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Abstract

High performance fighter aircraft with specific
external store configurations are susceptible to
limit-cycle oscillation (LCO) in the transonic
flight regime. LCO requires an accurate
prediction of flow conditions which will initiate
the oscillations. Although linear aerodynamics
allows one to predict a critical flutter condition
for a wing with various store configurations,
LCO’s typically occur at a speed somewhat
below the linear predicted flutter speed. Here,
transonic small disturbance (TSD) aerodynamic
theory with interactive boundary layer is used to
fully capture the features of LCO and predict its
initiation. Although one of the simplest forms of
nonlinear aerodynamics , TSD can identify the
strength and location of weak shocks and is
used here to predict the conditions for the
initiation of LCO for a rectangular wing with a
tip store placed in a transonic airstream. For
the wing/store configuration investigated, limit
cycle oscillations are obtained at speeds lower
than those predicted for wing/store flutter with
linear (no shocks) aerodynamics. LCO is shown
to occur over a very limited range of Mach
numbers and comparisons of LCO amplitudes
are given for inviscid and  viscous
aerodynamics.

1 Nomenclature

a angle of attack, degrees
c chord, ft
cg, ea center of gravity and elastic axis, ft

from leading edge
Cy, lift coefficient

M Mach number

Re Reynolds number

yo, density, slugs/ft’

t time, nondimensional (based on free
stream velocity and wing chord)

T thickness to chord ratio

U velocity, ft/sec

¢ structural damping coefficient

2 Introduction

High-performance fighter aircraft with external
stores are required to operate with high
maneuverability in the transonic flight regime.
In this regime, the potential exists for
encountering transonic nonlinear flutter, known
as limit-cycle oscillation (LCO). LCO is a
limited amplitude, self-sustaining oscillation
produced by an  aerodynamic-structural
interaction, which for the cases of interest, is
exasperated by the occurrence of shock waves
on the surface of the wing and/or stores. LCO
results in an undesirable airframe vibration and
limits the performance of the flight vehicle.

The main goal of the current work is to
gain understanding of the fundamental nature of
the phenomena underlying store-induced LCO.
This form of LCO typically occurs near linear
flutter boundaries in the nonlinear, transonic
regime (Mach number ranging between 0.8 and
1.1), suggesting that classical flutter predictions
using linear aerodynamic theories can be
applied to the identification of lightly damped
modes that may nonlinearly participate in LCO.
Indeed, using traditional approaches, Denegri
[1] had limited success in relating observed
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store-induced LCO to “hump’ (or “soft’
crossing) modes found in velocity-damping
diagrams. However, in many cases, the linear
approach is inadequate in predicting response
characteristics of vehicle configurations in the
transonic regime.

The transonic regime differs from the
linear, subsonic regime by the appearance of
shocks. These structures may strongly interact
with vehicle boundary layers, with the possible
consequences of flow separation or significant
shock movement. In a coordinated manner, we
examine the ability of aeroelastic models of
varying fidelity to predict accurately LCO onset
and amplitude. Models based on linear analysis,
transonic small-disturbance theory (TSDT), and
TSDT with interactive boundary layer are
considered. Through this approach, we discern:
(1) the limitations of linear theory for LCO
prediction vis-a-vis the simplest nonlinear
theory capable of producing weak shocks; (2)
the ability of TSDT to predict store-induced
LCO in inviscid flow, and (3) the effects of
viscosity on store-induced LCO.

Two computational methodologies are
employed in  this investigation: the
MSC/NASTRAN aeroelastic analysis program,
the TSDT-based NASA/LaRC CAPTSDv
computational aeroelasticity algorithm for
inviscid and viscous flow.

3 Problem Formulation

The wing studied herein is derived from the
“heavy” version of the original Goland wing.
Like the original, the heavy wing is structurally
represented by a beam, but with additional non-
structural mass, as defined by Eastep and Olsen
[2]. This latest version, referred to as the
Goland” wing, is a heavy wing modeled with a
box structure to enable a variety of store
attachment options.

3.1 Geometry

The Goland® wing is rectangular and
cantilevered from the midplane. A planform
schematic is given in Fig. 1 (including store).
The wing span and chord are 20 and 6 ft.
respectively. The airfoil section is constant

along the span of the wing and is chosen to be
that of a symmetric, parabolic-arc airfoil,
defined by z=2 7, x (1 —x/c,,)) (0 <x <¢y,).
The wing-tip store is mounted flush to the wing
tip (see Fig. 1), with a chord of 10 ft., a span of
1 ft. and a stream wise offset of 3 ft. The
sectional shape of the store is also described by
a parabolic arc . An additional description of the
wing/store configuration is given in [3].

Fig. 1: Goland” Wing geometry

3.2  Wing Structure and Inertial Properties

The geometry of the wing is simple. The
origin is at the mid-height of the root of the
leading edge spar. The three spars are un-swept
and placed at 0, 2 and 4 ft along the chord.
Eleven ribs are evenly spaced on 2 ft centers
along the span. Shear elements are placed at
the intersections of the spars and ribs, with 10
elements per spar and 2 elements per rib. Next,
each spar and rib is 0.33334 ft high and each
cell defined by the spars and ribs is capped with
a single wing skin membrane element.

The mass properties of this wing are
modeled by placing lumped masses with no
rotational inertia at each grid point. The lumped
masses are sized to match the mass properties
(total mass, cg, and inertia) of the heavy Goland
wing. The details of this model are described in
[3].

The final step in developing the built-up
model is sizing the elements so that its structural
dynamic characteristics match those of the beam
model Goland wing. For this model
development, the elements are sized to
minimize the error between the first three
frequencies of the built-up and beam models.

3.3 Store Mass and Linkage
The store configuration examined in this work is
that of a tip store. This store structure is
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modeled as a series of rigid bar elements that
result in a 10 ft long rigid bar. The resultant bar
is centered 0.5 ft outboard of the wing tip and 2
ft aft of the wing leading edge. The store is then
rigidly connected to the six wing tip grid points.

The mass properties of the tip store match
the properties of one two foot section of the
wing: a mass of 22.496 slugs and a rotational
inertial of 50.3396 slug-ft>. During this study,
the position of the store mass is fixed at the
lateral and vertical centers of the store (i.e., y =
20.5 ftand z =0 ft).

4 Computational Aeroelasticity Methods:
CAPTSD and CAPTSDv

CAPTSD  solves the three-dimensional,
transonic, small-disturbance, potential-flow
equations for partial and complete aircraft
configurations  [4]. A viscous-inviscid
interaction version of CAPTSD, known as
CAPTSDv, has been developed [5] and applied
to a variety of problems involving mildly
separated and separation onset flows [6]. The
method couples the inviscid CAPTSD algorithm
with an inverse integral boundary layer model.
In this investigation, a single version of the
CAPTSDv algorithm is used to perform both
inviscid and viscous aeroelastic analysis .

5 Results

5.1 Physical Conditions

The aeroelastic analysis is carried out with
enforced consistency between velocity and
dynamic pressure, assuming constant density at
sea-level conditions. Mach number is treated as
an independent variable, such that match-
pointed conditions are not generally achieved.
Structural damping is assumed to vanish for all
baseline cases investigated.

5.2 Summary of Grid Construction

Three grids are constructed for the CAPTSDv
calculations reported in this paper. Owing to
the geometry of the wing/store configuration
and the mid-plane formulation of the surface
boundary condition used in CAPTSDv, these
grids are rectilinear. Clustering of grid points is
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enforced along the edges of the geometry and
normal to the wing and store surfaces. The first
grid (G1) is used for inviscid, clean-wing and
wing/store (store mass only) computations; the
second grid (G2) is used for inviscid, wing/store
computations, and the third grid (G3) is used for
viscous clean-wing and wing/store (store mass
only) computations.

A view of grid G2 in the x-y plane in the
neighborhood of the wing/store configuration is
shown in Fig. 2 to illustrate the effect of grid

clustering along the combined planform.
4

w
T

Fig. 2: CAPTSDv computational grid (G2) for
the Goland” Wing. Grid lines (red); wing
boundary (green); store boundary (blue).

5.3 Modal Analysis

Modes of the structural model are computed
with  MSC/NASTRAN and then splined to
aerodynamic surface grids (specified at z = 0)
with the infinite plate spline, as implemented by
Harder and Demaris[7]. The results given in
this paper are obtained by retaining the 4 modes
of lowest frequency in the aeroelastic analysis
and by excluding in-plane modes.
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5.4 Linear Analysis

To determine a parameter space (velocity and
Mach number for specified altitude) where
store-induced LCO possibly exists, a linear
flutter analysis of a clear wing and a wing/tip
store combination is conducted. The linear
flutter speeds (those from linear aerodynamic
theories) are determined from data calculated
from the p-k method of MSC/NASTRAN. The
flutter and divergence instabilities can be
determined from an inspection of calculated
data in graphical form, the so-called V-g and V-
o diagrams. These diagrams are shown in Fig. 3
(clean wing) and Fig. 4 (wing with tip store
mass) for a selected Mach number of 0.92.
From Fig. 3, the flutter speed of a clean wing is
determined by the first crossing of one of the
modes from negative to positive values of the
damping parameter, g (i.e., 334 ft/sec), and a
corresponding flutter frequency of 2.17 HZ.
Additionally, shown in Fig. 3 is a divergence
instability, whose speed is determined by the
simultaneous occurrence of zero damping and
zero frequency for another mode (i.e., 630
ft/sec).

The V-g diagram of the clean wing is
compared to the V-g diagram of the wing/store
configuration (mass only), shown in Fig. 4,
when the store cg is located 1.75 ft upstream of
the wing elastic axis (equivalent to the store
pitch axis). By comparing the two diagrams, it
is seen that the flutter speed is increased to 559
ft/sec when the store cg is placed at this position
and that the severity of the flutter instability of
the clean wing has been reduced (reflected by
less damping). The flutter mode of the
wing/store has been converted into a “hump,” or
lightly damped mode. It is speculated that the
initiation of store-induced LCO is associated, in
some way, with hump modes, such that the
linear flutter investigation defined a beginning
region to search for LCO. Of course, since this
hump is determined from linear aerodynamics,
the region of LCO must be modified by taking
into  consideration  transonic  (nonlinear)
aerodynamics. This modification is discussed in
the following sections for a determination of
store-induced LCO.
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Fig. 3: Flutter characteristics predicted by a
linear aeroelastic analysis (MSC/NASTRAN)
for the clean Goland" wing at Mach 0.92.

Linear analysis is carried out for other store
mass positions, but not reported herein. These
results show the reduction of the peak damping
parameter with forward movement of the store
mass. The offset position of 1.75 ft (upstream
of the wing ea) is selected for use in the
CAPTSDv calculations reported below, because
of the small peak value of g attained with this
parameter value.

5.5 Flutter Boundaries

Boundaries of flutter and LCO onset are
computed for the clean wing configuration and
for the wing with store mass (i.e., store not
modeled aerodynamically). The flow is
assumed inviscid. These results are compared to
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those obtained with MSC/NASTRAN using
linear analysis. LCO solutions are observed at
Mach numbers above Mach 0.9 when the store
mass is present; these cases will be discussed in
detail in the next section. Flutter and LCO
boundaries are compared in Fig. 5. For the
clean wing, CAPTSDv predicts a flutter speed
of 433 ft/sec at Mach 0.7, a value 3.5% higher
than that predicted by MSC/NASTRAN. With
the store mass included, CAPTSDv predicts a
flutter speed of 648.5 ft/sec (CAPTSDv), a
value 6.8% higher than that provided by
MSC/NASTRAN. At Mach 0.7, the
aecrodynamics is linear and the reasonable
comparisons  between =~ CAPTSDv  and
MSC/NASTRAN are to be expected.
CAPTSDv clearly confirms that forward
movement of the store mass has a stabilizing
effect on the aeroelastic system for Mach
numbers at or below 0.9.

As Mach number increases beyond 0.7, the
clean-wing flutter boundary obtained with
CAPTSDv develops a transonic dip with a
minimum flutter speed (355 ft/sec) at about
Mach 0.88. The boundary is much flatter when
the store mass is included; flutter speed
averages around 645 ft/sec. Both boundaries
show a rapid increase in flutter speed near Mach
0.9. However, at selected Mach numbers
between 0.90 and 0.95 (0.91, 0.92, 0.93, and
0.94) with the store mass present, LCO
solutions are observed. These nonlinear
oscillations are computed at flight speeds much
lower than the nominal, wing/store flutter speed,
and, for some Mach numbers, lower than the
clean-wing flutter speed. Thus, the presence of
the store destabilizes the system at higher Mach
numbers in an adverse manner, i.e., to lower
flight speeds.

On the flutter boundary for the wing/store
configuration, two different flutter modes are
observed. These are contrasted in terms of the
computed modal participations for Mach 0.84
and Mach 0.9, as shown in Fig. 6 and Fig. 7.
Note that unstable test points are selected above
the flutter boundary: U = 750 ft/sec at Mach
0.84 (flutter at 642.5 ft/sec) and U = 850 ft/sec
at Mach 0.9 (flutter at about 825 ft/sec). Two
different frequencies of divergent oscillation are
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observed: 1.90 Hz (Mach 0.84) and 9.52 Hz
(Mach 0.90). These frequencies are somewhat
larger ~ than  the  natural  frequencies
corresponding to modes 1 (1.69 Hz) and 3 (9.17
Hz), respectively. For both flutter modes, the
phase relationships between peak lift and
moment are the same (about 180 degrees out of
phase).
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Fig. 4: Flutter characteristics predicted by a
linear aeroelastic analysis (MSC/NASTRAN)
for the Goland+ wing with tip store mass at
Mach 0.92.

A switching of flutter modes is perhaps
suggested by the linear MSC/NASTRAN results
shown for Mach 0.92 in Fig. 3 and Fig. 4 (the
results for Mach 0.9 are not markedly different).
The effect of nonlinearity appears to be large in
terms of stabilizing the interaction between
modes 1 and 2, predicted by MSC/NASTRAN
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to occur at about 560 ft/sec. At a larger
frequency, coalescence of modes 3 and 4 is
evident in the MSC/NASTRAN results at a
flight speed of about 800 ft/sec, a velocity near
the flutter speed predicted by CAPTSDv.
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Fig. 5: Comparison of flutter and LCO

boundaries computed with inviscid CAPTSDv
and MSC/NASTRAN.
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Fig. 6: Modal amplitude histories calculated
with inviscid CAPTSDv at Mach 0.84 (U = 750
ft/sec).

5.6 Store-Induced Limit-Cycle Oscillation

In a Mach number range between 0.91 and 0.95,
fully developed LCO states are computed with
CAPTSDv for the wing/store configuration,
excluding store aerodynamics (see Fig. 5). As
will be shown later, the effect of including store
aerodynamics is not significant, while the effect
of viscosity is to reduce LCO amplitude. Two

types of LCO are observed: (1) an expected
form involving significant time-periodic
oscillations of the aeroelastic system that will be
described first and referred to as simply LCO,
and (2) an unexpected form with very small
amplitudes (~3 orders of magnitude less in
magnitude) that will be described second and
referred to as “embryonic” LCO, or ELCO.
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Fig. 7: Modal amplitude histories calculated
with inviscid CAPTSDv at Mach 0.90 (U = 850
ft/sec).

As shown in Fig. 5, LCO is observed over
a restricted range of Mach numbers. Generally,
LCO amplitudes increase with increasing
velocity, and for sufficiently large velocities,
computed oscillations become so large that the
assumptions of TSDT become invalid.
Attention is first given to Mach 0.92, where
LCO is first observed at U = 390 ft/sec for
inviscid flow (onset occurring between 385 and
390 ft/sec) and U = 410 ft/sec for viscous flow
(onset occurring between 390 and 410 ft/sec). It
should be noted that the onset of LCO is
computationally expensive to obtain, since very
large integration times are necessary for the
aeroelastic system to approach time-asymptotic
behavior at values of flight speed near critical.
In these calculations, the initial state is defined
by a flow solution given by a rigid-body
calculation, and the modal amplitudes are
assumed to vanish, except for the first mode,
which is assigned an initial value of 0.01.

Flutter responses predicted with inviscid
CAPTSDv, for the wing with store mass
configuration, are shown in Fig. 6 (Mach 0.84)

445.6



INVESTIGATION OF SHOCK-INDUCED LCO OF A WING/STORE CONFIGURATION USING THE TRANSONIC

and Fig. 7 (Mach 0.90) based on modal
participation. At Mach 0.84, the response is
dominated by mode 1 (first bending), which has
a natural frequency of 1.90 Hz. At Mach 0.90,
the response is dominated by modes 3 and 4
(torsion modes), which have natural frequencies
of 9.17 Hz and 10.8 Hz, respectively. The
response frequency is 9.52 Hz.

The slow growth of lift coefficient to its
asymptotic value is shown in Fig. 8 for U =410
ft/sec, assuming inviscid flow. LCO frequency
is observed to be 2.92 Hz. The computed
frequency corresponds to the modal content of
the aeroelastic response. As seen in Fig. 9,
mode 2 (a natural frequency of 3.05 Hz)
dominates the response, with  strong
participation also from mode 1. At this Mach
number and flight speed, the first two modes are
much more strongly coupled than in the flutter
mode found at low transonic Mach numbers (cf.
Mach 0.84), with an associated increase in
response frequency.
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Fig. 8: Lift coefficient time history calculated
with inviscid CAPTSDv at Mach 0.92 (U =410
ft/sec).

A similar set of plots of LCO response are
shown in Fig. 10 and Fig. 11 for the case of
viscous flow, assuming an equivalent flight
speed of 410 ft/sec at Mach 0.92. Grid G3 is

used for wviscous calculations, and the
aerodynamics of the store are assumed
negligible. LCO amplitude is observed to

diminish through the effects of viscosity, and
frequency slightly increases to 2.99 Hz.
Viscous simulations of LCO are somewhat
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stiffer than inviscid computations, requiring one
Newton sub-iterate per time step for stable
calculation.

Mode 1
25 Mode 2
o Mode 3
2F Mode 4
1.5f-
$
2
S o05fF
: ]
<
©
©
(o]
2 -
1 1 1]
1

Time, t

Fig. 9: Modal amplitude histories at LCO
calculated with inviscid CAPTSDv wing at
Mach 0.92 (U =410 ft/sec).
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Fig. 10: Lift coefficient time history calculated
with viscous CAPTSDv at Mach 0.92 (U =410
ft/sec).

Structural response associated with LCO is
contrasted with that of the two flutter modes
through visualization of wing-tip motion. The
low-speed flutter mode is primarily first
bending, which is reflected by a vertical
displacement of the wing tip at different times,
with introduction of only a slight incidence
angle with respect to the free stream. The
flutter mode observed at Mach 0.9 is a higher
frequency mode  involving  significant
contributions from modes 3 and 4. The
response of the wing tip involves both pitch and
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plunge, with a motion akin to that of a ship
moving into ocean waves (a visual rotation
about the mid-chord). In the situation of LCO,
the response is composed of first bending and
first torsion contributions. A pitching motion
dominates the resulting movement of the wing
tip, with visual rotation about the tip leading
edge.
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Fig. 11: Modal amplitude histories at LCO
calculated with viscous CAPTSDv at Mach 0.92
(U=410 ft/sec).

LCO solutions of the type described above
are not observed at flight speeds below 390
ft/sec for inviscid flow at Mach 0.92. However,
at speeds between 340 and 390 ft/sec, sustained
oscillations of very small amplitude and less
regular character are computed. In this speed
range, the magnitude of system oscillations
increases very slowly with increasing U. These
ELCO states appear to be physical and not
numerical in origin, since ELCO formation is
found to be persistent to variation of Mach
number and various numerical parameters.
However, ELCO amplitude is sensitive to
structural damping and the numerical precision
of the computation. When £ is increased from
the baseline value of 0 to 0.03, ELCO amplitude
is reduced by over a factor of 5 at U = 385
ft/sec, and is found to vanish at U = 350 ft/sec.
Also, increasing the baseline precision of the
computation to double, ELCO amplitude is
observed to grow considerably (but remaining at
levels small compared to LCO).

A time history of lift coefficient is shown
in Fig. 12 for U = 385 ft/sec and assuming

baseline values of numerical parameters: the
frequency of 2.94 Hz is nearly identical to that
found during LCO at U = 410 ft/sec, while peak

lift coefficient reaches only about 5 x 107.
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Fig. 12: Low amplitude oscillations at Mach
0.92 (U =385 ft/sec).

5.7 LCO Sensitivities

The variation of LCO amplitude with respect to
changes in flight speed at Mach 0.92 is
computed for three categories of analysis:
inviscid analysis of wing with store mass (grid
G1); inviscid analysis of wing with store
modeled aerodynamically (grid G2), and
viscous analysis of wing with store mass (grid
G3). Results are compared in Fig. 13 to show
the effects of varying the level of modeling
fidelity within the context of transonic small-
disturbance theory. Assuming inviscid flow, it
is observed that modeling the store
aerodynamically has little impact on the onset or
computed amplitude of LCO. However, at
speeds exceeding 420 ft/sec, solutions can not
be stably computed. In these cases of increased
wing-tip twist, numerical destabilization appears
to be a result of a very large, localized, pressure
spike observed in the region of the juncture
between the store and the wing leading edge.
This destabilization occurs at about the speed
for which LCO amplitude is predicted to grow
rapidly when store aerodynamics are ignored;
peak lift coefficient begins to take a large jump
at U = 427 ft/sec with this approximation. At
speeds exceeding this value, the validity of the
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computed inviscid solutions is considered to be
diminished, owing to the small-disturbance
nature of the methodology. As described above
for U = 410 ft/sec, the effect of viscosity is to
diminish LCO amplitude. When the boundary
layer thickness is modeled, no large increase in
LCO amplitude is observed, and peak lift
coefficient remains bounded by 0.26 over the
range of speeds examined, thus reducing the
deformation of the wing and extending the
speed range over which the assumption of small
disturbances is arguably satisfied. Near the
bifurcation point, at U = 388 ft/sec, non-unique
states are observed. One state, obtained with
the baseline initial conditions exhibits very
small-amplitude ELCO behavior, while the
other state, obtained by restarting the aeroelastic
solution from U = 390 ft/sec, exhibits LCO
behavior. However, as velocity is reduced
below 388 ft/sec, only ELCO is observed, and
as velocity is increased above this same speed,
only LCO is observed. These inviscid results
are indicative of the presence of a subcritical
bifurcation just above this speed, causing
relatively large jumps in LCO amplitude over a
small range of flight speeds. This phenomenon
is explored further below for Mach 0.93.
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Fig. 13: Comparison of LCO response
boundaries for different CAPTSDv analyses at
Mach 0.92. G1 — clean wing, inviscid; G2 — tip
store aerodynamics, inviscid; G3 — viscous.

As stated above for the results computed at
Mach 0.92 (cf. Fig. 13), the onset of LCO is
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subcritical when inviscid flow is assumed. This
is also observed at Mach 0.93, as shown in
detail in Fig. 14 (for the baseline condition of
vanishing root angle-of-attack). For this
comparison, aeroelastic solutions are computed
using two kinds of initial conditions: the initial
conditions described above, and initialization of
the flow field using a fully developed LCO
solution obtained at a higher velocity. It is seen
that the latter class of initial condition produces
fully developed LCO solutions for a small range
of velocities (noted at 386 ft/sec and 388 ft/sec)
at which the former class of initial condition
does not produce LCO. While the range of
hysteresis is slight, the subcritical nature of the
bifurcation does explain the rather large jumps
in amplitude observed beyond the critical
points.
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Fig. 14: Demonstration of subcritical Hopf
bifurcation and non-unique aeroelastic behavior
at Mach 0.93, calculated using two different
initial conditions.

Not surprisingly, over the range of Mach
numbers that sustain LCO, amplitude of
response is found to be highest over the
midsection of the range. This is shown in Fig.
15 for a velocity of 410 ft/sec. The response
near the low-Mach boundary of the LCO region
is characteristic of the subcritical response
shown in Fig. 13 and Fig. 14. However, at the
high-Mach boundary of the LCO region, the
computed results are not suggestive of non-
unique flow responses.
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6 Summary and Conclusions

A class of limit-cycle oscillations was observed
for a rectangular wing with tip store. These
LCOs occurred at speeds lower than that
predicted using linear aerodynamics and at
speeds lower than that computed for the clean-
wing configuration. The form of the bifurcation
was subcritical, such that LCO amplitude
jumped abruptly as Mach number increased
beyond a critical value. However, it was also
found that as Mach number increased to a
critical value (~0.94-0.95), LCO states could no
longer be sustained.  For the configurations
examined, the presence of LCO was insensitive
to the inclusion of store aerodynamics in the
aeroelastic model. Also, the effect of viscosity
was to diminish LCO amplitude. A second
class of LCO solutions with small amplitude
was observed that occurred over a range of
speeds below critical, i.e., prior to the initiation
of LCOs characterized by large-amplitude
aeroelastic response. These states were found to
be sensitive to structural damping, such that
addition of nominal levels of damping was
sufficient to overcome the phenomenon.
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Fig. 15: Variation of LCO response of the clean
wing for different Mach numbers at U = 410
ft/sec.

The search for LCO states was conducted
in two steps. First, linear theory was employed
in the identification of “hump” modes, which
corresponded to placement of the store mass
near the wing leading edge. Such characteristic
aeroelastic responses were expected to point to
conditions susceptible to LCO. Second, LCO

states were computed using the transonic small-
disturbance theory algorithm CAPTSDyv,
assuming both inviscid and viscous flow. This
nonlinear mathematical formulation was
sufficient to capture properly weak shock
formation and movement.
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