3435 0 5740 01097 0 6429 0 0152 0 3562
0 7623 0 2555 0 5407 01934 0 0693 01379
. - . . . - . .

- . - . - . . - . .

The nonlinear controller is then given by Eq.
(10). The complete system along with the
controller was simulated in MATLAB. As
mentioned in [11], the relevant domain of
attraction of the closed loop system is
obtained in the plane containing θ1, θ2 as the
two axes. Using extensive simulation, all
possible combinations of θ1, θ2 are found
such that starting with these angular
positions as initial conditions, the controlled
double pendulum returns back to the
vertically upright position. Fig. 1 shows an
estimate of the domain of attraction of the
stabilized inverted double pendulum using
the feedback linearization based controller.
For comparison, the domain of attraction
obtained using a nonlinear controller
designed in [11] is also plotted in the figure.

6 Conclusions
This paper has presented a simple and
practical technique to design nonlinear
controllers to stabilize a nonlinear system
based upon feedback linearization theory. It
has been shown that the freedom to choose
outputs of a linear system can be very
effectively used to design controllers. The
problem of choice of outputs has been cast
as an eigenvalue assignment problem with
some constraint on choice of the eigenvalue
locations. Thus many good results in
literature on eigenvalue assignment have
been applied to the feedback linearization
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theory. The natural extension of the work
carried out here is to extend the linear
outputs to nonlinear output functions to
guarantee a large domain of attraction for
the closed loop system.
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