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Abstract

Mathematical theory and numerical simulations
have been successfully used to study nonlinear
behavior of aircraft structures. In this paper, a
new approach, based on an expert data mining
system, is developed to investigate the dynami-
cal response of an aeroelastic system. Our pre-
liminary study indicates that the new method has
a lot to offer to the dynamics community, and
it is particularly attractive to analyze the nonlin-
ear responses which are noisy, non-stationary and
have high dynamics. Applications of the pro-
posed technique to predict limit cycle oscillations
and other nonlinear behaviors of a two-degree-of-
freedom airfoil oscillating in pitch and plunge are
reported.

1 Introduction

Understanding the nonlinear behavior of aircraft
structures is a crucial step in the flutter bound-
ary prediction, since structural nonlinearities af-
fect not only the flutter speed, but also the char-
acteristics of the dynamical response. Research
on nonlinear aeroelasticity leads to more efficient
and safe design of aircraft wings and control sur-
faces. A detailed review on the nonlinear aeroe-
lastic analysis of airfoils was recently reported by
Lee et al. [1]

Traditionally, the dynamic behavior in non-
linear aeroelasticity can be investigated by the

mathematical theory and numerical simulations
[2]. The describing function technique, the cen-
ter manifold theory, and more recently the point
transformation method have been successfully
applied to predict limit cycle oscillations and
other nonlinear responses of an aeroelastic sys-
tem with structural nonlinearities represented by
cubic spring, freeplay and hysteresis. Numer-
ical techniques based on the Houbolt’s finite-
difference scheme and the Runge-Kutta time-
integration procedure are also frequently used to
study the nonlinear motion affected by structural
nonlinearities. In these conventional approaches,
a mathematical model is developed and the cor-
responding system parameters must be known.
However, in some applications, such as during
the ground vibration test or the actual flight test,
only the dynamic response due to a given exci-
tation is available. For such practical problems,
the recorded nonlinear behaviors are noisy, non-
stationary and have high dimensional dynam-
ics. Consequently, using the traditional approach
based on the mathematical analysis and numeri-
cal simulations may be difficult to deal with these
problems.

Now, we propose to analyze the dynamics
from data instead of using mathematical equa-
tions and numerical simulations. In this new ap-
proach, an expert data mining system (EDMS) is
developed, in which a short-term data set result-
ing from experimental investigations, flight tests
or numerical simulations is taken as the input to
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an EDMS. The output of EDMS then provides
a prediction for the long-term dynamic behavior.
The idea of studying the nonlinear dynamics us-
ing a data mining technique was first proposed in
Popescu and Wong [3], in which we applied sta-
tistical models to predict the nonlinear aeroelastic
behaviors. In the present paper, further develop-
ment of an EDMS is described, and its effective-
ness is demonstrated in applications concerning
the limit cycle oscillations of a nonlinear aeroe-
lastic system.

2 Nonlinear Dynamic Prediction

Let t denote the discrete time, and assume a set
of consecutive terms of a time series x1, x2, . . .,
xt . . ., xt1 is known. We are now interested in
predicting the future values xt1+1, xt1+2, . . ., xt2 .
A popular approach for prediction used in data
analysis is to search for a recurrence relation:

xt = Φ(xt−1,xt−2, . . . ,xt−p)+ et . (1)

where yt = Φ(xt−1,xt−2, . . . ,xt−p) denotes the
predicted value for xt , and et denotes the predic-
tion error. Since we are dealing with a nonlinear
prediction, the nonlinear mapping Φ and the or-
der p of the recurrence are constructed such that
the above relation holds for all known data points.
Once Φ and p are determined, the sequence of
predicted values can be generated by

yt = Φ(xt−1,xt−2, . . . ,xt−p) , (2)

which is generally referred to as a one-step pre-
diction, or

yt = Φ(yt−1,yt−2, . . . ,yt−p) , (3)

which is known as a multi-step prediction.
Clearly, (2) can only be used if at each step t
the correct values xt−1, xt−2, . . ., xt−p are known.
For practical applications in the study of nonlin-
ear aeroelastic response, we are interested in the
development of a reliable multi-step prediction
method.

Choosing the expression for Φ out of an enor-
mous number of possible mappings is an ex-
tremely difficult task. In this study, we pro-
pose to determine the order p and the nonlinear

mapping Φ by using an expert data mining sys-
tem (EDMS). To the best of our knowledge, lit-
tle work has been done on developing a reliable
method for long-term predictions. The proposed
EDMS is particularly designed for such an appli-
cation.

In a similar problem, it has been proven by
Takens [4] that for a deterministic nonlinear sys-
tem, the dynamics can be reconstructed if the
embedding dimension d and the time-lag T are
known. However, the information on d and T is
usually unavailable for realistic problems. More-
over, Takens’ theory is applied to a noise-free
condition, while for practical applications we are
interested in data corrupted by noise. The pro-
posed EDMS is developed so that it is capable to
deal with noisy data.

3 Expert Data Mining System

The proposed EDMS consists of three key com-
ponents, namely the preprocessing, prediction
and verification.

3.1 Preprocessing

The aeroelastic response recorded after an ex-
perimental testing is usually contaminated with
noise. The noise content from a typical ground
test is normally very small and the majority is
caused by the measurement noise. However,
especially due to the effect of turbulence, the
amount of noise from a flight flutter testing is of-
ten significant.

The wavelet transform [5] which is based
on a multi-resolution analysis is used to filter
the noise. The technique is efficient and it has
proven to be very appropriate for real-time ap-
plications. In addition, de-noising with local co-
sine bases is proposed for signals containing si-
nusoidal oscillations with moderate duration [6].
Other de-noising procedures, such as using neu-
ral networks and the unscented filter, will also be
discussed.

Besides the de-noising step, we work with
the mean deleted time series and the input data
is usually transformed to the interval [−1,1].
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3.2 Prediction

The prediction is the key module of the EDMS,
where a long-term prediction is performed. Three
different techniques, artificial neural networks,
nonlinear time series models and the unscented
filter are being applied.

3.2.1 Neural Networks

A neural network is an information process-
ing system composed of interconnected elements
known as artificial neurons. Each neuron receives
several real numbers as inputs and generates a
single real number as output [7]. The output is
constructed by computing a weighted sum of the
inputs and passing it through a transfer function,
which can be linear or nonlinear depending on a
specific problem being solved. The network is
usually constructed via successive layers of neu-
rons, such that the outputs of all neurons in each
layer are fed as inputs to each neuron in the next
layer. The inputs to all neurons in the first layer
form the network input, while the outputs of all
neurons in the last layer form the network output.
The network output y is a function of the network
input vector x and of the strengths of the network
connections, known as the network weights. The
form of this mapping y = ϕ(x,w) (where w is
the vector of all network weights) depends on the
chosen network architecture, i.e., on the arrange-
ment of neurons.

We now search for Φ in (1) among the
nonlinear mappings Φw (x) = ϕ(x,w). At
each step t, the neural network input vector is
[xt−1,xt−2, . . . ,xt−p] (for some p) in the case of
a one-step prediction, or [yt−1,yt−2, . . . ,yt−p] for
a multi-step prediction. For a given neural net-
work architecture and for a fixed vector w, the
network output yt = Φw (xt−1,xt−2, . . . ,xt−p) or
yt = Φw (yt−1,yt−2, . . . ,yt−p), provides a predic-
tion for xt .

According to Cybenko [8], a continuous
function Φ on a compact in Rp can be uniformly

approximated with accuracy ε > 0 by a mapping

Φε(ξ1,ξ2, . . . ,ξp)
def
=

w2,ε
0 +

nε

∑
k=1

w2,ε
k tanh

(

w1,ε
k,0 +

p

∑
h=1

w1,ε
k,hξh

)

.

(4)

Hence, the output of a two-layer feed-forward
neural network as illustrated in Fig.1 is capable
to approximate the nonlinear mapping Φ in (1),
where

y2
1,t = Φw (xt−1,xt−2, . . . ,xt−p) =

f2

(

w2
1,0 +

n1

∑
k=1

w2
1,kf1

(

w1
k,0 +

p

∑
h=1

w1
k,hxt−h

))

.

(5)

The vector w of all network weights is given by

w =
[

w1
1,0, . . . ,w

1
n1,p,w

2
1,0, . . . ,w

2
1,n1

]

. (6)

The neural network input vector is given by
[xt−1,xt−2, . . . ,xt−p] and the transfer functions
are f1(v) = tanh(v), f2(v) = v, for the first (hidden
layer) and the second layer, respectively. The bi-
ases w1

k,0, w2
1,0 are regarded as particular weights

corresponding to constant inputs equal to one.
However, using a linear transfer function in

the second layer leads to a poor prediction per-
formance due to the error propagation in a multi-
step prediction process. To overcome this prob-
lem, we propose replacing f2(v) by

f2
c(v)

def
= (c)2 tanh

{

δ0

(c)2 v

}

, (7)

where c is a scaling parameter and δ0 = 0.1 is a
constant that controls the error propagation [9].

After choosing a specific neural network ar-
chitecture and a certain value for p, we need to
determine appropriate values for the weights such
that the neural network can accurately predict the
unknown values xt1+1, xt1+2, . . ., xt2 of the time
series. A common procedure is to choose the
weight vector w that minimizes the performance
index

E(w) =
1

t1− t0

t1

∑
t=t0+1

[

xt − y2
1,t(w)

]2
(8)
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for some fixed t0 < t1. Recall that at each step
t = t0 + 1, t0 + 2, . . ., t1, both the network input
[xt−1,xt−2, . . . ,xt−p] and the corresponding cor-
rect network output xt are known, the perfor-
mance index E(w) is indeed a function of the
network weights only. Thus, the neural network
is learning from a set of examples of the correct
network outputs to given inputs, and this is gener-
ally referred to as a network training. Nonlinear
optimization methods such as the conjugate gra-
dient algorithm, variations of Newton’s method,
etc [7] are commonly applied to minimize the
performance index. Note that, during the net-
work training, the network outputs are computed
by a one-step prediction, while the unknown val-
ues xt1+1, xt1+2, . . ., xt2 are determined by a multi-
step prediction using the weights resulted after
the training. Voitcu and Wong [9] reported the
detailed development of the network architecture
and the training algorithm for a recurrent neural
network. The present neural network illustrated
in Fig. 1 is similar to the recurrent network dis-
cussed in [9] but more neurons are introduced in
the hidden layer and the network has no feed-
back connection. However, the same training al-
gorithm is essentially applied to both networks.

3.2.2 Nonlinear Time-Series Models

In this section, we now want to predict the subse-
quent values [Xn+1,Xn+2, . . .] of a given time se-
ries, X = [X1,X2, . . . ,Xn] which contains only a
limited number of transient observations.

Linear models have been commonly used for
forecasting, but they are particularly suitable for
short time predictions. Since the EDMS is de-
signed to deal with long-term predictions for non-
stationary data which exhibits a complex non-
linear dynamics, we prefer the nonlinear models
rather than the classical linear time-series mod-
els. Two nonlinear time series models, namely
the amplitude-dependent exponential autoregres-
sive models [10] (EXPAR) and the self-exciting
autoregressive models [11] (SETAR), are being
implemented in the EDMS.

An EXPAR model of order p can be ex-

pressed analytically as

Xn = (Φ1 +π1e−γX2
n−1)Xn−1 + . . .

. . .+(Φp +πpe−γX2
n−1)Xn−p + en

(9)

where Φi,πi,1 ≤ i ≤ p and γ are constants and en

is a discrete Gaussian white noise process. Such
a model does not constrain Xn to be Gaussian and
incorporates both the amplitude-dependent fre-
quency and the limit cycle behavior. Notice that,
when γ is zero, it becomes the classical linear au-
toregressive time-series model.

The EXPAR model (9) was further extended
[12] to the form

Xn = (Φ1 + f1(Xn−1)e
−γX2

n−1)Xn−1 + . . .

. . .+(Φp + fp(Xn−1)e
−γX2

n−1)Xn−p + en

(10)

where Φi, 1 ≤ i ≤ p and γ are constants, en

is a discrete Gaussian white noise process and
fi(Xn−1)e

−X2
n−1 , i = 1, . . . , p are the Hermite type

polynomials, where

fi(Xn−1) = π(i)
0 +π(i)

1 Xn−1 + . . .+π(i)
ri X ri

n−1. (11)

In this new form the model admits a more sophis-
ticated nonlinear dynamics. For example, non-
symmetric processes can be generated if the or-
ders ri of the Hermite polynomials fi(Xn−1) are
odd. An efficient procedure which does not re-
quire a general nonlinear optimization solver to
estimate the coefficients in the EXPAR model is
reported in [10].

The SETAR models are particularly suitable
for data arising from the piece-wise linear sys-
tems, and they are being considered for aeroe-
lastic system with freeplay or hysteresis nonlin-
earities. A self-exciting threshold autoregressive
model of order (l;k, . . .,k) or SETAR (l;k, . . . ,k)
where k is repeated l times, is a univariate time
series {Xn} of the form

Xn = a( j)
0 +

k

∑
i=1

a( j)
i Xn−i + ε( j)

n , (12)

conditional on Xn−d ∈ R j, where d is a fixed in-
teger belonging to { 1,2, . . . ,k}, R j = (r j−1,r j],
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j = 1,2, . . . l with r0 =−∞ and rl = +∞ is a parti-
tion of the set of real numbers and r1, . . . ,rl−1 are
the thresholds. A SETAR (1,k) model is equiva-
lent to a linear autoregressive (AR) model of or-
der k.

Replacing the linear autoregressive models in
equation (12) with the nonlinear EXPAR model
given by equation (10), we obtain a combination
of SETAR and EXPAR models. We propose to
use the combined model for studying the time se-
ries resulted from an aeroelastic system with the
piece-wise linear restoring forces.

3.2.3 Unscented Filter

The extended Kalman filter (EKF) is frequently
used for system identification and for perform-
ing a short-term prediction. However, the EKF
is computationally expensive and can not be ap-
plied to non-differentiable nonlinearities such as
freeplay or hysteresis models. In the proposed
EDMS, we consider the unscented filter (UF)
method [13]. Its performances are comparable
with the EKF [14], but it does not require the cal-
culation of any Jacobians. Thus, the UF method
can be applied for continuous non-differentiable
nonlinearities and it is computationally less ex-
pensive.

Suppose the nonlinear system is governed by
the following differential equations,

X
′
(t) = AX(t)+F(X(t)), (13)

where A is the matrix containing the system co-
efficients, F is a nonlinear function, and X is the
state vector.

Now, let consider the corresponding nonlin-
ear discrete system
[

x(k +1)
a(k +1)

]

=

[

f [a(k),x(k),u(k +1)]
a(k)

]

+ v(k +1),

(14)

z(k +1) =

[

1 0 . . . 0
0 1 . . . 0

][

x(k +1)
a(k +1)

]

+w(k +1).

where f [·, ·, ·, ·] is the process model, x(k) is the
state of the system at time step k, a(k) is the
vector representing the unknown system param-
eters, u(k + 1) is the input vector, z(k + 1) is the

observation vector, v(k + 1) is a q−dimensional
noise process and w(k) is the additive measure-
ment noise. We assume that the additive noise
vectors, v(k) and w(k), are Gaussian and uncor-
related white sequences.

After we apply the filter using the given
noisy observations, the asymptotic behavior can
be provided by the predictor. The parameters are
fixed to the last values estimated using the filter.
For performing the prediction, the corresponding
state-space formulation is giving by

x(k +1) = f [a0,x(k),u(k +1)]+ v(k +1)

(15)

z(k +1) =

[

1 0 . . . 0
0 1 . . . 0

]

x(k +1)+w(k +1),

where a0 is a constant vector with the estimated
values of the parameters [3].

3.3 Verification

The two core components of a typical rule-based
expert system are the knowledge base and the
reasoning engine. In the EDMS, three methods,
the neural networks, the nonlinear time-series
models and the unscented filter, are proposed for
predictions. Hence, the knowledge base contains
the results of the analysis done with the three
methods discussed in the previous section. A di-
agnostic check for each prediction is then per-
formed by comparing the results of these differ-
ent approaches. The reasoning engine is based
on a simple rule, namely the long-term predic-
tions and their classification as limit cycle oscil-
lations, stable or unstable oscillations are given as
the system output if the solutions from the three
different approaches agree.

The diagnostic check is done in the verifica-
tion module, which is an important integral part
of the EDMS. The input data is divided into the
training and the test set. The training set is used
for estimating the parameters of the models and
the nonlinear mapping. The test set is used for
checking the prediction accuracy. We have cho-
sen this cross-validation approach because it em-
phasizes the predictive aspect of the model selec-
tion.
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4 Case Studies

The performances of the developed EDMS are
demonstrated to predict the asymptotic state of
an aeroelastic system. The preprocessing, pre-
diction and verification steps have been imple-
mented using the C++ programming. The input
data are generated from a numerical simulation
of a two-degree-of-freedom airfoil oscillating in
pitch and plunge. For incompressible flow, the
following mathematical model [1] is applied:

ξ̈+ xαα̈+2ζξ
ω̃

U∗
ξ̇+

(

ω̃
U∗

)2

G(ξ) = −
1

πµ
CL(τ),

xα
r2

α
ξ̈+ α̈+2

ζα
U∗

α̇+
1

U∗2 M(α) =
2

πµr2
α

CM(τ),

(16)

Here, ξ and α are the plunging deflection and
the pitch angle about the elastic axis, G(ξ) and
M(α) are the nonlinear plunge and pitch stiffness
term and CL(τ), CM(τ) are integral terms repre-
senting the lift and pitching moment coefficients.
By introducing four new variables, the integro-
differential system can be reformulated [1] as a
system of nonlinear differential equations given
in (13).

In the present case study, we consider
that the structural nonlinearity represented by a
freeplay model is imposed in the pitch-degree-of-
freedom, namely M(α) is given by

M(α) =























M0 +α−α f , if α < α f

M0 +M f (α−α f ) ,
if α f ≤ α ≤ α f +δ

M0 +α−α f +δ(M f −1) ,
if α > α f +δ

(17)

where M0, δ, α f , and M f are the freeplay con-
stants. A linear spring is imposed in the plunge-
degree-of-freedom, G(ξ) = ξ.

In order to generate the input data set, the
nonlinear differential system (13) is numerically
solved using a fourth-order Runge-Kutta time in-
tegration scheme. The parameters of the system
are chosen to correspond to limit cycle oscilla-
tions. A typical input data set usually contains
150-430 transient observations, depending on the

method used for prediction. The training set is
formed with the majority of these data, and the
test set contains the remaining observations.

In the following figures, the x- axis displays
the non-dimensional time and the y- axis the
pitch angle measured in radians, or the non-
dimensional plunging deflection.

In Fig. 2, we display a typical time-series for
the pitch motion. Ignoring the first 100 data, and
taking the remaining 300 data points – as indi-
cated by the two vertical lines – as the training
set for the neural network, an excellent predic-
tion is obtained. In Fig. 2, the blue line corre-
sponds to the simulated pitch motion, and the red
line denotes the neural network prediction. In the
present neural network, the input consists of 75
data points and 25 neurons are selected for the
hidden layer. The network performance is not
sensitive when the input is varied from 50 to 100
data points, and the number of hidden layer neu-
rons is varied from 10 to 30. The neural network
approach can be regarded as a “black-box” tool,
once the network architecture and training algo-
rithm are chosen, the user can obtain the long-
term prediction by using various numbers of in-
puts and by varying the number of neurons in the
hidden layer. Another attractive feature in apply-
ing a neural network is that it is capable to deal
with noisy data directly. By introducing a noise
with signal to noise ratio 5, the noisy pitch mo-
tion is shown in Fig. 3. Using the same numbers
of noisy data as network training set, the neural
network prediction is illustrated in Fig. 3. The
results reported in Fig. 3 also clearly suggest that
the neural network is very effective in filtering the
noise components from a given noisy data.

The nonlinear time-series EXPAR model
based is now applied to the clean pitch motion.
The model is selected with polynomials of degree
three, γ = 16.3 and p=16. The training set is taken
from data between 40 to 219 as indicated by the
two vertical lines. The performance of the EX-
PAR model is stable to small variation of γ. The
EXPAR model requires less training data com-
pared to the neural network approach, and it gives
an excellent prediction. However, the method can
not deal with data corrupted with noise. For the
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noisy pitch motion shown in Fig. 2, a wavelet de-
noise procedure is first applied to filter the noise.
An EXPAR model can then be applied to the de-
noised pitch motion for a long-term prediction.
However, it is noted that more training data is re-
quired when compared to the application to clean
data. The results are shown in Fig. 5, where
blue represents the wavelet de-noised pitch mo-
tion, and red denotes the EXPAR model predic-
tions. The predicted motion is in good agreement
with the de-noised signal. A combined SETAR-
EXPAR model has also been tested, and the re-
sults are similar to those reported in Figs. 4 and
5.

Unlike the neural networks and non-linear
time series models, where only the discrete data
is needed as input, more information is required
when the unscented filter (UF) is used. In par-
ticular, the basic mathematical model must be
known, but the values of the system coefficients
are not required. However, the UF method can be
applied directly to the noisy data, and it can also
be used to estimate the system parameters. The
UF predicted pitch motion (red) is compared with
the simulated noisy data (blue) shown in Fig. 6.
Clearly, an excellent prediction is achieved. It is
also of interest to note that the UF also provides
a good prediction for the derivative of the pitch
motion.

In Figs. 7 to 11, we show the correspond-
ing results when the three different methods are
applied to the simulated plunge motion. The pre-
dicted motions are in reasonably good agreement
with the simulated plunge motion. However, we
observe that the long-term predictions indicate
some errors due to the phase shift. The errors
are more noticeable when the neural network is
applied to the noisy data. An improved neural
network is currently being studied, which may
considerably reduce the phase errors.

The developed EDMS has also been tested on
data resulted from nonlinear aeroelastic systems
with structural nonlinearity represented by cubic
spring and freeplay models. Due to the space
limitations, these results will not be reported in
this paper. In all case studies, it has been demon-
strated by taking a short-term data set as the train-

ing set that the EDMS provides accurate predic-
tion for limit cycle oscillations in the pitch and
plunge motions. Moreover, it is also capable to
predict stable damped oscillations and unstable
divergent motions. The neural network can also
be designed to extract important features of the
nonlinear dynamics. It has been demonstrated by
Wong et al. [15] that when a neural network is
used in conjunction with a wavelet decomposi-
tion software, the frequencies and damping ratios
of a damped oscillation can be efficiently and ac-
curately estimated.

5 Concluding Remarks

Accurate and reliable predictions of limit cy-
cle oscillations and other complex dynamic re-
sponses of nonlinear aeroelastic systems are im-
portant in practical applications. In this paper, we
report the development of an expert data mining
system (EDMS), in which neural networks, non-
linear time-series models and the unscented filter
are proposed as the key component for perform-
ing a nonlinear dynamic prediction. The neural
network approach is attractive, since it can be
considered as a “black-box” tool and it is capa-
ble to deal with noisy data directly. However, it
is difficult to analyze the accuracy of the resulted
predictions. This approach usually requires more
training data compared to the other two methods
discussed in this paper. The nonlinear time-series
models are effective, and need less data for train-
ing. However, their performance is significantly
affected if the data is contaminated by noise. For
the noisy data, a de-noising procedure is first
needed to filter the noise. In comparison with the
results given by the above two methods, the un-
scented filter produces more accurate predictions
for all problems tested. This technique can deal
with noisy data. Moreover, it can be used to esti-
mate the unknown system parameters and to pre-
dict the hidden variables such as the derivatives
of the pitch and plunge motions. However, the
mathematical model for the system under inves-
tigation must be available in order to apply the
unscented filter. The other approaches using neu-
ral networks and nonlinear time series models an-
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alyze the nonlinear system dynamics only with
the given short-term data as input, and no other
information is required.

The EDMS has been implemented into a
computer software program, and the preliminary
case studies demonstrate that the developed sys-
tem is capable to provide accurate nonlinear pre-
dictions such as limit cycle oscillations, stable
and unstable oscillations, when only a short-term
data set is taken as input to the EDMS.

The goal of the present study is to introduce
a new approach – EDMS – which may have a
lot to offer to the aeroelasticity community. Even
though the initial assessment of the EDMS per-
formance is encouraging, much more research is
needed. Not only we are currently working to
improve our predictions using various techniques
presented in this paper, but the challenge in our
future work is to understand how and what accu-
racy we can expect from our nonlinear aeroelastic
predictions using the proposed EDMS.
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Fig. 1 Two-Layer Neural Network
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Fig. 2 Pitch motion and ANN prediction (75-25-1 net, train 101-400)
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Fig. 3 Noisy pitch motion and ANN prediction (75-25-1 net, train 101-400)
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Fig. 4 Pitch motion and EXPAR model prediction (train 40-219)
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Fig. 5 De-noised pitch motion and EXPAR model prediction (train 40-295)
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Fig. 6 Noisy pitch motion and UF prediction (train 1-295)
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Fig. 7 Plunge motion and ANN prediction (75-25-1 net, train 101-400)
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Fig. 8 Noisy plunge motion and ANN prediction (75-25-1 net, train 101-400)
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Fig. 9 Plunge motion and EXPAR model prediction (train 70-219)
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Fig. 10 De-noised plunge motion and EXPAR model prediction (train 105-295)
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Fig. 11 Noisy plunge motion and UF prediction (train 1-295)
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