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Abstract

Uncertaintymodelingis a critical elemenin the esti-
mationof robuststability marginsfor stability bound-
ary predictionand robustflight control systendevel-
opment.There hasbeena seriousdeficiencyto datein
aemservoelastidataanalysiswith attentionto uncer
tainty modeling Uncertaintycan be estimatedrom
flight data usingboth parametricand nonpaametric
identificationtedniques.Themodelvalidation prob-
lemaddressedn this paperis to identify aemoservoe-
lastic modelswith associateduncertaintystructues
froma limited amountof contolled excitation inputs
over an extensiveflight ervelope The challenge is
to updateanalyticalmodelsfromflight dataestimates
while also deriving non-conservativeincertaintyde-
scriptions consistentwith the flight data. Transfer
functionestimatesare incorporatedin a robust min-
imax estimationschemeto updatemodelsand get er-
ror boundsconsistentith the dataand modelstruc-
ture. Uncertaintyestimatederivedfrom the datain
this mannerprovide an appropriate andrelevantrep-
resentatiorfor modeldevelopmentnd robust stabil-
ity analysis.Themethodncorporatesparametricand
nonpaamteric uncertaintyinto various uncertainty
structuesfor quantitativemeasues of robust stabil-
ity relating to parametervariations and unmodeled
dynamics.This model-plus-uncertaigtidentification
procedue is applied to aemservoelasticflight data
from the NASADrydenFlight Reseath CenterF-18
System®&eseath Aircraft (F-18 SRA).

1 Introduction

Aeroserwvelastic systemscomprise interactions of
generallymulti-input multi-outputsampled-dataon-
trol feedbackwith actuationdynamicscoupledwith

aeroelasticity Highly augmentedtlosed-loopflight

testdatarequireextra carein distinguishingsystem
componentynamics. Discriminationof sourceand
responseffectsfor properunderstandingf issuesn

causalitymay be problematic.Flight testverification
of an aerosergelasticmodelcanalsohave difficulty

in discerningthe individual subsystendynamicsbe-
causeof inaccessiblgarameter®r inadequatesens-
ing for systemdentificationproceduresFor instance,
aerodynamigarameteidentification algorithmsfor

aeroelastieffectsmayencounteproblemswith flex-

ibility [1], closed-loopcoupling, and transonichon-
linearity.

Model verification over an extensve flight en-
velope presentsmore challenges. Test data acqui-
sition is expensve so maneuers are designedfor
maximum efficieney and data quality A verifi-
cation methodis desiredwhich accuratelyand ef-
ficiently includes identification of critical parame-
ters, addressesnismodelingand unmodeleddynam-
ics, dealswith test condition and systemvariabil-
ity, and derives data-consistenparametricand non-
parametricuncertaintydescriptions. Parametricun-
certaintyis generallycausedyy mismodelingof sys-
tempropertiespff-nominaltestconditions andmodel
oversimplifications.Nonparametricincertaintyoften
relateso unmodeledlynamicsandexogenousnputs,
andrequiresvealerassumptionsntheidentifiedsys-
tem.

With suchapparentcomplicationsin mind, this
papertakes the approachthat estimationof aeroser
voelasticmodelsmust deal directly with uncertainty
in model verification. Parameteridentification will
be applied for model updatesfrom the test data
while addressingmismodelingand unmodeleddy-
namics. Parametricand nonparametricuncertainty
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are incorporatedto help minimize conserativeness
and include both structuredand unstructureduncer

tainty. Non-statisticalkestimationapproachesarepre-

ferredto avoid restrictive assumptionsminimize al-

gorithmic compleity, andimprove reliability in the

form of error bounds. Most importantly the effec-

tivenessf model-basedjuantificationof uncertainty
boundss appealingor robustcontrol-orientecappli-

cationg[2, 3, 4].

Setmembershipdentificationhasbeenpresented
in avarietyof contets. Boundederrorestimation5],
or boundeddatauncertainty[6], characterizeseasi-
ble setsof parametersvith uncertaintyestimateson-
sistentwith the data, model structure,and prior in-
formation on uncertaintybounds. This last require-
mentcanbein theform of unknavn but boundedis-
turbanced?7, 8], constraintson the systemimpulse
responseandinputs[9], or assumption®n bounded
dataperturbation$10].

Two generalresearchdirectionsof set member
ship estimationare: (1) obtainthe exact membership
set,and(2) computea specificoptimal estimaten the
membershipset. The former hassufferedfrom com-
putationalcompleity and conseratism[7, 11]. An
optimal,robustminimaxestimateapproachs applied
in this paper but the apriori uncertaintyboundis not
required Minimum uppererrorboundsarecomputed
with the parameteestimatesuchthatthefeasibleset
is describedasa functionof the errorbounds.Hence,
computatiorof the minimumerrorboundresultsin a
smallestnon-emptyfeasibleset[12].

Transfer functions and modal parameteresti-
matesderived from time-frequeng representations
have previously beenappliedto estimatestate-space
aerosergelasticmodels[13, 14]. Morlet waveletfil-
tering [15, 16, 17] is emplo/ed in this paperto up-
datemodal parameterss a first stepin aeroserge-
lasticmodelidentificationanduncertaintyestimation.
Standardransferfunctionsarethenemplo/edin the
estimation of input-output parameterswith associ-
ateduncertaintyusinganoptimalminimaxprocedure.
Boundsderived from theseestimatesiefineparamet-
ric and nonparametricerrors which relate to multi-
plicative and additive uncertaintystructures respec-
tively, for mixed4u [18, 19] robuststability analyses.

Uncertainty modeling for aeroserwelastic data
analysishasnot beenaddresseadequatelyn the lit-
erature. This paperaddresseghe problemby deriv-
ing modelswith non-conserative uncertaintydescrip-
tionsconsistentvith theflight datain arobustcontrol-

orientedapproachusing F-18 SystemsResearclAir -
craft (SRA) [20] datato comparemodelsusingmulti-
plicative andadditive uncertaintystructures.

2 Uncertainty Modeling

The aerosergelasticopen-loopplant modelincludes
rigid body andelasticmodes,coupledhigh-orderac-
tuator dynamics,and control suriace modal dynam-
ics [21]. Including the aerodynamidag states,the
aerosergelastic state equationstake the following
form

X=AXx+Bu ; u=09y
y=Cx+Du ; x=[nsNrMeNrNenad)

consistingof input control suracecommandsyy, ac-
tuator statesns, rigid body statesn,, flexible mode
statese, aerodynamidag statesn,, andcontrol sur
facedisplacement®. Aeroservoelasticplant, P, is
thereforerepresentedsthe state-spaceperator As-
sociatedwith this time-domainrepresentatioris the
transfer function, P(s), a function of the comple
Laplacevariable,s, suchthaty = P(s)u.

P(s) =D+C(sl-A)~1B (1)

ControllerK(s) is modeledsimilarly, but beinga dig-
ital implementationof the aircraft control laws, it is
modeledasafunctionof discretecomple variable,z,
asK(z= €°T) specifiedby the samplingtime T anda
zero-ordeisample-holdattheinput of the controller

A rolust characterizatiorof the feedbackmodel
incorporatesunstructureduncertaintyto accountfor
unmodeleddynamicsand parametewariations. Un-
modeleddynamicsarerepresentedvith simplecone-
boundedtransferfunctionsat the input-outputrefer
encelocations. Assumethe modelis suitablyscaled
with weightingswW; andW, sothe uncertaintycanbe
representety operatoMhAW,. With uncertaintyin-
corporatedinto the properloop referencelocations,
therobuststability conditionis determinedy analyz-
ing unity-normboundederturbations||A||. < 1, with
the SmallGain Theorem[19].

Multiplicative uncertaintyasshavn in figure 1 is
usedto represenunmodeleddynamicsand errorsat
thefeedbacloutputsensorgw, = Ayz,) andactuator
input commandgw; = Ajz). Eachof Ay, andA; are
diagonalcomple perturbationf appropriateoutput
or input dimensions. Performancespecificationsare
in termsof sensomoiseattenuationoutputresponse
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to output commands) and actuator disturbance rejec-
tion (input response to input commands), respectively.

Multiplicative perturbation at the output results in
perturbed modef, = (I +A,)P, and at the input the
perturbed model iB = P(I +4;). Necessary and suf-
ficient conditions for unstructured robust stability are
then derived from tests on loop sensitivity functions.
Unstructured robust stability tests representing these
types of uncertainty are described from the comple-
mentary sensitivity matrix functions of compl&Xs)
andK(s), for ||Aolle < 1 and||Aole < 1.

IWeTWs|| <1; T =KP(I+KP)™1 (2)

ANWAY

AW &Wo‘

Fig. 1 Aeroservoelastic Model with Input-Output
Complex Multiplicative Uncertainty

Another uncertainty characterization of interest in
this paper is the additive stable perturbatidyg, for
which the perturbed plant 8, = P+ A, with addi-
tive plant errors W, = Aazy) as depicted in figure 2.
The correspondingontrol actionrobust stability test
of input response to output disturbances from additive
plant errors is imposed by loop shape condition

IW6K (I + PK) ™ Wk < 1. (3)

A characterization which augmenta(= AyZ,)
with the complex multiplicative uncertainty repre-
sentation of unmodeled dynamics from figure 1 will
also be referred to as the combined structure of addi-
tive and multiplicative uncertainty shown in figure 3.
Here A, is a full-block complex perturbation since
frequency-dependent errors are allowed to enter any
of the multi-input-multi-output loops arbitrarily.

The robust stability criteria of (2) vary with the
uncertainty description. Uncertainty structure de-
pends on the type of perturbation and how it connects
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“

Fig. 2 Model with Additive Plant Uncertainty
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Fig. 3 Additive with Complex Uncertainty

the the nominal system. mixeduncertainty structure
consists of (real) parametric and (complex) unmod-
eled dynamic perturbations and cannot be treated ad-
equately with a simple cone-bounded representation.
The structured singular valug, is used to reduce con-
servatism for problems with structured specifications
of uncertainty [19, 21]. Robust stability tests of (2)
are stated in terms of an upper bound.igf(noting 1
dependence ofl) at each frequency [18].

In this paper, the analysis setup of figure 1 is pri-
marily used as a benchmark for aeroservoelastic sta-
bility analysis in thep framework. In the output-
multiplicative parameterizatiorf;’0 = (I + Ao)P, for
exampley = (I +A,)Pu, and

Zo = —PK(Wo+2) —(I 4+ PK) " PKw,

indicate that closed loop stability is guaranteed if
(1 + PK)~1PKA, is less than unity. This suggests
an interpretation as a multivariable transfer function
gain in the sense thdT,Ao|| < || Tol| since||Ao| < 1.

To establish a common analysis consistent amongst
the various uncertainty structures, while dealing with
structured uncertainty in general, the robust stability
criteria of (2) are replaced with

Hao(WoToWr) <1 5 pai(WaTWs) <1 4)
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andthe contol actionstability criteriaof (3) becomes
Maa(WeK (I + PK)™ME) <1, [|Aglw <1.  (5)

Theseconditionsimply thatfor all perturbationsna-
trices, {Ao,A,Aa}, with appropriatestructure and
satisfying the upperbound constraints, |||« < 1,

1Al < 1, and||Aq| < 1, respectiely, theperturbed
systemis stable. All weightsW are chosento scale
the auxiliary variables{w,z} suchthat theseupper
boundconstraintsare valid. Also, thereis a partic-
ular perturbationmatrix not satisfyingthe contraints
thatcausesnstability, andthis is found bestfrom the
computationalower bound[18, 19]. Thereforethe

upperboundplot determineghe size of perturbation
for whichtheloopis robustly stable.Lower peakam-

ply morerobuststability.

In the presentapplication,real parametemuncer
tainty is representeavith boundedreal perturbations,
[01,--,0n], |0l < 1, in the aerosergelastic plant
output. A diagonalreal-perturbatiorblock is aug-
mentedto the complex outputperturbatiorblock, A,
to getwo = AroZo from

O

A
Ar: y AI’0:|: r A0:| (6)
On

Themultiplicative structurefrom figure 1 is modified
with the additional(w; = Az) asshawvn in figure 4.
Therefore,figure 1 is actually containedin figure 4,
but theadditionalrealperturbatiorblock atthe output
in figure 4 will accountfor individual modal contri-
butionsto the feedbackresponseo the controller A
real{l analysisaugmentedvith a complex block is a
mixed problem.Comple blocksaddedto real per
turbationproblemshave engineeringelevanceby ac-
countingfor phaseuncertainty besidesgguaranteeing
continuity propertiesand assistingcornvergence[18].
Thecomplex blocks,{A,, A }, for thecurrentproblem
arealsomotivatedby uncertaintynodelingof unmod-
eleddynamicsas a function of the nominal comple-
mentarysensitvity transferfunctionsin (4), and so
areretainedfrom figure 1.

Alternatively, the effect of real parametricuncer
tainty at the plant input or outputwill be shavn to
represenian additve uncertaintyin the plant trans-
fer function, asin figure 3. In the currentanalysis,
the additive perturbationderived from the plant un-
certainty(w, = Aazy) will becomparedvith aconsis-
tentrealperturbatioranalysigw; = A;z) of theasso-

ciatedstructureduncertaintyof figure 4 for the F-18

SRA aerosergelasticmodel.
Sensor s

Actuators Zr

A
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Fig. 4 Input-Comple with Output-Mixed Multiplica-
tive Uncertainty

3 Wavelet-based M odal Estimation

Time-frequeng analysisprovidesa powerful tool for

the analysisof nonstationarysignals[22, 23, 24].

Signal structureis revealedby quantifyingthe time-
frequeng distribution of signalenegy asajoint func-
tion of time andfrequeng. Enegy densityconcen-
trations are revealed as specific areasin the time-
frequeng plane.

A novel multiresolutionwaveletsignalprocessing
methodis appliedto time-frequeng analysisof sig-
nalsby decomposinglatainto cellswith propertiesof
scaleandfrequeng concentratedn time. The cells
consistof Gaussian-windweed sinusoidalbasisfunc-
tions, alsoknown asMorlet wavelets,creatinga mul-
tiscaledecompositionn a filter bank structure[24].
Competingrequirement®f time andfrequeng reso-
lution, subjectto the uncertaintyprinciple[23], is ac-
complishedwith a combinationof dyadic multiscale
decompositioncompactorthogonality andharmonic
waveletpropertied25].

Parameter estimates are derived from time-
frequeny representationgsingMorlet waveletfilter-
ing [15, 16]. Morlet filtering is a signalanalysistech-
niquewhich canusetime-frequeng inputinformation
for specificatiorof enegy concentrationbut doesnot
regardthe systemasan input-outputstate-spaceeal-
ization. Morlet waveletsconsistutethe basisfor the
enegy-densitydistribution, and assuminghe domi-
nantsinusoidakcharacteristicen sensoresponsesare
modalresponsesarethenusedto estimatethe modal
parameters.The wavelet basisrepresentatiorf the
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signal is therefore a projection subspace for extraction
of modal dynamics.

As a first step in aeroservoelastic model iden-
tification and uncertainty estimation, the state-space
transfer function plant description of (1) is trans-
formed into real bidiagonal modal form with transfor-

mation matrixT .
b A|B] _[TAT|TB
~ |c|p] [ cT|D

These two-by-two blocks of complex conjugate roots
represeniM number of modes, whergis the modal
damping ratio,w, the natural modal frequency, and
04 = wny/1— 2 is the damped modal frequency for
each mode (ignoring real roots for simplicity here).
From this state-coordinate transformation the roots of
structural modes are generally simple to discriminate
from actuator, rigid body, and aerodynamic lag states.
In this paper, parametric errors in modal frequency
and damping estimation are not explicitly considered
in the uncertainty description, as in previous stud-
ies [16, 21]. Justification for this lies in choosing a
high confidence factor for allowable estimates to help
minimize estimation error [15]. Also, this error will
be implicit in the uncertainty model development to
be discussed.

Observability of modal dynamics obviously af-
fects identifiability. All available control feedback re-
sponses of the aeroservoelastic plant are used to iden-
tify modal parameters from each control command
maneuver. Numerous reponses become available for
estimation of most modes to establish a high degree
of confidence from at least one of the responses.

()

Feedbacks Control commands
Longitudinal
pitch rate symmetric stabilator

normal acceleration
Lateral-directional
roll rate

yaw rate

lateral acceleration

1 symmetric aileron

differential aileron
differential stabilator
rudder

Table 1 Feedbacks (left) and controls (right) used for
F-18 transfer function and modal parameter estimates.

For the F-18 SRA maneuvers used in this re-
search, table 1 lists the available control commands
used to generate the listed feedback signals for modal
parameter estimation, and subsequent transfer func-
tion estimation for uncertainty analyses. Discrete

multisine control commands are the inputs for the
aeroservoelastic transfer functions. There are 25 anal-
ysis maneuvers in the matrix. Subsets of these corre-
spond to predominantly symmetric or antisymmetric
maneuvers, but in reality most modes are excited with
either type of input.

4 Minimax Parameter and Uncertainty Estima-
tion

Uncertainty estimation for aeroservoelastic systems
depends on a variety of off-nominal factors to con-
sider such as fuel weight, flight condition, control
gains, hinge moments, and other aerodynamic effects.
The maneuvers used in this research from the F-18
SRA were predominantly flown for the purpose of
model verification and update in support of the F-18
Active Aeroelastic Wing Program (AAW) [26]. Flight
conditions therefore lie entirely inside the F-18 AAW
envelope, which is predominantly transonic and near-
transonic. Aerodynamic parameter estimation, loads
analysis, and aeroservoelastic model verification were
primary flight test objectives for these maneuvers.

System identification with uncertainty modeling
requires determination of reliable bounds with the
nominal estimates. Interval and bounded-error es-
timation techniques have pre-defined bounds on the
error from apriori knowledge of the system or sen-
sors. This assumption is unacceptable, especially for
analysis of aeroservoelastic flight data in the transonic
regime, since reliable bounds on the errors do not ex-
ist. Most importantly, popular methods for identifica-
tion are noimodel-basedso the errors are not relevant
to the model, but only depend on the data and estima-
tion process itself.

Aeroservoelastic models are often of high order,
significant dynamic range, and contain lightly damped
modes. Any methods which depend on simultaneous
parameter and model order estimation will have com-
plexity problems attempting to discern order from un-
certainty. Even for fixed-order estimation, identifica-
tion of structural parameters with input-outpGt&nd
B) parameters is susceptible to non-uniqueness, con-
vergence, and bias problems unless severe assump-
tions are imposed [3, 14, 27]. Again, these procedures
are often based on statistical arguments, and often are
not model-based. Stability prediction based on errors
between models and aircraft requires uncertainty rel-
ative to a model.
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4.1 Robust Minimax Parameter Estimation

Rohkust minimax estimation not only provides the
minimum upper bound on the error, but also pro-
videsa parametesetcompatiblewith any errorupper
bound[12]. The problemis statedin termsof error,
e(k, @), its bounde, and parametenvector ©, given
N measuredrequeny responselata,y(k), andmodel
frequeny responsevector @(k), k=1,...,N.

£ = el = maxiel, £(®)=y(k)~ k)@ (8)

Sincetheminimumuppererrorboundoverfrequengy,

g, isassumedinknavn, it is estimatedrom the mini-

max procedure. The minimum value of € is desired
that is consistentwith the flight datafrequeng re-
sponsesA solutionsetis givenby

{616 = agminmaxio)O -y} ()

which can be transformedto a differentiablelinear
programmingproblem using additional variable, X,
subjectto constraintsfor k= 1,...,N.

|9(k)© — y(k)| < x

It canthenbe shavn thatthe setof all (x,®) consis-
tentwith the constraintds a corvex unboundedgpoly-
hedron,or for any x > € [12].

O =0+00 =0+A(KX (10)

Thefeasiblepolytopefor (x,©) thuscontainsthe ex-
act descriptionof the solution set of 0, including a
rangeof feasibleparametergontainedin a positve
interval A© thatsatisfieq9) for any x > €. Therefore,
the mostimportantpropertyof this approachor un-
certaintyestimationis that a minimum upperbound
on the frequeng responseerror, €, is found which is
compatiblewith parametrieerrors,A®, sothesepara-
metric errorsare derived from the value of the non
parametricerror costfunction, |g(k, ©)|.

A seeminglyattractve analytic centerapproach
to bounded-erroestimatiorwasrecentlyproposed?,
28] to minimizelogarithmicaverageoutputerror

6=amg m@ing log|@(k)® — y(K)|

©=amg mem(x);

This estimatorhasnice propertiesin termsof output
errorminimization,robustnesgo outliers,andonline
sequentiaimplementations.However, theseproper
tiesanderrorboundsdependon apriori knowvledgeof
noisebounds.This estimatotis not choserbecaus®f
thenecessaryoiseassumptionandabsencef guar
anteedparametricerrorbounds.

4.2 Mode Updates and Output-Uncertainty Es
timation

Now theprocedurdor flight dataanalysids described
in the robust minimax estimationframeavork. First,
the A-matrix of (7) is updatedto get estimate,A,
with wavelet modal filtering. Then the column of
the {B, D}-matricesin (7) correspondingo a particu-
lar controlcommandnputis appropriatelyscaledby
matchingthe normsof the modelandestimateddata
transferfunctionsfrom controlcommando feedback
sensar Theseestimatesaredenotedas {B,D}. Each
elemenbf themodelC-matrix corresponds amodal
contritutionto thefeedbackesponseElementof the
appropriateow of the modelC-matrix corresponding
to thefeedbackesponsarethenchoserfor optimiza-
tion only if they correspondo modalresponsewithin
aspecifiedrequeng range.Vectory is theflight data
responsdrom a feedbacksensarbeinga sumof the
aircraftmodalresponses.

Eachrow of themodelC-matrixis expandedas

A |B

A cc 0 O

P g 1 . X
o . o D
0 0 c

whereD is resizedfrom elementof D corresponding
to diagonalizatiorof arow of C. Arrangethe updated
modelfrequeny responsenatrix, P(iwy), to form the
n-columns(for n states)f matrix ®, whereeachcol-
umncorresponds$o a modalfrequeng response&on-
tribution to the total feedbacksensoresponse.

ok, 1) = Blio, 1),

Parametewrector O, is themultiplier (nominally® =
[1---1]T) on the modelresponsenatrix, ®, to match
the flight dataresponse. Absolute transferfunction
error, €, is the maximumof the frequeng-dependent
errorvector €, expressedsfollows (compareo (8)).

l=1,...nk=1..N (11)

e=|&]lo=max§, E=y—dO=y—9 (12)

In light of the robust propertiesof logarithmic er
ror criteria[28, 29, 30], andthe well-known property
of Chebyshe estimatorsbeing optimal in terms of
worst-caseparametelerror, the objective function is
chosemasalog-type Chebyshe estimator

A~

® = amg mein mgxlog|d>@—y| (13)
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There is strong justification for this performance cri-
teria. It has been shown that logarithmic error min-
imization is superior to absolute error minimization
for parametric transfer function estimation, especially
for structural systems and high order problems [30].
Properties from (9) still hold in a log-sense since the
log function and its inverse (exponential) are mono-
tonic smooth functions of the data. Furthermore, log-

based frequency response estimation demonstrates su

perior performance in closed-loop systems, with mu-
tually correlated signals in feedback, and is robust to
noise characteristics and outliers without relying on
statistical assumptions [29].

Parametric uncertainty is multiplicative in the real
C-matrix values since the identified parameter vector,
O, is a multiplier to the model. This is the optimal
nominal estimate. It was also shown that from the
identification procedures of (9) or (13), a real positive
uncertainty intervalA® to this nominal part results
from (10). Decomposing the identification problem
into these nominal and uncertain parts, an estimate of
the real parameter uncertainty becomes (see (12))

9] +& = ||®O| +||®-A0)
=& = [|[P-A0| < |P|||aG]
€.
N0 A ———I=1..n (14)
Skt [P |

where element-by-element divisioe.() is implied.
In the expressionp - A®, each uncertain element of
A® is weighted by a column sum ab. Each ele-
ment of the positive uncertain vectd®, therefore
results from a division by |®x |, a weighting by an
inverse absolute column sum (vector 1-norm). This is
a decomposition of the absolute total error over fre-
quency,g, into individual modal contributions in the
elements ofA®. Elements ofA® with denomina-
tor sums less than a small threshold retain nom@al
values AO(l) = 0) to avoid numerical problems, but
also denote relatively insignificant modal responses
(column-sums of®|, see (11)) with no observability.
Note thatA® = A(g) from the linear programming
solution (compare (10) and (14)), so the parametric
error is a by-product of theonparametric frequency-
dependent global errcg, Also note that the minimum
upper bound errogk, is a constanadditive perturba-
tion boundover frequency from the relations in (8)
and (12). This corresponds to the uncertainty that is
added to the nominal estimatg = ®0O, to account
for the flight data transfer functiory, from (8). In

error, €, or its more conservative boungl, character-
izes the additive perturbation errat each frequengy
k=1,...,N, infigures 2 and 3.
Wa = DaZa = Dolé|, |&| <€ (15)
Alternatively, the real-parametric errdx@, natu-
rally represents real uncertainty from (6) and figure 4

as a multiplier on the nomina-matrix. For each

output, using element-wise multiplications denoted by
(.*), the uncertainty is described by

Ch= C+AC =C.xO+AC
IAC| =|C.xAOG|
[AC]| < [|C. «[AAO] || (16)

where operator, is the real perturbation defined
in (6), wy = Azy = AAO, [|A]| < 1 and therefore

|Aro|| < 1 since||Ao|| < 1. Note that real-parametric
variation, AC, varies equally positively or negatively
according td|Ar|| < 1 while A® is a positive range of

variation.

It is important to note here thah® therefore
serves as both a contribution to the additive error
bound (from (14) and (15), allowed to be complex in
general to account for phase variations), and also as
a multiplicative output real-parametric error in (16),
so it is integral to both types of uncertainty descrip-
tions. Despite this relationship, the manner in which
the uncertainty is modeled (complex-additive vs. real-
multiplicative) determines its structure and will affect
the robust stability analysis. Comparisons of both
manifestations will be demonstrated next.

5 Aeroservoelastic Data Analysis

Three types of uncertainty structures have been dis-
cussed as being relevant to aeroservoelastic uncer-
tainty modeling. They are compared in this section.

e complexmultiplicative loop uncertainty (base-
line structure, figure 1 with criteria in (4))

e additive combined with complex-multiplicative
loop uncertainty (combine figures 1 and 2 to get
figure 3 withAy in (15))

e mixed real-parametric, complex-multiplicative
loop uncertainty (figure 4 with (16))

Complex-multiplicative loop uncertainty at the input

either case, the non-parametric frequency-dependent and output in figure 1 is the baseline analysis. This
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baselinestructureis augmentedvith additional per
turbationblocksin the additive and mixed analyses.
All weightsW areunity by natureof the perturbation
descriptionsmaintainingthat ||A|| < 1 for all pertur
bations,w = Az. All uncertaintyanalysesperateon
modelsthat are updatedwith the wavelet modal pa-
rameterestimatesinlessstatedotherwise.Resultsare
for the F-18 SRA flight condition of Mach 0.9, al-
titude 5,000 feet using all threeavailable inputs de-
notedin tablel for lateral-directionamaneuers.

Varying Additive D

Magnitude, dB
%

o
Magnitude, dB
N
o

I
N
Ll

|
N
Ll

|
]
o
|
[
o

-35f -35f

—-40 - ; —40
o o

Frequency, Hz Frequency, Hz

Fig. 5 Complementargensitivity p-analysis.

Left plot: Comple-p analysis(thin lines, uncertainty
structurein figure 1) comparedto upper bound (g)
additive41 analysig(thick lines, structurein figure 3)
Rightplot: Comple-p (thin lines) comparedo vary-
ing (€x) additve41 analysis(thick lines)

Baselinecomplex-multiplicatve complementary
sensitvity p-analysisresults,using a discreteimple-
mentationof controllerK asmentionecbelav (1), are
comparedwith additve loop uncertaintyat the out-
put (solid) andinput (dashed)n figure 5 for the F-
18 SRA lateral-directionaflight condition. Compar
isonsbetweerupperboundadditive (g, left plot) and
varying additive (€, right plot) resultsare presented.
Notethatthe additive resultsmustbe at leastaslarge
in magnitudeas the baselinesince additive also in-
cludescomple-multiplicative uncertainty (figure 3)
and thereforeincludes/; as an additionalperturba-
tion to thebaselinestructure . Theseplotsdemonstrate
that the estimatedminimax error upperboundis not
too conserative comparedo thevaryingerrorresult.
Error boundsfrom the additve minimax analysisof
theflight dataatthis conditionareevidentasbeingup
to 15dBlargerthanthe baselineresult.

Additive and mixed uncertainty are com-
pared with complementary sensitvity comple-
multiplicatve p-analysisresultsin figure 6, again
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Fig. 6 Complementargensitivity p-analysis.

Left plot: Comple-p analysis(uncertaintystructure
in figure 1) comparedo mixed. analysis(structure
in figure4) andnominalcompl-p analysis
Rightplot: Comple-p analysiscomparedo additive-
M analysisandnominalcomple-p

for the F-18 SRA lateral-directionaflight condition.
Also shavn in theseplots are the nominal comple-
multiplicative resultscomputedrom aerosergelastic
models before ary updates from flight-derved
parameteestimatesvereincorporated.

In figure 6 thedominantmodesareantisymmetric
fuselagefirst bending(near8 Hz) andantisymmetric
wing first bending(near9 Hz). Differencesn modal
pole-zeraelationshipsndmodalfrequeny shiftsbe-
tweenthe nominal and updated(using {A, B,C,D})
comple-multiplicative results demonstratethe sig-
nificant effect of parametricupdateson the nominal
model. As expected, both mixed and additive re-
sultsareatleastaslargein magnitudeasthebaseline.
While the output-mixed4t magnitudeis the largest
(solidthick line in left plot), andmuchlargerthanthe
output-additre result (solid thick line in right plot),
the additive results are reversedin that the input-
additve magnitude(dashedthick line in right plot)
dominateswith valuesabore all the otherresults.De-
spitetherelationshipbetweerthe mixed andadditive
uncertaintieA® <> ¢, see(14)) the connectionis
disguisedby the mannerin which the uniform addi-
tive uncertainty € from (15), is incorporatedin the
combinedstructureof figure 3 comparedo the mixed
augmentatiomf AO in (16) andfigure4.

Analysis of numerousilight conditionsdoesnot
reveal ary consistentrendsbetweenthe mixed and
additive results.Quality of modelsandflight data,and
loop structure(longitudinalor lateral-directionallare
primary considerationsFor example,transoniccon-
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ditions often exhibit larger uncertainty because of the
model sensitivity [21] and the relatively poor quality

of flight data from exogenous inputs due to aerody-
namic effects. Another source of significant uncer-
tainty can be dynamic modal cross-axis coupling, es-
pecially with modes closely-spaced in frequency, be-
tween symmetric and antisymmetric modes. Aeroe-
lastic and aeroservoelastic models are often develope
with a preferred axis orientation, symmetric or anti-
symmetric. Cross-axis dynamics will necessarily be
revealed as unmodeled dynamics in such a situation.

20 o

TtpUtVHTITIOTT Dettar

20F

Output
Feedback
,,,,,,,,,,,, Loops

35|

30|

25|

20

Magnitude, dB
Perturbation Index

15

10

Fig. 7 Mixed uncertainty minimum perturbation-to-
instability (left) and index of perturbation (right) cor-

responding to output mixed-analysis.

Lower bounds ofu provide the perturbations,
which causes instability [18] with respect to its struc-
ture (see commments below (4)). In the left plot of
figure 7, lower bounds are calculated and plotted with
line-connected ™*’-symbols. Lower values of the min-
imum perturbation denote the more sensitive frequen-
cies. In the right plot, corresponding indices of the
real parametersy = Az, indices 1-37) and complex
uncertainty control feedback loops (3 output loops,
Wo = ApZy With indices 38-40) are marked, also plot-
ted with individual ™-symbols. This information
shows which parametric uncertainties (indices 1-37)
or complex-multiplicative loop uncertainties (indices
38-40) in each feedback, at specific frequencies, result
in the minimum perturbation-to-instability condition
of the left plot. For example, complex-multiplicative
uncertainty in all output loops (indices 38-40) is very
significant, as seen from a congestion of values at the
top of the right plot (3 rows corresponding to indices
38-40 at multiple frequencies). Real parametar3,
contributing to roll rate are the other perturbations im-
portant in the instability mechanism, as seen from the
row and scatter of points plotted at the bottom. There

are no critical real perturbations in the yaw rate (in-
dices 14-25) or lateral acceleration (indices 26-37)
loops.

6 Conclusions

Aeroservoelatic model identification with uncertainty

¢1s addressed in this paper to present a robust data-

oriented procedure for model development. Surface
command inputs and control system feedbacks are
used as signals in a wavelet-based modal estimation
procedure for modal parameter updates. Transfer
functions are incorporated in a robust minimax es-
timation scheme to identify input-output parameters
and structured error bounds consistent with the data.
Uncertainty estimates derived from the data in this
manner provide appropriate and relevant representa-
tions for robust stability analysis useful for model val-
idation and control system design. This procedure
is an automated, efficient, and reliable approach for
analysis of numerous flight data sets for robust stabil-
ity and model development.
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