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Abstract  

The paper conducts a study of nonlinear 
aircraft dynamics by means of bifurcation 
analyses and 3-dimensional visual simulations. A 
model reentry vehicle is subjected to the study to 
show that jump phenomena concerning inertial 
coupling can occur over a wide range of control 
surface angles, and the basic solution branch is 
often unstable around a desired level flight 
equilibrium point. Visual simulations help to 
understand the vehicle’s nonlinear flight 
dynamics as well as various response 
characteristics to control inputs associated with 
its peculiar configuration. Drawing on the study, 
the paper finally proposes the works to be 
undertaken in the future. 
  
1 Introduction 
 

It is common practice to design aircraft 
flight control systems (AFCSs) based on linear 
models about equilibrium (trim) points. There 
exist, however, intrinsically nonlinear problems 
that must be addressed in detail before an aircraft 
is put into operation inasmuch as it is difficult to 
recover the original flight condition once it falls 
into such a problem. Such problems include 
inertial coupling, which has been known since 

around 1948[1]. It is essentially a gyroscopic 
effect, occurring in high roll-rate maneuvers of 
modern high speed aircraft including spinning 
missiles designed in such a way that most of 
their masses are concentrated in fuselages. For 
such an aircraft, a slight deviation of its control 
surface angle from the steady state angle may 
lead to a drastic change in roll-rate, causing 
damages on its empennage; known as jump 
phenomenon. Nonlinear analyses to elucidate 
this problem have been reported in Refs.2 and 3, 
for example. However, the aircraft treated in 
these works are stable around the equilibrium 
point of level flight. On the other hand, an 
unstable aircraft combined with malfunctions of 
AFCSs may result in a catastrophe if it falls into 
a high roll-rate motion. With this background in 
mind, the paper’s objective is to better 
understand the problem of inertial coupling by 
means of bifurcation analyses and 
three–dimensional (3D) visual simulations. 
   For this objective, a model reentry vehicle is 
subjected to analyses. The model vehicle is the 
Automatic Landing Flight Experiment 
(ALFLEX) plane[4] as shown in Fig.1, which is 
a scale model of an unmanned reusable orbiting 
spacecraft. The ALFLEX plane is a glider having 
no propulsive means aimed at evaluating the 
flight characteristics of the spacecraft during 
final approaches and landing phases. Its stable 
flight is made possible with the help of elaborate 
AFCSs, without which the bare configuration is 
unstable both longitudinally and 
lateral-directionally over a wide speed range. 
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Such characteristics of the ALFLEX plane make 
it important to look into the trimmability of the 
bare vehicle in case a malfunction of AFCSs 
should occur. 
     The paper first conducts bifurcation 
analyses combined with the stability analyses of 
the equilibrium branches. Based on the result of 
the analyses, 3D visual simulations are 
conducted of the vehicle’s dynamic nonlinear 
flights. It is shown that visual simulations help to 
better understand the vehicle’s nonlinear 
phenomena related to inertial coupling as well as 
various response characteristics to control inputs 
associated with its peculiar configuration. 
Drawing on these studies, the paper finally 
proposes works to be undertaken in the future. 
 
2 Equations of Motion  

Because high roll-rate steady states are of 
primary concern here, the original six degrees of 
freedom equations of motion of a rigid aircraft 
with respect to an xyz body-axis system[5], 
where xz is the plane of symmetry, are reduced to 
five degrees of freedom ones under the 
assumptions, 

1) forward velocity V , weight W , and air 
density ρ are constant, and 

2) angle of attack α  and sideslip angle β  
are small. 
The resulting equations of motion are 
 

θφααβ cossinˆcossin
V
gyrp ++−=&         (1) 

θφβα coscosˆ
V
gzqp +++−=&               (2) 
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where the Eulerian angles, roll angle φ  and  
pitch angle θ  , are determined by the kinematic 
relations as  

 
θφθφφ tancostansin rqp ++=&           (6) 

φφθ sincos rq −=&             (7) 
 
In Eqs.(1)~(7)  
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zyx III ,, : moments of inertia about x-, y-, and  
z-axis, respectively, 

xzI : product of inertia, 
aa ZY , : aerodynamic forces, 
NML ,, : aerodynamic moments about the center  

of gravity, 
rqp ,, : angular velocities about x-, y-, and z-axis, 

respectively, 
g : gravitational acceleration. 
 
Among the inertial parameters in Eq.(8) , 3i  is 
referred to as the inertial coupling parameter. It 
can be learned from Eq.(5) that a large value of 

3i  produces large inertial coupling moments. In 
comparison with the data given in Ref.1, the 
ALFLEX plane, of which the dimensional data 
are given in Table1, has the same magnitude of 

3i  as that of the F100A fighter plane which 
suffered from an inertial coupling problem in its 
early phase of development. 

Aerodynamic forces and moments in 
Eqs.(1)~(5) are assumed here to be linearly 
related to motion variables and control surface 
angles mainly because of lack of nonlinear 
aerodynamic data. Table1 summarizes the linear 
relationships and numerical data necessary for 
the analysis to follow. The reader is referred to 
Ref.6 for an example of complete treatment of 
nonlinear aerodynamic data. Note in Table1 that 
a level flight with the steady state pitch angle 0θ  
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and angle of attack 0α  is a trivial trim point. 
Those original equations of motion, Eqs.(1)~(7), 
can be represented by the general form as  

 
),( δxHx =&                   (9) 

where  
Trqp ],,,,,,[ θφαβ=x                (10) 

T
rae ],,[ δδδ=δ ,                (11) 

and eδ : elevator angle, aδ : aileron angle , rδ : 
rudder angle. 
 
General trim points are determined by solving 
the transcendental algebraic equation 
 

0),( =δxH               (12) 
 

The vehicle, however, cannot attain all of 
the trim points obtained from Eq.(12). If it has 
unstable dynamics in the neighborhood of a trim 
point, a slight external disturbance or a slight 
deviation of control surface angles from their 
precise values at the trim point cannot allow the 
vehicle to stay at the trim point. Stability of the 
vehicle’s dynamics in the neighborhood of a trim 
point must be examined in order to know 
whether or not a steady state can be actually 
attained. To this end, the stability analysis of trim 
points is made by using the Lyapunov’s first 
method[7], in which the nonlinear equations of 
motion, Eqs.(1)~(5), are linearized about a trim 
point as 

 
εε Fxx =&            (13) 

where  
Trqp ],,,,[ εεεεεε αβ=x : perturbed variable 

vector,  
 
and F is the Jacobian matrix explicitly given by: 
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In Eq.(14) stability derivatives βŷ  and so on are 
defined in Table 1, and qp,,, βα  and r  
denote the steady state values, while 
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If all of the eigenvalues of F  have negative 
real parts, the trim point is asymptotically stable, 
whereas it is unstable, if some eigenvalues have 
positive real parts. It sometimes happens that the 
real parts of some eigenvalues are zero or close 
to zero, generating so-called bifurcation points. 
In such a case, it is necessary to consider the 
effects of nonlinear terms on the behavior of the 
solution in the neighborhood of the trim point. 
The center manifold theory can be applied to 
such a case[7]. 
 
3 Bifurcation Analysis  

Using the continuation method[3], equilibrium 
branch analyses are made here followed by the 
stability analyses of trim points for the flight 
configuration of Table1. Flight control of the 
ALFLEX plane actually uses elevator eδ , 
aileron aδ , rudder rδ , and speed brake sδ  as 
available control inputs. However, in this 
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analysis the rudder angle is set equal to zero, and 
the speed brake is fixed at a certain angle. 
Therefore, the equilibrium branches are 
determined by varying eδ  and aδ  as 
parameters. The ranges of variation are 

10~10− deg for eδ∆ , which denotes an 
incremental elevator deflection from the initial 
value of Table1, and 20~20− deg for aδ . First 
of all, the results from the equilibrium branch 
analyses are shown in Figs.2 and 3, where α∆  is 
also an incremental angle of attack. Figures 
2(a)~2(e) show the equilibrium branches in the 
plane of motion variables vs. aδ  for a eδ∆ , 
while Figs.3(a)~3(b) together with Fig.2(b) 
exhibit the variation of p  vs. aδ  equilibrium 
branches for three kinds of eδ∆ . It results from 
the ensuing stability analyses that the trim points 
on solid equilibrium branches are stable, whereas 
those on broken branches are unstable. By 
numerically integrating the original nonlinear 
equations of motion, these equilibrium branches 
with stability information have been validated 
with an additional finding that the origin 
of ap δ−  plane for 6−=∆ eδ deg actually yields a 
limit cycle oscillation. The elevator angle should 
be smaller than 6− deg in order for the origin to 
be a stable trim point.  

More importantly, the equilibrium branches 
with stability information thus obtained may tell 
the combinations of ),( ae δδ∆  for which jump 
phenomena are likely to occur. For example, 
assume that the vehicle is in a steady rolling state 
of about 100 deg/s for a combination of 

),( ae δδ∆ = (4 deg, 0 deg) as read from Fig.2(b). 
A deviation of the aileron angle to 2 deg brings 
the roll-rate abruptly to about 200−  deg/s, 
because at the new aileron angle the trim point 
on the same equilibrium branch is not stable any 
more. Looking at Fig.2(b) again, it can be 
observed that depending on the combination of 

),( ae δδ∆  there exist multiple stable trim points 
or attractors. An interesting question is to which 
attractor the motion will converge, given the 
corresponding combination of control surface 
angles and an arbitrary set of initial conditions. If 

the motion starts from within the region of 
attraction of an attractor, it will settle down on 
the attractor. For an arbitrary set of initial 
conditions, however, a general flow pattern of 
the solution trajectories needs to be known in the 
phase plane of seven variables. This question 
must be pursued further in the future. 
 
4 3D Simulation  

A numerical simulation is useful to better 
understand the flight-dynamical characteristics 
implicit in the nonlinear equations of motion. 
Furthermore, it enables one to visualize the 
vehicle’s dynamic motion. 3D simulation 
software developed in this work uses the 
Runge-Kutta-Gill method for integrating the 
nonlinear equations of motion, Eqs.(1)~(7), and 
the Microsoft Visual C++ 6.0 for visualizing the 
temporal solutions. Figure4 is a snapshot, as seen 
from a fixed-point in space, from the visual 3D 
flight simulation. The vehicle in Fig.4 is close to 
a steady state for a combination of step inputs of 

eδ∆  and aδ . Velocity and angular velocity 
vectors are shown in the figure as V and ω , 
respectively, together with the body-fixed three 
axes, X, Y, and Z. This type of simulation helps 
to figure out what the steady state motion of 
rotation is like, while at the same time it points 
out the defects of the analysis; e.g., in Fig.4 the 
angle of attack α  at this moment is almost 90 
deg, violating the assumption that α  be small. 
More realistic analyses should be undertaken, 
getting rid of the assumptions and using 
nonlinear aerodynamic data. 
   A series of figures, Figs.5(a)~5(d), illustrates 
the mechanism of a reversed roll-response to an 
aileron input, which takes place at the flight 
configuration of Table1. An aileron input 

0>aδ  is applied to produce a positive rolling 
moment (Fig.5(a)). Due to the adverse aileron 
yaw the vehicle yaws to the left (Fig.5(b)). The 
negative weather-cock stability ( 0<

βnC ) makes 
the heading point further left (Fig.5(c)), while 
sideslipping to the right. The strong dihedral 
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effect, due to the vertical fin ( 0<
βl

C ) reverses 
the rolling motion, ending up in the direction 
opposite to the initial tendency (Fig.5(d)). As 
shown in this example, this 3D visual simulation 
helps to understand the flight mechanism of a 
reentry vehicle, which poses interesting flight 
problems because of its generally unusual 
configuration. 
 
5 Conclusion  

A study of nonlinear aircraft dynamics has 
been conducted by means of bifurcation analyses 
and 3D visual simulations. A model reentry 
vehicle has been subjected to the study to 
demonstrate that jump phenomena concerning 
inertial coupling can occur over a wide range of 
control surface inputs, and the basic solution 
branch is unstable for certain combinations of 
control surface angles so that it is difficult to 
recover the original level steady state flight once 
it falls into an inertial coupling problem. 3D 
visual simulations can help to better understand 
the vehicle’s nonlinear flight dynamics, if 
qualitatively. It is a work for the future to devise 
a remedy control technique for recovery from a 
general nonlinear motion for a more realistic 
case where complete nonlinear equations of 
motion are utilized together with nonlinear 
aerodynamic data. 
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Table1  Flight configuration, stability derivatives and numerical data 
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aδ : aileron angle, rδ : rudder angle, eδ∆ : incremental elevator angle 
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All other derivatives are set equal to zero. 



                                    3D-SIMULATION 

512.7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Three views of the ALFLEX plane. 

Fig.2(a) 

Fig.2(d) 
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Fig.2  Equilibrium branches of motion variables for ∆δe= 4 deg. 
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Fig.3(a) 
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Fig.3(b) 

Fig.3  Equilibrium branches of roll-rate for ∆δe= -4 and 0 deg. 

Fig.4  A snap shot of the ALFLEX plane in steady state motion. 
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Fig.5(a) 

Fig.5(d) Fig.5(c) 

Fig.5(b) 

Fig.5  Visual demonstration of a reversed roll-response to an aileron input. 


