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a large number of studies has been 
ut on the trajectory optimization of 
nes, the dynamics of the vehicle has 
en assumed as the point mass and the 
 dynamics has not been covered at the 
rajectory optimization. In a practical 
iew, it is important to optimize the 
of a space plane with the rigid body 

n, since the optimal trajectory 
ith the point mass assumption might 

lt for the attitude control system to 
 the force generated by the attitude 
ight affect the flight trajectory. 

 this study aims to obtain the optimal 
with the rigid body assumption using 
ptimization methods. In order to avoid 
lty in direct optimization of the actual 
riables, the guidance law and the 

gains are optimized simultaneously. 
re, Genetic Algorithm (GA) is 

 order to obtain an appropriate initial 
he optimal solution, and subsequently 
 Quadratic Programming (SQP) is 
 refine the solution. The effectiveness 
osed methods is demonstrated. 

ction 

 optimization with minimum 
 consumption will play an important 
ign the flight path of a space plane. In 
es of the trajectory optimization 

problem of a space plane [1]-[4], its dynamics 
has been usually assumed as a point mass, and 
the attitude control as a rigid body has not been 
covered simultaneously. Moreover, the attitude 
control as a rigid body has usually been 
designed to track the optimal trajectory obtained 
with the point mass assumption. However, the 
optimal trajectory obtained with the point mass 
assumption is not necessarily optimal for the 
trajectory taking the rigid body dynamics into 
consideration. This is because of two main 
reasons. First, the optimal trajectory obtained 
with the point mass assumption might be 
difficult for the attitude control system to track. 
Second, the force generated by the attitude 
control such as trim drag might affect the flight 
trajectory.  

Thus, in a practical point of view, it is 
important to optimize the trajectory with the 
rigid body assumption. However, it is usually 
difficult to solve this type of problem. This is 
mainly due to the substantially smaller time 
scale in the control variables of the rigid body 
dynamics, which results in high dimensionality 
with considerable nonlinearity in the solution 
domain and the difficulty in giving an 
appropriate initial guess of the solution.  

Therefore, this study aims to obtain the 
optimal trajectory with the rigid body 
assumption using effective optimization 
methods. Taking the short time scale of the 
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actual control variables into consideration, the 
guidance law and the feedback gains are 
optimized simultaneously instead of optimizing 
the actual control variables. Furthermore, GA 
[5] is applied in order to obtain an appropriate 
initial guess of the optimal solution, and 
subsequently SQP [6] is utilized to refine the 
solution. The effectiveness of the proposed 
methods is demonstrated through the application 
for the ascent trajectory optimization problem 
on the equatorial plane.  

2 Optimization Methods 

2.1 Trajectory Optimization Problem 

The trajectory optimization problem covered in 
this study is defined as follows. 

Let ( )tx  be the state variables, ( )tu be the 
control variables, and p be the static unknown 
parameters. If 0t or ft are unknown, they are 
incorporated into p . The system must satisfy 
the following constraints. 

Initial conditions at time 0t t= : 
  0 0 0 0( ( ), ( ), , )E t t t =ψ x u p 0  (1) 

  0 0 0 0( ( ), ( ), , )I t t t ≤ψ x u p 0  (2) 

State equations: 
  ( ) ( ( ), ( ), )t t t=x f x u p  (3) 

Path constraints at time 0 f[ , ]t t t∈ : 
  ( ( ), ( ), )t t =C x u p 0  (4) 

  ( ( ), ( ), )t t ≤S x u p 0  (5) 

Terminal conditions at time ft t= : 
  f f f f( ( ), ( ), , )E t t t =ψ x u p 0  (6) 

  f f f f( ( ), ( ), , )I t t t ≤ψ x u p 0  (7) 

Under the above constraints, the control 
variables and undetermined parameters are 
optimized to minimize the following 
performance index 

  f f f( ( ), ( ), , )t t tφ x u p  (8) 

2.2 Direct Shooting Application 

The trajectory optimization problem stated in 
the preceding section can be converted to a 
nonlinear programming problem (NLP). In this 
study, direct shooting application [7] is used as 
the conversion method. 

Divide the time domain 0 f[ , ]t t  into 
N segments. 

 0 1 1 2 1 f[ , ],[ , ], ,[ , ] ( )N N Nt t t t t t t t− =  (9) 

At the initial point of each segment, the state 
variables ix  are allocated. Furthermore, 
dividing each segment into M sub-segments, 
the control variables ( 0, , )ij j M=u  at the 
nodes of each sub-segment are also allocated. 
Between the nodes of sub-segments, the control 
variables ( )tu  are determined by linear 
interpolation of ( 0, , )ij j M=u . Then, 
propagation of the trajectory from the initial 
point to the final point in each segment can be 
accomplished by integrating the state equations. 
In this study, 4th order Runge-Kutta-Gill 
method is used as the integration scheme. Thus, 
the total set of NLP variables X  is defined as 
              0 1 1[ , , , , ]T T T T T

N −=X X X X p  (10) 

  0[ , , , ]T T T T
i i i iM=X x u u  (11) 

Where p  are the parameters defined in the 
preceding section. 

In addition, the continuity condition for the 
state and control variables at the joint of 
segments must be satisfied, i.e.,  

 1 1
1

( 1)0

( )
( , , ) i i

i i i
iM i

t + +
+

+

− 
= = − 

x x
∆ X X p

u u
0  (12) 

Where 1( )it +x denotes the state variables 
obtained by solving the following initial value 
problem of the state equation.  

 
1

( )
( ) ( ( ), ( ), ), [ , ]

i i

i i

t
t t t t t t +

=
= ∈

x x
x f x u p

 (13) 

The performance index is evaluated at the 
terminal time ft . In addition, path constraints 
are evaluated at the nodes of each sub-segment. 
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Thus, the trajectory optimization problem 
is converted into the following NLP.  

1minimize : ( ) ( , )NF φ −=X X p  (14) 

0 0

1

1

f 1

subject to :
( , )

( , , )
( )

( , , )
( , )

E

i M j i i

i i i

E N

× + +

+

−

 
 
 = =
 
 
  

ψ X p
C X X p

G X
∆ X X p
ψ X p

0
 (15) 

( )

0 0

1

f 1

( , )
( ) ( , , )

( , )

0 2, 0

I

i M j i i

E N

i N j M

× + +

−

 
 = ≤ 
  

≤ ≤ − ≤ ≤

ψ X p
H X S X X p

ψ X p
0

 (16) 

In the converted NLP, the time domain 
division and introduction of the additional NLP 
variables reduce the sensitivity of the ordinary 
differential equations to the NLP variables. 
Moreover, the Jacobian matrix of the constraint 
functions becomes sparse. In SQP approach, 
these characteristics in the converted NLP can 
enhance the robustness of the convergence and 
reduce the computational cost to obtain the 
gradient information. On the other hand, the 
time domain division is not carried out in GA 
approach (i.e., 1N = ), because the gradient 
information is not necessary and additional NLP 
variables as well as the continuity condition 
degrade the convergence property of GA. 

2.3 Genetic Algorithm 

The continuous parameter GA is utilized to 
select the initial solutions for the SQP. In this 
method, NLP variables X  are treated as the 
gene of each individual. The algorithm used in 
this study is as follows. 

(Step1: Initialization) 
The initial PN  population of the NLP 
variables is prepared at random. 

(Step2: Crossover) 

Multi-parental Unimodal Normal Distribution 
Crossover [5] (UNDX-m) is used as the 
crossover scheme. This scheme achieves 
efficient global search: 

2m +  parents (1) ( 2), , m
P P

+X X are selected 
at random. The median point of the first 

1m +  parents is defined as GX , i.e.,  

  
1

( )

1

1
1

m
i

G P
im

+

=
=

+ ∑X X  (17) 

The difference vectors of each parent are 
defined as  

  ( ) ( )ˆ ( 1, , 2)i i
P G i m= − = +d X X  (18) 

Let D̂  be the length of the component of 
( 2)ˆ m+d  orthogonal to (1) ( )ˆ ˆ, , md d . Moreover, 

let (1) ( )ˆ ˆ, , n m−e e  be orthonormal basis of the 
subspace orthogonal to (1) ( )ˆ ˆ, , md d . 
Generate children ( ) ( 1, , )j

C Cj N=X by 
following equation. 

  ( ) ( ) ( )

1 1

ˆ ˆ ˆ
m n m

j i i
C G i i

i i
w D v

−

= =
= + +∑ ∑X X d e  (19) 

Where ,i iw v  are random numbers which 
conform to normal distribution with 0 mean 
and standard deviation of ,w vσ σ  respectively. 
The standard deviations of each distribution 
are set to the value recommended in [5]. 

  1 3( 1),
2( )( 2)w v

m
n m mm

σ σ += =
− +

 (20) 

(Step3: Selection) 
In order to achieve the global search of the 
performance index and the feasibility search 
simultaneously, this study adopts a new 
selection method, which exploits the multiple 
criteria, i.e., the distance of the gene vectors, 
the performance index, and the following 
penalty function. 

1 1

( ) ( )

( ) max[0, ( )]
E I

r

m m

i i
i i

F F

r G H
= =

=

 
+ + 

 
∑ ∑

X X

X X
 (21) 

Where r  denotes the penalty parameter. 
,E Im m denote the number of NLP equality 
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and inequality constraints respectively. The 
selection method is as follows: 

(Step3-1) Rank the created CN  children in 
ascending order on their penalty function. Set 
the rank parameter 1i = . 

(Step3-2) Carry out the selection with respect to 
the rank i th child ( )i

CX : If there are any 
parents ( )j

PX that satisfy both (22) and (23), 
replace the nearest parent ( )nj

PX (i.e., 
( ) ( )nj i
P C−X X  is minimum amongst the parents 

which satisfy both (22) and (23).) with ( )i
CX  

and go to Step3-3. 

  ( ) ( )( ) ( )i j
C PF F≤X X  (22) 

  ( ) ( )( ) ( )i j
r C r PF F<X X  (23) 

If Ci N=  or there are no parents that satisfy 
(23), go to Step3-3. Otherwise, set 1i i→ +  
and repeat Step3-2 

(Step3-3) Rank the children newly in ascending 
order on performance index and set the rank 
parameter 1i′ = . 

(Step3-4) Carry out the selection with respect to 
the rank i′ th child ( )i

C
′X : If there are any 

parents ( )j
PX  that satisfy (24), replace the 

nearest parent ( )nj
PX  with ( )i

C
′X  and go to 

Step4.  
  ( ) ( )( ) ( )i j

r C r PF F′ <X X  (24) 

If Ci N′ =  or there are no parents that satisfy 
(24), go to Step4. Otherwise set 1i i′ ′→ +  
and repeat Step3-4. 

(Step4: Termination check) 
If iteration number equals IN  (Step2-Step4 
correspond to 1 iteration), terminate the 
algorithm. Otherwise, return to Step2. 

Five parameters , , , ,P C IN N N m r  characterize 
the search performance of the GA. Especially, 
the penalty parameter r  should be sufficiently 
large so as to assure that the solution converge 
on the feasible region. 

2.4 Sequential Quadratic Programming 

The algorithm of SQP [6] is as follows. 

(Step1) Select an appropriate initial solution 
(0)X  and positive definite symmetric matrix 

(0)B . Set the parameter 0k = . 

(Step2) Solve the quadratic programming 
problem (25)-(27) and obtain the variables 

( )kd as well as Lagrange multipliers 
( 1) ( 1, , )k
i E Ii m mλ + = + . 

 ( ) ( ) ( ) ( )1minimize : ( )
2

Tk k k kF∇ +X d B d  (25) 

 ( ) ( )subject to : ( ) ( )k k+ ∇ =G X G X 0  (26) 

 ( ) ( )( ) ( )k k+ ∇ ≤H X H X 0  (27) 

(Step3) Carry out the one-dimensional search of 
the penalty function (21), i.e., find the scalar 
variable ( ) (0,1]kα ∈  that satisfies 
 ( ) ( ) ( ) ( )arg min[ ( )]k k k k

rFα α= +X d  (28) 

Note that the penalty parameter r  in (21) is 
determined by the following equation. 
  

1
max

E I
ii m m

r ρ λ
≤ ≤ +

= +  (29) 

Where ρ  denotes an appropriate positive 
parameter. Then, update the variables as 
follows. 
  ( 1) ( ) ( ) ( )k k k kα+ = +X X d  (30) 

(Step4) If the solution ( 1)k +X  satisfies the 
convergence condition, terminate the 
algorithm. Otherwise, update the matrix ( )kB  
to ( 1)k +B  by the Broyden-Flecher-Goldfalb-
Shanno (BFGS) formula [6] and return to 
Step2. 

Generally, it takes long time to calculate the 
gradient information ( )( )kF∇ X , ( )( )k∇G X , 

( )( )k∇H X  in Step2. However, the sparsity of 
the Jacobian matrix in the converted NLP makes 
it possible to exploit the sparse difference 
approach [8] and it results in a substantial 
reduction of calculation time.  
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2.5 Combinatorial Strategy 

The best solution in terms of the penalty 
function at the final iteration of GA is given as 
the initial solution for SQP. Then SQP refines it. 
The merit of this method is that the solution in 
SQP can converge on the global minimum in 
the feasible region with high probability 
because of the reasonableness of the best GA 
solution. 

3 Trajectory Optimization of a Space Plane 

3.1 Statement of the Problem  

An ascent of a space plane on the equatorial 
plane is considered. After taking off 
horizontally, the space plane ascends and 
accelerates. Above 90km altitude, the engine is 
cut off and the space plane starts coasting. At 
the apogee in the elliptic orbit, the engine is 
reignited and the space plane is placed on the 
circular orbit at an altitude of 400km. 

The vehicle model used in this study is 
Single Stage To Orbit (SSTO), and its 
aerodynamic model is based on the winged-
cone configuration [9] as shown in Fig. 1. 
Assume that the space plane is equipped with 
two engines, i.e., air turbo ramjet engine (AE) 
runs below Mach 6, and rocket engine (RE) runs 
over Mach 6.   

Let us consider the two-dimensional rigid 
body dynamics of the space plane. The state 
variables are V : velocity, γ : flight path 
angle,  h : altitude, Θ : pitch angle, Q : pitch 
rate, m : mass of the vehicle. The state 
equations are described as follows. 

2
2

cos( ) ( )sinTT DV r
m r

α δ µω γ+ −= + −  (31) 

2
2

1 sin( ) ( )cos

cos 2

TL T r
V m r
V r

α δ µγ ω γ

γ ω

+ + = + −  
+ +

 (32) 

sinh V γ=   (33) 

cos /Q V rγΘ = +   (34) 
1[ ( sin cos )

( sin cos )
{( )cos ( )sin }]

CG CG

CG CG

T CG T T CG T

Q Iyy M L z x
D x z
T z z x x

α α
α α

δ δ

−= − +
− −
+ − + −

 (35) 

0/( )SPm T I g= −   (36) 

Where γ : angle of attack, , L : lift, D : drag, T : 
thrust, M : pitching moment, Isp : specific 
impulse,  r : distance from the center of the 
earth, Tδ : thrust angle, Iyy : moment of inertia, 

,CG CGx z : center of gravity, ,T Tx z : action point 
of thrust, ω : angular velocity of the rotation of 
the earth, µ : gravitational constant of the earth  

0g : acceleration of gravity at the surface of  the 
earth. 

Let q  be the dynamic pressure, and S  be 
the reference area of the vehicle. Then 

, ,L D M are defined as follows. 
 , ,L D mL qSC D qSC M qSC= = =  (37) 

Where , ,L D mC C C  are given by the cubic 
polynomials of  the elevon deflection angle eδ . 

 
(1)

0

2 3(2) (3)

( , ) ( , )

( , ) ( , )
e

e e

L L L e

L e L e

C C M C M

C M C M
δ

δ δ

α α δ

α δ α δ

= +

+ +
 (38) 

 
(1)

0

2 3(2) (3)

( , ) ( , )

( , ) ( , )
e

e e

D D D e

D e D e

C C M C M

C M C M
δ

δ δ

α α δ

α δ α δ

= +

+ +
 (39) 

 
0

2(1) (2)

3(3)

( , ) ( , ) (2 )

( , ) ( , )

( , )
e e

e

m m mq

m e m e

m e

C C M C M Qc V

C M C M

C M
δ δ

δ

α α

α δ α δ

α δ

= +

+ +

+

 (40) 

M denotes the Mach number. The aerodynamic 
effect of the canard deflection cδ  is also given 
by the cubic polynomials. The canard is 
deflected in conjunction with the elevon up to 
Mach 0.9 in the following way.  

        0 0, 0.5 0.5c eC Cδ δ= − ≤ ≤  (41) 

Thus, the effect of the canard deflection is 
incorporated into (38)-(40) and 0C  is regarded 
as one of the static optimization parameter. The 
canard is stored in the body beyond Mach 0.9.  
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The maximum thrust and the specific 
impulse are given as follows. 

 
( , ) : AE phase

: RE phase
AE AE

RE

C h M S
T

T


= 


 (42) 

 
( , ) : AE phase

: RE phase
AE

RE

Isp h M
Isp

Isp


= 


 (43) 

Both engines hold the maximum thrust. The unit 
thrust ( , )TAEC h M and the specific impulse 

( , )AEIsp h M  are based on the data in [10]. 
Iyy  and CGx  are given as the function of 

the remaining mass of LH2 and LOX. For 
simplicity, CGz  is assumed zero throughout the 
flight. Other parameters are defined as shown in 
Table 1.  

Thus, the following trajectory optimization 
problem is defined. 
Initial conditions at time 0t = : 

(0) 150 [m/s]V =  (44) 

(0) 0 [km]h =   (45) 

(0) 0 [rad/s]γ ≥   (46) 

(0) 0 [rad/s]Q =   (47) 
5(0) 1.5 10 [kg]m = ×  (48) 

Path constraints: 
0 [m]h ≥   (49) 

1 12 [deg]α− ≤ ≤  (50) 

45.0 10 [Pa]q ≤ ×  (51) 

 0( cos sin ) ( ) 2.5LFn L D mgα α= + ≤  (52) 

20 20 [deg], 20 20 [deg]e Tδ δ− ≤ ≤ − ≤ ≤  (53) 

Terminal conditions at time ft t= : 

f( ) 90 [km]h t ≥   (54) 

f( ) 0 [deg]tγ ≥   (55) 

f f f( ( ), ( ), ( )) 400 [km]aH h t V t tγ =  (56) 

Where aH  denotes the apogee altitude of the 
elliptic orbit. 
The performance index to be minimized is  

f f f
f

0

( ( ), ( ), ( ))( ) exp
RE

V h t V t tm t
Isp g

γφ
 ∆= − − 
 

 (57) 

Where V∆  denotes the incremental velocity of 
the apogee boost. Note that minimizing the 
above performance index is equivalent to 
minimizing the total propellant consumption. 

3.2 Simultaneous Optimization Method of 
Guidance Law and Feedback Gains 

It is unrealistic to adopt the actual control 
variables ,e Tδ δ  as the optimization variables 

iju , since the short time scale of these variables 
might result in a large number of time domain 
division. Therefore, feedback control 
optimization strategy is adopted in order to 
avoid the difficulty. In this strategy, the 
guidance law and the feedback gains are treated 
as the optimization variables instead of actual 
control variables ,e Tδ δ . Consequently, ,e Tδ δ  
are determined by the feedback control law.  

Since we focus on the planar motion of the 
space plane and the engines hold maximum 
thrust, the time histories of ascent and 
acceleration can be determined by a guidance 
law with 1 degree of freedom. Thus, for 
simplicity, the time history of the reference 
altitude ( )Ch t  is adopted as the guidance law 
and the actual altitude ( )h t  is considered as the 
output of the control system. As a feedback 
control law, inverse PD control with singular 

 

Fig. 1. Winged-cone configuration 

Table 1.  Design parameters 

Parameter Value 
Reference area S  
Fan area of AE AES  
Max thrust of RE RET  
Specific impulse of RE REIsp  

334.7 [m2] 
4.8 [m2] 

31.03 10× [kN] 
450 [sec] 
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perturbation [11] is utilized in order to handle 
the high nonlinearity of the state equations. The 
outline is as follows: 

Let us categorize , ,QαΘ as the slow state 
variables and other state variables as the fast 
state variables. Then the time scale separation 
for , , ,e Tα δ δΘ  is described in the following 
way.  

 , α α α αΘ = Θ + ∆Θ = + ∆ = + ∆Θ  (58) 

 ,e e e T T Tδ δ δ δ δ δ= + ∆ = + ∆  (59) 

By differentiating (33) with respect to time t , 
following relational expression can be obtained. 

{ }
] ( )

( )

2 2

( , ) cos ( , ) sin

sin( )

cos 2 cos

L e D e

T

h qS C C

T m r r

V V r

α δ γ α δ γ

γ α δ ω µ

γ ω γ

= −

+ + + + −

+ +

 (60) 

Furthermore, by differentiating (34) in the same 
way and linearizing the derived equation with 
respect to eδ  and Tδ , following relational 
expression can be obtained. 

  0 e e T TA A Aδ δΘ = + +  (61) 

[ ]
[ ]

2
0 0

0

0

2 sin ( cos )
sin ( ) ( cos sin )

cos ( ) ( sin cos )

m

L CG CG

D CG CG

A V r V r qScC Iyy
qSC mr x z Iyy

qSC mr x z Iyy

γ ω γ
γ α α
γ α α

= − + +
− + +

− + −

 

[ ]cos( ) ( ) ( )T CGT mr z z Iyyγ α+ + + −  (62) 

[ ]
[ ]

(1)

(1)

(1)

sin ( ) ( cos sin )

cos ( ) ( sin cos )

e

e

e

e m

L CG CG

D CG CG

A qScC Iyy

qSC mr x z Iyy

qSC mr x z Iyy

δ

δ

δ

γ α α

γ α α

=

− + +

− + −
  (63) 

[ ]( ) sin( ) ( )T T CGA T x x Iyy mrγ α= − − +  (64) 

Then, the control inputs , ,e Tα δ δ  for the slow 
state variables can be obtained from the 
nonlinear inverse dynamics equations as follows. 

{ }
( )

( )

1

2 2

( , ) cos ( , ) sin

sin( )

cos 2 cos

L e D e

T

U qS C C

T m r r

V V r

α δ γ α δ γ

γ α δ ω µ

γ ω γ

= −
+ + + + −

+ +

 (65) 

00 ( ) ( ) ( )e e T TA A Aα α δ α δ= + +  (66) 

0 : , 0 :T C e Ct t t tδ δ= ≤ = <  (67) 

Where 1U  is the feedback input expressed as 

1 1 1( )P C DU k h h k h= − −  (68) 

Ct  is a static optimization parameter and 
corresponds to the time at which the active 
control input is changed. If obtained , ,e Tα δ δ  
violate the constraints (50), (53), they are 
rounded to the boundary values in (50), (53).  

By subtracting (66) from (61), following 
equation can be obtained. 

{ }
{ }
{ }

0 0( ) ( )

( ) ( ) ( )

( ) ( ) ( )
e e e e e

T T T T T

A A

A A A

A A A

α α
α α δ α δ
α α δ α δ

∆Θ = −

+ − + ∆

+ − + ∆

 (69) 

Then the control inputs ,e Tδ δ∆ ∆  for the fast 
state variables can be obtained from the linear 
inverse dynamics equations as follows. 

{ }
{ }
{ }

2 0 0( ) ( )

( ) ( ) ( )

( ) ( ) ( )
e e e e e

T T T T T

U A A

A A A

A A A

α α
α α δ α δ
α α δ α δ

= −

+ − + ∆

+ − + ∆

 (70) 

 

 

 

 

 

Fig. 2. Block diagram of the control system 

1Pk  

1Dk s

Inverse 
dynamics 
(65)-(67) 

Inverse 
dynamics
(70)-(71) 

2 2P Dk k s+
Actual 

dynamics
(31)-(36) 

1U e

T

δ

δ

∆

∆
α

( )α∆Θ = ∆
2UCh

α

,e Tδ δ

e

T

δ

δ
h+

−

−

−

+

+

+

+
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0 : , 0 :T C e Ct t t tδ δ∆ = ≤ ∆ = <  (71) 

Where 2U  is the feedback input expressed as  
             2 2 2D PU k k= − ∆Θ − ∆Θ  (72) 

Consequently, ,e Tδ δ  are obtained from (59). If 
obtained ,e Tδ δ  violate the constraints (53), they 
are rounded to the boundary values in (53). 
Figure 2 shows the block diagram of the control 
system. 

As stated above, the reference altitude Ch  
and the feedback gains 1 1 2 2, , ,P D P Dk k k k  are 
treated as the control variables iju  in the direct 
shooting application, i.e., 

1 1 2 2[ ( ), ( ), ( ), ( ), ( )]T
ij ij ij ij ij ijC P D P Dh t k t k t k t k t=u  (73) 

Furthermore, the following constraint with 
respect to the tracking ability of the control 
system is additionally imposed as the path 
constraint. 

  2 2( ) 1.0 [km ]Ch h− ≤  (74) 

3.3 Assumptions of the Calculation 

The parameters used in GA were determined as 
200PN = , 40CN = , 50000IN = , 4m = , 

100r = . All the NLP constraints were divided 
by appropriate values and transformed into 
dimensionless values. In addition, the initial 
population of GA was generated randomly in 
the following range. 

00 ( ) 100 [km], 0.5 0.5Ch t C≤ ≤ − ≤ ≤  (75) 
3 3

1 1 2 210 ( ), ( ), ( ), ( ) 10P D P Dk t k t k t k t− ≤ ≤  (76) 

f300 600 [sec], 500 1000 [sec]Ct t≤ ≤ ≤ ≤  (77) 

In order to handle an uncertainty of the scale of 
the gains effectively, genetic expression of the 
feedback gains in GA were given as exponential 
expression, e.g., 

 16 ( ) 3
1 1( ) 10 , 0 ( ) 1Pz t

P Pk t z t−= ≤ ≤  (78) 

Thus, 1( )Pz t  was regarded as the optimization 
variable instead of 1( )Pk t  itself. The same 
conversion was applied in the genetic 
expression of 1( )Dk t , 2 ( )Pk t , 2 ( )Dk t . Furthermore, 
gains in GA were divided into only 4 sub-
segments to reduce the computational cost. The 
numbers of the sub-segments of ( )Ch t and path 
constraints in GA were 20M = , and the 
number of segments and sub-segments in SQP 
were 20N = , 1M =  respectively. 

3.4 Results and Discussion 

Under the above assumptions of the problem, 
combinatorial optimization by GA and SQP was 
performed. 

Table 2 shows the residuals of the 
constraints as well as the performance indices in 
GA and SQP. As can be seen, the initial solution 
obtained by GA was nearly feasible, and SQP 
refined it in terms of both the residuals of the 
constraints and performance index. In addition, 
the static parameters in the optimal solution 
were 0 0.09734C = − , 370.9[sec]Ct = , and 

f 717.9[sec]t = . For comparison, some solutions 
included in the initial population of GA were 
given as the initial solution for SQP, and 
subsequently SQP calculation was performed. 
As a result, little improvement neither in the 
performance index nor in the feasibility could 
be achieved in all cases. From this results, it is 
obvious that using GA as a method to give an 
initial solution for SQP is effective in this type 
of highly nonlinear problem.  

In Fig. 3, the V h−  trajectory of the 
optimal solution by SQP is shown. It can be 
seen that the V h−  trajectory in the AE phase is 

Table 2.  Optimization results 

 Performance index Residual of the constraints
Mean value in the initial population of GA
Best solution in the final iteration of GA 

Obtained solution by SQP 

14.11−  
28.80−  
29.04−  

21.969 10×  
28.288 10−×  
51.301 10−×  
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closely along the dynamic pressure boundary 
and the RE is cut off at the boundary altitude of 
90 [km]. Since these results are often seen in the 
optimal solution for the point mass assumption, 
the optimality of the obtained solution is 
recognizable.  

Figure 4 shows the time histories of the 
reference and actual altitude in the optimal 
solution by SQP. The mean error of the altitude 
was 415.6 [m] and the tracking constraint (74) 
was completely satisfied throughout the flight. 
Figure 5 shows the time histories of the 
reference and actual angle of attack. As can be 
seen, almost sufficient tracking could be 
achieved throughout the flight, although there 
was a difference in the tracking ability between 
the control by the elevon and by the thrust angle. 
This difference may be because the effect of the 
higher order terms of eδ , which were neglected 
in obtaining (61), was larger than that of Tδ . 
The time histories of eδ , Tδ  are shown in Fig. 6. 
Except for the initial stage of the control by 
thrust angle, eδ , Tδ  were within the range 
between –10 [deg] and 10 [deg].  

Optimized feedback gains are shown in Fig. 
7. It can be seen that the magnitude of the gains 
for the slow state variables is substantially 
smaller than that for the fast state variables. This 
is due to the slow response of the altitude h . 
Larger 1 1,P Dk k  would induce the saturation or 
oscillation of α , which degrade the tracking 
ability and performance index. On the other 
hand, 2 2,P Dk k  are comparatively large because 
of the fast response of the angle of attack α . 

  In the next place, let us decompose the 
acceleration V , Vγ  in the following way. 

 0 0( ) ( ) , ( ) ( )V V V V V Vδ δγ γ γ= + = +  (79) 

Where 0 0( ) , ( )V Vγ  denote the acceleration 
without the effect of control inputs ,e Tδ δ , and 
( ) , ( )V Vδ δγ  denote the incremental acceleration 
by the effect of control inputs. Figure 8 and 
Figure 9 show the time histories of V vs. 0( )V  
and Vγ  vs. 0( )Vγ  respectively. It can be seen 
that there is a slight difference between V and 

Fig. 3. V h−  trajectory 
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0( )V  except for the short period at the vicinity 
of take off, and the contribution of the control 
inputs to the acceleration V  is slight. On the 
other hand, there is a substantial contribution of 
control inputs to Vγ . It appears that the optimal 
trajectory should be determined taking account 
of this contribution of the control inputs to the 
path angle. Then, the results in the conventional 
trajectory optimization with the point mass 
assumption might have to be corrected, since it 
does not cover the above stated contribution. In 
contrast, the obtained trajectory in this study has 
an advantage in terms of its coverage of the 
above stated contribution.  

4 Conclusions 

The trajectory optimization of a space plane 
with the rigid body assumption was covered in 
this study.  In order to handle the short time 
scale of the actual control inputs, the guidance 
law and the feedback control system using 
singular perturbation were optimized 
simultaneously. Furthermore, taking the 
difficulty in giving an appropriate initial 
solution into account, GA was applied to obtain 
the initial solution and SQP was subsequently 
applied to refine it. Consequently, the 

reasonable optimal solution, which achieves 
minimization of the propellant consumption and 
sufficient tracking ability of the control system, 
was obtained. In addition, it was cleared that the 
obtained trajectory has an advantage in terms of 
its coverage of the substantial contribution of 
the control inputs to the path angle.  
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