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Abstract  

A number of issues related to the supersonic 
flutter and post-flutter of a wing section, as well 
to their control are addressed in this paper. In 
this context, the objectives of this study are: 1) 
to analyze the implications of nonlinear 
supersonic piston theory aerodynamics and 
structural nonlinearities on the character of the 
flutter instability boundary of wing sections, and 
2) to implement a control capability enabling 
one to control both the flutter boundary and its 
character. This will enable one to expand the 
flight envelope without the occurrence of 
catastrophic failures of aeroelastic nature.  
The study of the bifurcation behavior of the 
aeroelastic system in the vicinity of the flutter 
boundary is carried out via Lyapunov’s first 
quantity. 

1 Introduction 

Depending on the nature of the flutter boundary, 
i.e. catastrophic or benign, if the aircraft reaches  
the flutter speed it can feature a catastrophic 
failure (unstable LCO) or can survive (stable 
LCO), respectively [1]. In the latter case, the 
failure will not occur catastrophically, but by 
fatigue. 

At this stage, according to the flight 
regulations, the flutter speed should be 15% 
larger than the maximum speed the airplane can 
experience [2]. This imposed large margin of 
security is intended to prevent the catastrophic 
failure of the aircraft operating in the vicinity of 
the flutter speed. 

This suggests the considerable importance 
of addressing at least two issues:  

1) of including in the aeroelastic analysis 
the various nonlinear effects, on which basis is 
possible to get a better understanding of their 
implications upon the character of the flutter 
boundary [1,3], and  

2) of implementing an active control 
capability [4,5] enabling one to increase the 
flutter speed and convert the catastrophic flutter 
boundary into a benign one. This research 
addresses both these issues. 

2 Aeroelastic Behavior in the Vicinity of the 
Flutter Instability Boundary 

The issue of the character of the flutter 
boundary, can be revealed mathematically via 
determination of the nature of the Hopf-
Bifurcation (i.e. supercritical or subcritical, 
respectively). In this sense see Refs. [6,7] and, 
in the special case of nonlinear aeroelastic 
systems, Refs. [1,3].  

Loosely speaking, the Hopf-bifurcation 
theorem [6] stipulates that if the characteristic 
equations of the linearized system about an 
equilibrium position exhibits pairs of complex 
conjugate eigenvalues that cross the imaginary 
axis as one of the control parameter varies, (in 
the present case this parameter is the flight 
speed V ), then for the near-critical values of V  
there are limit cycles close to the equilibrium 
point FlutterV .  

In this study, the determination of the 
catastrophic/benign character of the flutter 
boundary and its control is carried out via 
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determination of the sign of the Lyapunov first 
quantity (LFQ) [1,8], for the flutter boundary 
that corresponds to the purely imaginary roots 
of the characteristic equation. The approach 
used in [1] and [3] for the panel flutter, is 
extended in the present work to the 
aeroelasticity of nonlinear 2-D lifting surfaces. 

The behavior of the general dynamic 
systems near the boundaries of the stability 
domains was investigated by Bautin [8] who 
considered only those portions of boundary of 
the region of stability for which the 
characteristic equation exhibits either one root 
only, or two roots, that are purely imaginary. 

The LFQ corresponding to the actively 
controlled nonlinear flutter of wing section in a 
supersonic flow field is derived, and is used 
toward the investigation of the character of the 
flutter boundary.  

Upon defining the expression of the 
Lyapunov first quantity ( )FVL , from the 

conditions ( ) 0<FVL  and ( ) 0>FVL , one can 
determine the benign and catastrophic portions 
of the flutter boundary, respectively, and 
implicitly, the influence played by the various 
nonlinearities included in the system. Herein 

αωbaMV FF ∞≡ .  

3 Nonlinear Model of a Wing Section 
Incorporating an Active Control Capability 

Toward formulating the aeroelastic theory of 
actively controlled wing sections in a supersonic 
flow field both the aerodynamic and structural 
nonlinearities are included [3,9].  

This is motivated by the fact that these 
nonlinearities can contribute differently to the 
character of the flutter boundary. Moreover, in 
the case when the flutter boundary is 
catastrophic, an active control mechanism can 
be implemented as to convert the flutter 
boundary into a benign one. 

3.1 Nonlinear Piston Theory Aerodynamics 
(PTA) 

As a basic ingredient towards addressing the 
nonlinear flutter, the nonlinear unsteady 
aerodynamic lift and moment should be 

determined. Consistent with Piston Theory 
Aerodynamics (PTA) [10], the pressure on the 
upper and lower faces of the lifting surface can 
be expressed as 

( ) ( )( ) ( )12211, −
∞∞ −+= κκκ avptxp z

 (1) 

Herein  

( ) zxwUtwvz sgn∂∂+∂∂−= ∞  (2) 

denotes the downwash velocity normal to the 
lifting surface and ∞∞∞ = ρκ pa 2 , while zsgn , 
assumes the values 1 or –1 for 0>z  and 0<z , 
respectively. In addition,   

( ) ( ) ( )( )0bxxtthtw −+= α  (3) 

denotes the transversal displacement of the 
elastic surface. In addition, 0x  is the 

dimensionless streamwise position of the pitch 
axis measured from the leading edge, whereas 
b  is the half-chord length of the airfoil; ∞p , 

∞ρ , ∞U  and ∞a  are the pressure, the air 
density, the airflow speed and the speed of 
sound of the undisturbed flow, respectively; and 
κ  is the isentropic gas coefficient. Retaining in 
the binomial expansions of (1), the terms up to 

and including ( )3
∞avz , yields the pressure 

formula for the PTA in the third-order 
approximation [1,3,11,12]:  
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Herein the aerodynamic correction factor [11] 

γ 12 −≡ ∞∞ MM , enables one to extend the 

validity of the PTA to the entire low supersonic-
hypersonic flight speed regime. As mentioned in 
[3,11], the validity of Eq. (4) is satisfactory even 
for 2≥M  . It is also important to remark that, 
PTA in general and Eq. (4), in particular, are 
applicable as long as the transformations 
through compression and expansion may be 
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considered as isentropic, that is as long as the 
shock losses would be insignificant (low 
intensity waves). On the other hand, a more 
general formula for the pressure, obtained from 
the theory of oblique shock waves (SWT), and 
valid over the entire supersonic/hypersonic 
range, can be applied [3,11].  

3.2 Nonlinear aeroelastic model 

Upon denoting the dimensionless time and 
speed parameters, btU ∞=τ  and αωbUV ∞= , 

the aeroelastic governing equations of an 
actively controlled wing section elastically 
constrained by the linear translational and the 
nonlinear torsional springs (Fig. 1), and 
featuring plunging ξ  and twisting α  degrees of 
freedom, exposed to a supersonic/ hypersonic 
flow field are [13]:  
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Herein al ( )2
∞≡ mUbLa  and am ( )22

∞≡ UIbM a α  

denote the dimensionless aerodynamic lift and 
moment, respectively. These are expressed as: 
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(8) 

Together with the parameters defined in 
Refs. [4,9,13,14], we also define the parameter 
B  that represents the nonlinear restoring 
moment, defined as ratio of the linear and of 
nonlinear stiffness coefficients. As a result, B  
constitutes a measure of the degree of the 

nonlinearity of the system, where 0<B  
corresponds to soft structural nonlinearities, 
while 0>B  to hard structural nonlinearities; 

1ψ  and 2ψ  denote the normalized linear and 

nonlinear control gains respectively; Sδ , Aδ , Cδ  

are tracing quantities identifying the structural, 
aerodynamic and non-linear control terms, 
respectively.  
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Fig. 1. Characteristics of the wing section 

The numerical simulations, unless otherwise 
stated, involve the case of an airfoil whose 
geometric parameters are:  

;0;5.0;0.1;25.0;50 ====== ξααα ζζωχµ r
;0m;51Hz;60;5.0 210 ====== ψψωω αξ .bx

1;1 ==== BCSA δδδ .  
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Fig. 2. Mach flutter vs. Mach flight. Influence 
of the frequency ratio ω(≡ωξ/ωα).  

In addition, the flow field characteristics are: 
m/s;340;1 == ∞aγ 4.1;kg/m225.1 3 ==∞ κρ . 

The graphs depicting the influence of some 
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geometrical parameters of the wing section on 
the flutter instability boundary as a function of 
the flight Mach number are displayed in Figs. 2 
and 3. The trend of these plots is in excellent 
agreement with the results provided in Bisplin-
ghoff et al. [13]. In Fig. 4, the dependence of 
the Mach flutter (MFlutter) as a function of the 
Mach flight (Mflight) for selected values of the 
linear feedback gain 1ψ  is presented. 
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Fig. 3. Mach flutter vs. Mach flight. Influence 
of the structural damping coefficients ζξ and ζ α. 
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Fig. 4. Mach flutter vs. Mach flight. Influence of 
the linear control gain ψ1. The numbers indicate 
the percentage increase of MFlutter as compared to 

that of the uncontrolled case (ψ1 = 0). 

With the increase of the linear control gain, 
an increase of the flutter speed is experienced 
(up to 125% for 4.01 =ψ ).  

4. Methodology: the Lyapunov First 
Quantity (LFQ) 

As previously stated, the conditions of 
catastrophic or benign character of the flutter 
instability boundary are obtained by the use of 
the Lyapunov first quantity ( )FVL . This 
quantity will be evaluated next. To this end, the 
system of governing equations is converted to a 
system of four differential equations in the form 
[1,3,8]: 
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For the present case the functions 
( )4321 ,,, xxxxPj  include both the structural and 

aerodynamic nonlinearities, as well as the 
nonlinear control term that can be cast as: 
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(10) 

Considering the solution of Eqs. (9) under the 
form ( )tAx jj ωexp= , the characteristic 

equation corresponding to the linearized system 
counterpart is:  

0234 =++++ srqp ωωωω  (11) 

As a reminder, for steady motion, the 
equilibrium is stable in Lyapunov’s sense, if the 
real parts of all the roots of the characteristic 
equation are negative [15]. It is well known that, 
the study of stability leads to the Routh-Hurwitz 
(R-H) conditions, that correspond to stability of 
the considered state of equilibrium. The R-H 
conditions reduce to the inequalities:  

0>p , 0>q , 0>r , 0>s , (12) 

and  

022 >−−=ℜ rsppqr  (13) 
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For the aeroelastic stability problems, the 
roots of the characteristic equation on the 
critical flutter boundary, 0=ℜ , are given by: 

ic±=2,1ω , in±−= εω 4,3  where prc =2 , 

2p=ε , 422 prspn −= , 0>n . These 
equations reveal that the required condition for 
the application of Hopf bifurcation theorem are 
fulfilled. For sufficient small values of the speed 
V , all the roots of the characteristic equation 
are in the left hand side of the complex variable 
and the zero solution of the system is 
asymptotically stable.  

The value FVV =  for which the two roots 
of the characteristic equations are purely 
imaginary and the remaining two are complex 
conjugate and remain also in the left hand side 
of the complex variable, is critical and 
corresponds to the critical flutter velocity. In 
order to be able to distinguish the benign 
portions of the stability boundary from the 
catastrophic ones, is necessary to solve the 
stability problem for the system of equations in 
state-space form in the critical case of a pair of 
pure imaginary roots. Following the ideas 
developed by Lyapunov [16] and Bautin [8], the 
catastrophic and benign portions of the flutter 
instability boundary can be determined, via 
determination of the sign of the Lyapunov’s 
coefficient. Following Bautin, the system of 
equations (9) is reduced to the canonical form. 
The expression of the Lyapunov first quantity is 
given under a closed form in [1]. For the present 
case, the Lyapunov first quantity is expressed in 
terms of the coefficients ( )j

klsA  as: 

( ) ( ) ( ) ( ) ( )( )1
122

2
112

2
222

1
1114

3 AAAA
c

VL F +++=
π

 
(14)

where, the terms in the bracket of Eq. (11) are 
expressed via  the coefficients ( )j

klsa   appearing in 

Eqs. (10). The coefficients of Eq. (11), 
evaluated on the instability boundary are 
presented in [14]. The flutter critical boundary 
is benign (supercritical Hopf-bifurcation) or 
catastrophic (subcritical Hopf-bifurcation), if 

the following inequalities, ( ) 0<FVL  and 

( ) 0>FVL , are fulfilled, respectively. 
Paralleling the procedure devised in [1] and [3], 
the benign or catastrophic character of the 
flutter boundary, may be expressed, 
respectively, under the concise form as: 

22
rF VV < ,     or   22

rF VV > . (15) 

where: 

21
2 AAVr =  (16)

In Eq. (13) 1A  contains the structural 
nonlinearities and the nonlinear control gain 
parameter, whereas 2A , includes the aerody-
namic nonlinearities.  
As a very important consequence, in absence of 
nonlinear control and for 0<B , that is for soft 
structural nonlinearities, the expression of 2

rV  is 

negative, and the relation 22
rF VV >  is satisfied 

for any flight supersonic Mach number [14]. 
This implies that in this case, even in the 
presence of the linear control, a subcritical 
Hopf-Bifurcation is experienced. On the other 
hand, for 0>B , that is for hard structural 
nonlinearities, in the presence of the linear 
control, the transition from the benign flutter 
boundary to the catastrophic one occurs at 
higher flight Mach numbers.  

4.1 Stability Analysis in Presence of Active 
Control 

The stability of the aeroelastic system in the 
vicinity of the flutter boundary is analyzed next. 
The effect of structural nonlinearities on the 
character of the flutter boundary is carried out in 
terms of the nonlinear parameter B , see Eq. (6). 

The graph depicting the Lyapunov first 
quantity ( )FVL  vs Mflight for the uncontrolled 

wing section  ( )0;0 21 === ψψδ C  and for the 

cases in which aerodynamic and structural hard 
nonlinearities are retained, are displayed in Figs. 
5, 6 and 7.  
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Fig. 5. Lyapunov first quantity (LFQ). Influence 
of aerodynamic and soft/hard structural 
nonlinearities on flutter boundary (FB).  

In these numerical simulations both types 
of nonlinearities have been considered 
separately and together.  
It clearly appears that in presence of 
aerodynamic nonlinearities only, the Lyapunov 
first quantity is positive for any flight Mach 
number. This result reflects the fact that this 
type of nonlinearity provides a catastrophic 
character to the flutter boundary, implying that a 
subcritical H-B occurs.  

Similar trends and conclusions are obtained 
for soft structural nonlinearities. On the other 
hand, in the presence of hard structural 
nonlinearities only, the opposite situation is 
experienced, whereas when both nonlinearities 
are included, at relatively moderate supersonic 
flight Mach numbers the flutter is benign, while 
with the increase of the flight Mach number, the 
flutter becomes catastrophic.  

Moreover, as a consequence of these 
results, if the aerodynamic nonlinearities are 
discarded, ( )0=Aδ , the aeroelastic system 
features a supercritical or subcritical character, 
for any flight Mach number, depending on 
whether hard ( )0>B  or soft ( )0<B  structural 
nonlinearities are present, respectively. 

The influence of the hard structural and 
aerodynamic nonlinearities ( )1== AS δδ  for 

controlled/uncontrolled system is presented in 
Figs. 7 and 8.  

Both hard structural and aerodynamic 
nonlinearities ( 1;1;1 === BSA δδ ), and aero-

dynamic nonlinearities only ( ;1=Aδ  0=Sδ ), 

are included, respectively. 
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Fig. 6. LFQ. Influence of aerodynamic and 
soft/hard structural nonlinearities on FB. 
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Fig. 7. LFQ. Influence of aerodynamic and 
soft/hard structural nonlinearities on FB. 
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Fig. 8. LFQ. Influence of aerodynamic and 
structural nonlinearities on FB for the 

uncontrolled/controlled cases. 

The control mechanism acts in both 
situations toward the stabilization of the system, 
that is to enhance the flutter behavior. Also in 
this case, the inherent catastrophic character of 
the flutter boundary, that corresponds to the 
case when only aerodynamic nonlinearities are 
considered, can be converted via the nonlinear 
control into a benign one.  

Figure 9 highlights the effect of the 
linear/nonlinear control in the presence of 
structural and aerodynamic nonlinearities. It 
clearly appears that, the control and the hard 
structural nonlinearities are beneficial in the 
sense of expanding the region of benign flutter 
boundary. 
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Figs. 9. a) B vs Mflight. b) ψ1 vs Mflight. Uncontrolled/controlled cases.  
 
The results emerging from these figures 

reveal also that soft structural nonlinearities 
( 0<B ) result in a catastrophic flutter boundary, 
and that via the active nonlinear control the 
unstable LCO can become stable. In addition, in 
[14] was reported that when soft structural and 
aerodynamic nonlinearities are present, the 
linear active control cannot change the character 
of the flutter boundary.  

Using Eqs. (12) and (13), the character of 
the flutter boundary is examined and has been 
plotted in Figs. 10, 11 and 12 for 1;1 == BSδ  

and  1=Aδ . These graphs display the benign 

( )0<L  and catastrophic ( )0>L  characters of 
the flutter boundary for the actively controlled 
wing section, where ;4.0;3.0;2.0;1.0;01 =ψ  

12 10;0 ψψ = .  
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Fig. 10. Influence of the linear control on the 
character of the flutter boundary (Vr > VFlutter   

⇒ Benign FB; Vr < VFlutter ⇒ Catastrophic FB. 

The intersection of the curves FlutterV  and 

rV  identifies the transition between catastrophic 
and benign flutter boundary. It appears that a 
nonlinear control is more effective toward a 
stabilization of the aeroelastic system than the 
linear one. The Liapunov first quantity 
corresponding to the cases identified in Figs. 10, 
11, and 12 are depicted in Figs. 13, 14 and 15, 
respectively. These plots help understanding of 
the behavior of the aeroelastic system in the 
presence of linear and nonlinear active controls. 
From the present numerical simulations, the 
aeroelastic system appears to be characterized 
by a catastrophic flutter boundary in the region 
where Fr VV >  (unstable LCO), and by a benign 

flutter boundary in the region where Fr VV <  
(stable LCO). It appears that even, in the 
conditions of a hard structural nonlinearity, 
when, at relatively moderate supersonic flight 
Mach numbers, the flutter is benign, with the 
increase of the flight Mach number the flutter 
becomes catastrophic. This implies that for large 
flight Mach numbers the effects of the 
aerodynamic nonlinearities become prevalent. It 
is also shown that neglect of aerodynamic 
nonlinearities, yields inadvertent results related 
to the character of the flutter boundary, 
especially at high flight Mach numbers.  

Figure 16 highlights the fact that the 
increase of hard physical nonlinearity, measured 
in terms of B , results in the increase of the 

benign portions of the stability boundary and, at 
the same time, in a shift of the benign character 
of the flutter boundary toward larger flight 
Mach numbers. 
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Fig. 11. Influence of the nonlinear control on 
the character of the flutter boundary. 
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Fig. 12. Influence of linear/nonlinear controls                    
on the character of the flutter boundary. 
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Fig. 13. LFQ corresponding to the case of Fig. 10. 
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Fig. 14. LFQ corresponding to the case of Fig. 11. 
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Fig. 15. LFQ corresponding to the case of Fig. 12. 
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Fig. 16. Influence of hard structural and 
aerodynamic nonlinearities on the character of 

the flutter boundary. Uncontrolled case. 

This result, as it was shown in Figs. 7 and 
9, reflects the fact that this type of nonlinearity 
provides a benign character to the flutter 
boundary. Figure 17 highlights the effects of the 

frequency ratio ω  on the LFQ and implicitly on 
the nature of the flutter boundary.  

This plot, in conjunction with Fig. 2, shows 
that with the increase of ω , the transition from 
the benign to catastrophic flutter occurs at lower 
flight Mach numbers. At the same time, with the 
increase of a ω , lower flutter speed is 
experienced. 
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Fig. 17. LFQ. Influence of the frequency ratio 
ω on the character of the flutter boundary.  
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Fig. 18. LFQ. Influence of location of the elastic 
axis on the character of the flutter boundary.  

 
The effects of the position of the elastic 

axis, 0x , measured from the leading edge, on 

the LFQ is presented in Fig. 18.  
From this preliminary investigation, it 

appears that the location of elastic axis has 
significant implications on determination of the 
character of the flutter boundary. In particular, 
transitions from catastrophic to benign and from 
benign to catastrophic occur for various 
locations of the elastic axis.  



P. Marzocca, L. Librescu, W.A. Silva  

444.10 

As concerns the issue of generating the 
active control moment, this one was not 
addressed. It is the authors’ belief that this can 
be produced via a device operating similarly to 
a spring, whose linear and non-linear 
characteristics can be controlled. However, 
additional analysis is required to confirm this 
assertion.  

It should be noticed, that in spite of the 
great practical importance, the literature dealing 
with the aeroelasticity of aircraft structures in 
the presence of both structural and aerodynamic 
nonlinearities is quite void of such results. 

4 Conclusions 
A comprehensive study related to the influence 
of structural and aerodynamic nonlinearities on 
the character of the flutter boundary of aircraft 
wing sections in a supersonic flight speed 
regime is presented. Via the use of the 
Lyapunov first quantity a general picture of the 
variation of catastrophic and benign parts of the 
flutter boundary, as a function of the considered 
nonlinearities and of the parameters charac-
terizing the aeroelastic model can be obtained. 
In addition, the potentialities of the linear and 
nonlinear active control enabling to enhance the 
flutter instability behavior and convert the 
catastrophic flutter boundary into a benign one 
are highlighted in the paper. The expected 
outcomes of this study are: a) to greatly enhance 
the scope and reliability of the aeroelastic 
analysis and design criteria of advanced 
supersonic flight vehicles and, b) to provide a 
theoretical basis for the analysis of more 
complex nonlinear aeroelastic systems.  
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