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Abstract

Uncertaintymodelingis a critical elementin theesti-
mationof robuststabilitymarginsfor stabilitybound-
ary predictionandrobust flight control systemdevel-
opment.Therehasbeena seriousdeficiencyto datein
aeroservoelasticdataanalysiswith attentiontouncer-
tainty modeling. Uncertaintycan be estimatedfrom
flight datausingbothparametricandnonparametric
identificationtechniques.Themodelvalidationprob-
lemaddressedin this paperis to identifyaeroservoe-
lastic modelswith associateduncertaintystructures
from a limited amountof controlled excitation inputs
over an extensiveflight envelope. The challenge is
to updateanalyticalmodelsfromflight dataestimates
while also deriving non-conservativeuncertaintyde-
scriptions consistentwith the flight data. Transfer
functionestimatesare incorporated in a robust min-
imaxestimationschemeto updatemodelsandget er-
ror boundsconsistentwith thedataandmodelstruc-
ture. Uncertaintyestimatesderivedfrom the data in
this mannerprovidean appropriateandrelevantrep-
resentationfor modeldevelopmentand robust stabil-
ity analysis.Themethodincorporatesparametricand
nonparamteric uncertainty into various uncertainty
structures for quantitativemeasuresof robust stabil-
ity relating to parametervariations and unmodeled
dynamics.This model-plus-uncertainty identification
procedure is applied to aeroservoelasticflight data
from the NASADrydenFlight Research CenterF-18
SystemsResearch Aircraft (F-18 SRA).

1 Introduction

Aeroservoelastic systemscomprise interactions of
generallymulti-input multi-outputsampled-datacon-
trol feedbackwith actuationdynamicscoupledwith

aeroelasticity. Highly augmentedclosed-loopflight
test datarequireextra carein distinguishingsystem
componentdynamics. Discriminationof sourceand
responseeffectsfor properunderstandingof issuesin
causalitymaybeproblematic.Flight testverification
of an aeroservoelasticmodelcanalsohave difficulty
in discerningthe individual subsystemdynamicsbe-
causeof inaccessibleparametersor inadequatesens-
ing for systemidentificationprocedures.For instance,
aerodynamicparameteridentificationalgorithmsfor
aeroelasticeffectsmayencounterproblemswith flex-
ibility [1], closed-loopcoupling, and transonicnon-
linearity.

Model verification over an extensive flight en-
velope presentsmore challenges. Test data acqui-
sition is expensive so maneuvers are designedfor
maximum efficiency and data quality. A verifi-
cation method is desiredwhich accuratelyand ef-
ficiently includes identification of critical parame-
ters,addressesmismodelingandunmodeleddynam-
ics, deals with test condition and systemvariabil-
ity, and derives data-consistentparametricand non-
parametricuncertaintydescriptions. Parametricun-
certaintyis generallycausedby mismodelingof sys-
temproperties,off-nominaltestconditions,andmodel
over-simplifications.Nonparametricuncertaintyoften
relatesto unmodeleddynamicsandexogenousinputs,
andrequiresweakerassumptionsontheidentifiedsys-
tem.

With suchapparentcomplicationsin mind, this
papertakes the approachthat estimationof aeroser-
voelasticmodelsmustdealdirectly with uncertainty
in model verification. Parameteridentificationwill
be applied for model updatesfrom the test data
while addressingmismodelingand unmodeleddy-
namics. Parametricand nonparametricuncertainty
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are incorporatedto help minimize conservativeness
and include both structuredand unstructureduncer-
tainty. Non-statisticalestimationapproachesarepre-
ferredto avoid restrictive assumptions,minimize al-
gorithmic complexity, and improve reliability in the
form of error bounds. Most importantly, the effec-
tivenessof model-basedquantificationof uncertainty
boundsis appealingfor robustcontrol-orientedappli-
cations[2, 3, 4].

Setmembershipidentificationhasbeenpresented
in avarietyof contexts. Boundederrorestimation[5],
or boundeddatauncertainty[6], characterizesfeasi-
blesetsof parameterswith uncertaintyestimatescon-
sistentwith the data,model structure,and prior in-
formation on uncertaintybounds. This last require-
mentcanbein theform of unknown but boundeddis-
turbances[7, 8], constraintson the systemimpulse
responseandinputs [9], or assumptionson bounded
dataperturbations[10].

Two generalresearchdirectionsof set member-
shipestimationare: (1) obtaintheexactmembership
set,and(2) computeaspecificoptimalestimatein the
membershipset. The formerhassufferedfrom com-
putationalcomplexity andconservatism [7, 11]. An
optimal,robustminimaxestimateapproachis applied
in this paper, but theapriori uncertaintyboundis not
required. Minimum uppererrorboundsarecomputed
with theparameterestimatessuchthatthefeasibleset
is describedasa functionof theerrorbounds.Hence,
computationof theminimumerrorboundresultsin a
smallestnon-emptyfeasibleset[12].

Transfer functions and modal parameteresti-
matesderived from time-frequency representations
have previously beenappliedto estimatestate-space
aeroservoelasticmodels[13, 14]. Morlet wavelet fil-
tering [15, 16, 17] is employed in this paperto up-
datemodal parametersas a first stepin aeroservoe-
lasticmodelidentificationanduncertaintyestimation.
Standardtransferfunctionsarethenemployed in the
estimationof input-output parameterswith associ-
ateduncertaintyusinganoptimalminimaxprocedure.
Boundsderived from theseestimatesdefineparamet-
ric and nonparametricerrorswhich relate to multi-
plicative and additive uncertaintystructures,respec-
tively, for mixed-µ [18, 19] robuststability analyses.

Uncertainty modeling for aeroservoelastic data
analysishasnot beenaddressedadequatelyin the lit-
erature. This paperaddressesthe problemby deriv-
ingmodelswith non-conservativeuncertaintydescrip-
tionsconsistentwith theflight datain arobustcontrol-

orientedapproachusingF-18SystemsResearchAir-
craft (SRA) [20] datato comparemodelsusingmulti-
plicative andadditive uncertaintystructures.

2 Uncertainty Modeling

The aeroservoelasticopen-loopplant model includes
rigid bodyandelasticmodes,coupledhigh-orderac-
tuator dynamics,and control surfacemodal dynam-
ics [21]. Including the aerodynamiclag states,the
aeroservoelastic state equationstake the following
form

ẋ � Ax
�

Bu ; u � δd

y � Cx
�

Du ; x ��� ηδηrηeη̇r η̇eηaδ �
consistingof input controlsurfacecommandsδd, ac-
tuator statesηδ, rigid body statesηr , flexible mode
statesηe, aerodynamiclag statesηa, andcontrolsur-
facedisplacementsδ. Aeroservoelasticplant, P, is
thereforerepresentedasthestate-spaceoperator. As-
sociatedwith this time-domainrepresentationis the
transfer function, P � s� , a function of the complex
Laplacevariable,s, suchthaty � P � s� u.

P � s� � D
�

C � sI � A�	� 1B (1)

ControllerK � s� is modeledsimilarly, but beinga dig-
ital implementationof the aircraft control laws, it is
modeledasa functionof discretecomplex variable,z,
asK � z � esT � specifiedby thesamplingtime T anda
zero-ordersample-holdat theinput of thecontroller.

A robust characterizationof the feedbackmodel
incorporatesunstructureduncertaintyto accountfor
unmodeleddynamicsandparametervariations. Un-
modeleddynamicsarerepresentedwith simplecone-
boundedtransferfunctionsat the input-outputrefer-
encelocations. Assumethe model is suitablyscaled
with weightingsW1 andW2 sotheuncertaintycanbe
representedby operatorW1∆W2. With uncertaintyin-
corporatedinto the proper loop referencelocations,
therobuststabilityconditionis determinedby analyz-
ing unity-normboundedperturbations,
 ∆ 
 ∞ � 1,with
theSmallGainTheorem[19].

Multiplicative uncertaintyasshown in figure1 is
usedto representunmodeleddynamicsanderrorsat
thefeedbackoutputsensors(wo

� ∆ozo) andactuator
input commands(wi

� ∆izi). Eachof ∆o and∆i are
diagonalcomplex perturbationsof appropriateoutput
or input dimensions.Performancespecificationsare
in termsof sensornoiseattenuation(outputresponse
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to output commands) and actuator disturbance rejec-
tion (input response to input commands), respectively.

Multiplicative perturbation at the output results in
perturbed model̃Po

� � I � ∆o � P, and at the input the
perturbed model is̃Pi

� P � I � ∆i � . Necessary and suf-
ficient conditions for unstructured robust stability are
then derived from tests on loop sensitivity functions.
Unstructured robust stability tests representing these
types of uncertainty are described from the comple-
mentary sensitivity matrix functions of complexP � s�
andK � s� , for 
 ∆o 
 ∞ � 1 and 
 ∆o 
 ∞ � 1.
 W2ToW1 
 ∞ � 1; To

� PK � I � PK � � 1
 W4TiW3 
 ∞ � 1; Ti
� KP � I � KP� � 1 (2)
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Fig. 1 Aeroservoelastic Model with Input-Output
Complex Multiplicative Uncertainty

Another uncertainty characterization of interest in
this paper is the additive stable perturbation,∆a, for
which the perturbed plant is̃Pa

� P
� ∆a with addi-

tive plant errors (wa
� ∆aza) as depicted in figure 2.

The correspondingcontrol actionrobust stability test
of input response to output disturbances from additive
plant errors is imposed by loop shape condition
 W6K � I � PK � � 1W5 
 ∞ � 1 � (3)

A characterization which augments (wa
� ∆aza)

with the complex multiplicative uncertainty repre-
sentation of unmodeled dynamics from figure 1 will
also be referred to as the combined structure of addi-
tive and multiplicative uncertainty shown in figure 3.
Here ∆a is a full-block complex perturbation since
frequency-dependent errors are allowed to enter any
of the multi-input-multi-output loops arbitrarily.

The robust stability criteria of (2) vary with the
uncertainty description. Uncertainty structure de-
pends on the type of perturbation and how it connects
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Fig. 2 Model with Additive Plant Uncertainty
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Fig. 3 Additive with Complex Uncertainty

the the nominal system. Amixeduncertainty structure
consists of (real) parametric and (complex) unmod-
eled dynamic perturbations and cannot be treated ad-
equately with a simple cone-bounded representation.
The structured singular value,µ, is used to reduce con-
servatism for problems with structured specifications
of uncertainty [19, 21]. Robust stability tests of (2)
are stated in terms of an upper bound ofµ∆ (notingµ
dependence on∆) at each frequencyω [18].

In this paper, the analysis setup of figure 1 is pri-
marily used as a benchmark for aeroservoelastic sta-
bility analysis in theµ framework. In the output-
multiplicative parameterization,̃Po

� � I � ∆o � P, for
example,y � � I � ∆o � Pu, and

zo
� � PK � wo

�
zo � � ��� I � PK � � 1PKwo

indicate that closed loop stability is guaranteed if� I �
PK � � 1PK∆o is less than unity. This suggests

an interpretation as a multivariable transfer function
gain in the sense that
 To∆o 
 � 
 To 
 since 
 ∆o 
 � 1.
To establish a common analysis consistent amongst
the various uncertainty structures, while dealing with
structured uncertainty in general, the robust stability
criteria of (2) are replaced with

µ∆o � W2ToW1 � � 1 ; µ∆ i � W4TiW3 � � 1 (4)
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andthecontrol actionstabilitycriteriaof (3) becomes

µ∆a � W6K � I � PK � � 1W5 � � 1 ��
 ∆a 
 ∞ � 1 � (5)

Theseconditionsimply that for all perturbationsma-
trices, � ∆o � ∆i � ∆a � , with appropriatestructureand
satisfying the upper bound constraints, 
 ∆o 
 ∞ � 1,
 ∆i 
 ∞ � 1, and 
 ∆a 
 ∞ � 1, respectively, theperturbed
systemis stable. All weightsWi arechosento scale
the auxiliary variables � w� z� such that theseupper
boundconstraintsare valid. Also, thereis a partic-
ular perturbationmatrix not satisfyingthe contraints
thatcausesinstability, andthis is foundbestfrom the
computationallower bound[18, 19]. Therefore,theµ
upperboundplot determinesthesizeof perturbation
for whichtheloopis robustlystable.Lowerpeaksim-
ply morerobuststability.

In the presentapplication,real parameteruncer-
tainty is representedwith boundedrealperturbations,�
δ1 �	�	�	� � δn ! , " δi " ∞ � 1, in the aeroservoelastic plant
output. A diagonalreal-perturbationblock is aug-
mentedto thecomplex outputperturbationblock, ∆o,
to getwro

� ∆rozro from

∆r
� #$% δ1

. . .
δn

&(') ; ∆ro
�+* ∆r

∆o , � (6)

Themultiplicative structurefrom figure1 is modified
with theadditional(wr

� ∆rzr ) asshown in figure4.
Therefore,figure 1 is actuallycontainedin figure 4,
but theadditionalrealperturbationblockat theoutput
in figure 4 will accountfor individual modalcontri-
butionsto the feedbackresponseto thecontroller. A
real-µ analysisaugmentedwith a complex block is a
mixed-µ problem.Complex blocksaddedto realper-
turbationproblemshave engineeringrelevanceby ac-
countingfor phaseuncertainty, besidesguaranteeing
continuity propertiesandassistingconvergence[18].
Thecomplex blocks, � ∆o � ∆i � , for thecurrentproblem
arealsomotivatedby uncertaintymodelingof unmod-
eleddynamicsasa function of the nominalcomple-
mentarysensitivity transferfunctions in (4), and so
areretainedfrom figure1.

Alternatively, theeffect of realparametricuncer-
tainty at the plant input or output will be shown to
representan additive uncertaintyin the plant trans-
fer function, as in figure 3. In the currentanalysis,
the additive perturbationderived from the plant un-
certainty(wa

� ∆aza) will becomparedwith aconsis-
tentrealperturbationanalysis(wr

� ∆rzr ) of theasso-

ciatedstructureduncertaintyof figure 4 for the F-18
SRAaeroservoelasticmodel.
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Fig. 4 Input-Complex with Output-MixedMultiplica-
tiveUncertainty

3 Wavelet-based Modal Estimation

Time-frequency analysisprovidesa powerful tool for
the analysisof nonstationarysignals [22, 23, 24].
Signalstructureis revealedby quantifying the time-
frequency distributionof signalenergy asajoint func-
tion of time andfrequency. Energy densityconcen-
trations are revealed as specific areasin the time-
frequency plane.

A novel multiresolutionwaveletsignalprocessing
methodis appliedto time-frequency analysisof sig-
nalsby decomposingdatainto cellswith propertiesof
scaleand frequency concentratedin time. The cells
consistof Gaussian-windowed sinusoidalbasisfunc-
tions,alsoknown asMorlet wavelets,creatinga mul-
tiscaledecompositionin a filter bankstructure[24].
Competingrequirementsof time andfrequency reso-
lution, subjectto theuncertaintyprinciple[23], is ac-
complishedwith a combinationof dyadicmultiscale
decomposition,compactorthogonality, andharmonic
waveletproperties[25].

Parameter estimates are derived from time-
frequency representationsusingMorlet waveletfilter-
ing [15, 16]. Morlet filtering is a signalanalysistech-
niquewhichcanusetime-frequency inputinformation
for specificationof energy concentrationsbut doesnot
regardthesystemasan input-outputstate-spacereal-
ization. Morlet waveletsconsistutethe basisfor the
energy-densitydistribution, andassumingthe domi-
nantsinusoidalcharacteristicsin sensorresponsesare
modalresponses,arethenusedto estimatethemodal
parameters.The wavelet basisrepresentationof the
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signal is therefore a projection subspace for extraction
of modal dynamics.

As a first step in aeroservoelastic model iden-
tification and uncertainty estimation, the state-space
transfer function plant description of (1) is trans-
formed into real bidiagonal modal form with transfor-
mation matrixT.

P � * A B
C D , �+* TAT TB

CT D , (7)

These two-by-two blocks of complex conjugate roots
representM number of modes, whereζ is the modal
damping ratio,ωn the natural modal frequency, and
ωd

� ωn - 1 � ζ2 is the damped modal frequency for
each mode (ignoring real roots for simplicity here).
From this state-coordinate transformation the roots of
structural modes are generally simple to discriminate
from actuator, rigid body, and aerodynamic lag states.
In this paper, parametric errors in modal frequency
and damping estimation are not explicitly considered
in the uncertainty description, as in previous stud-
ies [16, 21]. Justification for this lies in choosing a
high confidence factor for allowable estimates to help
minimize estimation error [15]. Also, this error will
be implicit in the uncertainty model development to
be discussed.

Observability of modal dynamics obviously af-
fects identifiability. All available control feedback re-
sponses of the aeroservoelastic plant are used to iden-
tify modal parameters from each control command
maneuver. Numerous reponses become available for
estimation of most modes to establish a high degree
of confidence from at least one of the responses.

Feedbacks Control commands
Longitudinal
pitch rate symmetric stabilator
normal acceleration symmetric aileron
Lateral-directional
roll rate differential aileron
yaw rate differential stabilator
lateral acceleration rudder

Table 1 Feedbacks (left) and controls (right) used for
F-18 transfer function and modal parameter estimates.

For the F-18 SRA maneuvers used in this re-
search, table 1 lists the available control commands
used to generate the listed feedback signals for modal
parameter estimation, and subsequent transfer func-
tion estimation for uncertainty analyses. Discrete

multisine control commands are the inputs for the
aeroservoelastic transfer functions. There are 25 anal-
ysis maneuvers in the matrix. Subsets of these corre-
spond to predominantly symmetric or antisymmetric
maneuvers, but in reality most modes are excited with
either type of input.

4 Minimax Parameter and Uncertainty Estima-
tion

Uncertainty estimation for aeroservoelastic systems
depends on a variety of off-nominal factors to con-
sider such as fuel weight, flight condition, control
gains, hinge moments, and other aerodynamic effects.
The maneuvers used in this research from the F-18
SRA were predominantly flown for the purpose of
model verification and update in support of the F-18
Active Aeroelastic Wing Program (AAW) [26]. Flight
conditions therefore lie entirely inside the F-18 AAW
envelope, which is predominantly transonic and near-
transonic. Aerodynamic parameter estimation, loads
analysis, and aeroservoelastic model verification were
primary flight test objectives for these maneuvers.

System identification with uncertainty modeling
requires determination of reliable bounds with the
nominal estimates. Interval and bounded-error es-
timation techniques have pre-defined bounds on the
error from apriori knowledge of the system or sen-
sors. This assumption is unacceptable, especially for
analysis of aeroservoelastic flight data in the transonic
regime, since reliable bounds on the errors do not ex-
ist. Most importantly, popular methods for identifica-
tion are notmodel-based, so the errors are not relevant
to the model, but only depend on the data and estima-
tion process itself.

Aeroservoelastic models are often of high order,
significant dynamic range, and contain lightly damped
modes. Any methods which depend on simultaneous
parameter and model order estimation will have com-
plexity problems attempting to discern order from un-
certainty. Even for fixed-order estimation, identifica-
tion of structural parameters with input-output (C and
B) parameters is susceptible to non-uniqueness, con-
vergence, and bias problems unless severe assump-
tions are imposed [3, 14, 27]. Again, these procedures
are often based on statistical arguments, and often are
not model-based. Stability prediction based on errors
between models and aircraft requires uncertainty rel-
ative to a model.
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4.1 Robust Minimax Parameter Estimation

Robust minimax estimation not only provides the
minimum upper bound on the error, but also pro-
videsaparametersetcompatiblewith any errorupper
bound[12]. The problemis statedin termsof error,
ε � k � Θ � , its boundε, andparametervector, Θ, given
N measuredfrequency responsedata,y � k � , andmodel
frequency responsevector, φ � k � , k � 1 �	�.�.�.� N.

ε /0
 ε 
 ∞
� max

k
" ε "1� ε � k � Θ � � y � k �2� φ � k � Θ (8)

Sincetheminimumuppererrorboundoverfrequency,
ε, is assumedunknown, it is estimatedfrom themini-
max procedure.The minimum valueof ε is desired
that is consistentwith the flight data frequency re-
sponses.A solutionsetis givenby� Θ̂ " Θ̂ � argmin

Θ
max

k
" φ � k � Θ � y � k �3" � (9)

which can be transformedto a differentiablelinear
programmingproblem using additional variable, x,
subjectto constraints,for k � 1 �	�.�.�.� N.

Θ̂ � argmin
Θ

� x� ; " φ � k � Θ � y � k �3" � x

It canthenbe shown that the setof all (x � Θ) consis-
tentwith theconstraintsis a convex unboundedpoly-
hedron,or for any x 4 ε [12].

Θ � Θ̂ � ∆Θ � Θ̂ � ∆ � x� (10)

The feasiblepolytopefor (x � Θ) thuscontainstheex-
act descriptionof the solution set of Θ̂, including a
rangeof feasibleparameterscontainedin a positive
interval ∆Θ thatsatisfies(9) for any x 4 ε. Therefore,
the most importantpropertyof this approachfor un-
certaintyestimationis that a minimum upperbound
on the frequency responseerror, ε, is foundwhich is
compatiblewith parametricerrors,∆Θ, sothesepara-
metric errorsarederived from the valueof the non-
parametricerrorcostfunction, " ε � k � Θ �3" .

A seeminglyattractive analytic centerapproach
to bounded-errorestimationwasrecentlyproposed[7,
28] to minimizelogarithmicaverageoutputerror.

Θ̂ � argmin
Θ ∑

k

log " φ � k � Θ � y � k �3"
This estimatorhasnice propertiesin termsof output
errorminimization,robustnessto outliers,andonline
sequentialimplementations.However, theseproper-
tiesanderrorboundsdependon apriori knowledgeof
noisebounds.Thisestimatoris notchosenbecauseof
thenecessarynoiseassumptionsandabsenceof guar-
anteedparametricerrorbounds.

4.2 Model Updates and Output-Uncertainty Es-
timation

Now theprocedurefor flight dataanalysisis described
in the robust minimax estimationframework. First,
the A-matrix of (7) is updatedto get estimate,Â,
with wavelet modal filtering. Then the column of
the � B � D � -matricesin (7) correspondingto a particu-
lar controlcommandinput is appropriatelyscaledby
matchingthe normsof themodelandestimateddata
transferfunctionsfrom controlcommandto feedback
sensor. Theseestimatesaredenotedas � B̂ � D̂ � . Each
elementof themodelC-matrixcorrespondsto amodal
contributionto thefeedbackresponse.Elementsof the
appropriaterow of themodelC-matrixcorresponding
to thefeedbackresponsearethenchosenfor optimiza-
tion only if they correspondto modalresponseswithin
aspecifiedfrequency range.Vectory is theflight data
responsefrom a feedbacksensor, beinga sumof the
aircraftmodalresponses.

Eachrow of themodelC-matrix is expandedas

P̂ � #$$$% Â B̂
c1 0 0

0
... 0

0 0 cn

˜̂D

&(''')
where ˜̂D is resizedfrom elementsof D̂ corresponding
to diagonalizationof a row of C. Arrangetheupdated
modelfrequency responsematrix, P̂ � iωk � , to form the
n-columns(for n states)of matrix Φ, whereeachcol-
umncorrespondsto a modalfrequency responsecon-
tribution to thetotal feedbacksensorresponse.

Φ � k � l � � P̂ � iωk � l �5� l � 1 �	�.�.�.� n;k � 1 �	�.�.�.� N (11)

Parametervector, Θ, is themultiplier (nominallyΘ ��
1 �	�	� 1! T ) on themodelresponsematrix, Φ, to match
the flight dataresponse.Absolute transferfunction
error, ε, is themaximumof the frequency-dependent
errorvector, ε̂, expressedasfollows (compareto (8)).

ε /6
 ε̂ 
 ∞
� max " ε̂ "1� ε̂ � y � ΦΘ̂ � y � ŷ (12)

In light of the robust propertiesof logarithmic er-
ror criteria[28, 29, 30], andthewell-known property
of Chebyshev estimatorsbeing optimal in terms of
worst-caseparametererror, the objective function is
chosenasa log-typeChebyshev estimator.

Θ̂ � argmin
Θ

max
ω

log " ΦΘ � y " (13)
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There is strong justification for this performance cri-
teria. It has been shown that logarithmic error min-
imization is superior to absolute error minimization
for parametric transfer function estimation, especially
for structural systems and high order problems [30].
Properties from (9) still hold in a log-sense since the
log function and its inverse (exponential) are mono-
tonic smooth functions of the data. Furthermore, log-
based frequency response estimation demonstrates su-
perior performance in closed-loop systems, with mu-
tually correlated signals in feedback, and is robust to
noise characteristics and outliers without relying on
statistical assumptions [29].

Parametric uncertainty is multiplicative in the real
C-matrix values since the identified parameter vector,
Θ̂, is a multiplier to the model. This is the optimal
nominal estimate. It was also shown that from the
identification procedures of (9) or (13), a real positive
uncertainty interval∆Θ to this nominal part results
from (10). Decomposing the identification problem
into these nominal and uncertain parts, an estimate of
the real parameter uncertainty becomes (see (12))
 ŷ 
 � ε / 
 ΦΘ̂ 
 � 
 Φ � ∆Θ 
798 ε � 
 Φ � ∆Θ 
 � 
 Φ 
:
 ∆Θ 
� 8 ∆Θ ; ε �

∑N
k< 1 " Φk = l " � l � 1 �	�.�.�.� n (14)

where element-by-element division (ε �1> ) is implied.
In the expressionΦ � ∆Θ, each uncertain element of
∆Θ is weighted by a column sum ofΦ. Each ele-
ment of the positive uncertain vector,∆Θ, therefore
results from a division by∑k " Φk = l " , a weighting by an
inverse absolute column sum (vector 1-norm). This is
a decomposition of the absolute total error over fre-
quency,ε, into individual modal contributions in the
elements of∆Θ. Elements of∆Θ with denomina-
tor sums less than a small threshold retain nominalΘ̂
values (∆Θ � l � � 0) to avoid numerical problems, but
also denote relatively insignificant modal responses
(column-sums of" Φ " , see (11)) with no observability.

Note that∆Θ � ∆ � ε � from the linear programming
solution (compare (10) and (14)), so the parametric
error is a by-product of thenon-parametric frequency-
dependent global error,ε̂. Also note that the minimum
upper bound error,ε, is a constantadditive perturba-
tion boundover frequency from the relations in (8)
and (12). This corresponds to the uncertainty that is
added to the nominal estimate,ŷ � ΦΘ̂, to account
for the flight data transfer function,y, from (8). In
either case, the non-parametric frequency-dependent

error, ε̂, or its more conservative bound,ε, character-
izes the additive perturbation errorat each frequency,
k � 1 �	�.�.�.� N, in figures 2 and 3.

wa
� ∆aza

� ∆a " ε̂k "1�?" ε̂k " � ε (15)

Alternatively, the real-parametric error,∆Θ, natu-
rally represents real uncertainty from (6) and figure 4
as a multiplier on the nominalC-matrix. For each
output, using element-wise multiplications denoted by
( �A@ ), the uncertainty is described by

C∆ / Ĉ B ∆C � C �5@ Θ̂ B ∆C" ∆C " /C"C �5@ ∆Θ "
 ∆C 
 � 
 C �5@ �
∆r∆Θ ! 
 (16)

where operator∆r is the real perturbation defined
in (6), wr

� ∆rzr
� ∆r∆Θ, 
 ∆r 
 � 1 and therefore
 ∆ro 
 � 1 since 
 ∆o 
 � 1. Note that real-parametric

variation,∆C, varies equally positively or negatively
according to
 ∆r 
 � 1 while∆Θ is a positive range of
variation.

It is important to note here that∆Θ therefore
serves as both a contribution to the additive error
bound (from (14) and (15), allowed to be complex in
general to account for phase variations), and also as
a multiplicative output real-parametric error in (16),
so it is integral to both types of uncertainty descrip-
tions. Despite this relationship, the manner in which
the uncertainty is modeled (complex-additive vs. real-
multiplicative) determines its structure and will affect
the robust stability analysis. Comparisons of both
manifestations will be demonstrated next.

5 Aeroservoelastic Data Analysis

Three types of uncertainty structures have been dis-
cussed as being relevant to aeroservoelastic uncer-
tainty modeling. They are compared in this section.D complex-multiplicative loop uncertainty (base-

line structure, figure 1 with criteria in (4))D additive combined with complex-multiplicative
loop uncertainty (combine figures 1 and 2 to get
figure 3 with∆a in (15))D mixed real-parametric, complex-multiplicative
loop uncertainty (figure 4 with (16))

Complex-multiplicative loop uncertainty at the input
and output in figure 1 is the baseline analysis. This

442.7



MARTIN J. BRENNER

baselinestructureis augmentedwith additionalper-
turbationblocks in the additive andmixed analyses.
All weightsWi areunity by natureof theperturbation
descriptions,maintainingthat 
 ∆ 
 � 1 for all pertur-
bations,w � ∆z. All uncertaintyanalysesoperateon
modelsthat areupdatedwith the wavelet modalpa-
rameterestimatesunlessstatedotherwise.Resultsare
for the F-18 SRA flight condition of Mach 0 � 9, al-
titude 5 � 000 feet usingall threeavailable inputsde-
notedin table1 for lateral-directionalmaneuvers.
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Fig. 5 Complementarysensitiivity µ-analysis.
Left plot: Complex-µ analysis(thin lines,uncertainty
structurein figure 1) comparedto upper bound (ε)
additive-µ analysis(thick lines,structurein figure3)
Right plot: Complex-µ (thin lines)comparedto vary-
ing (ε̂k) additive-µ analysis(thick lines)

Baselinecomplex-multiplicative complementary
sensitivity µ-analysisresults,usinga discreteimple-
mentationof controllerK asmentionedbelow (1), are
comparedwith additive loop uncertaintyat the out-
put (solid) and input (dashed)in figure 5 for the F-
18 SRA lateral-directionalflight condition. Compar-
isonsbetweenupper-boundadditive (ε, left plot) and
varying additive (ε̂, right plot) resultsarepresented.
Notethat theadditive resultsmustbeat leastaslarge
in magnitudeas the baselinesinceadditive also in-
cludescomplex-multiplicative uncertainty(figure 3)
and thereforeincludes∆a as an additionalperturba-
tion to thebaselinestructure.Theseplotsdemonstrate
that the estimatedminimax error upper-boundis not
tooconservative comparedto thevaryingerrorresult.
Error boundsfrom the additive minimax analysisof
theflight dataat thisconditionareevidentasbeingup
to 15dBlargerthanthebaselineresult.

Additive and mixed uncertainty are com-
pared with complementary sensitivity complex-
multiplicative µ-analysis results in figure 6, again
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Fig. 6 Complementarysensitiivity µ-analysis.
Left plot: Complex-µ analysis(uncertaintystructure
in figure 1) comparedto mixed-µ analysis(structure
in figure4) andnominalcomplex-µ analysis
Rightplot: Complex-µ analysiscomparedto additive-
µ analysisandnominalcomplex-µ

for the F-18 SRA lateral-directionalflight condition.
Also shown in theseplots are the nominalcomplex-
multiplicative resultscomputedfrom aeroservoelastic
models before any updates from flight-derived
parameterestimateswereincorporated.

In figure6 thedominantmodesareantisymmetric
fuselagefirst bending(near8 Hz) andantisymmetric
wing first bending(near9 Hz). Differencesin modal
pole-zerorelationshipsandmodalfrequency shiftsbe-
tweenthe nominal and updated(using � Â � B̂ � Ĉ � D̂ � )
complex-multiplicative results demonstratethe sig-
nificant effect of parametricupdateson the nominal
model. As expected,both mixed and additive re-
sultsareat leastaslargein magnitudeasthebaseline.
While the output-mixed-µ magnitudeis the largest
(solid thick line in left plot), andmuchlargerthanthe
output-additive result (solid thick line in right plot),
the additive results are reversedin that the input-
additive magnitude(dashedthick line in right plot)
dominateswith valuesaboveall theotherresults.De-
spitetherelationshipbetweenthemixedandadditive
uncertainties(∆Θ 798 ε, see(14)) the connectionis
disguisedby the mannerin which the uniform addi-
tive uncertainty, ε from (15), is incorporatedin the
combinedstructureof figure3 comparedto themixed
augmentationof ∆Θ in (16)andfigure4.

Analysisof numerousflight conditionsdoesnot
reveal any consistenttrendsbetweenthe mixed and
additiveresults.Qualityof modelsandflight data,and
loop structure(longitudinalor lateral-directional)are
primary considerations.For example,transoniccon-
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ditions often exhibit larger uncertainty because of the
model sensitivity [21] and the relatively poor quality
of flight data from exogenous inputs due to aerody-
namic effects. Another source of significant uncer-
tainty can be dynamic modal cross-axis coupling, es-
pecially with modes closely-spaced in frequency, be-
tween symmetric and antisymmetric modes. Aeroe-
lastic and aeroservoelastic models are often developed
with a preferred axis orientation, symmetric or anti-
symmetric. Cross-axis dynamics will necessarily be
revealed as unmodeled dynamics in such a situation.
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Fig. 7 Mixed uncertainty minimum perturbation-to-
instability (left) and index of perturbation (right) cor-
responding to output mixed-µ analysis.

Lower bounds ofµ provide the perturbation,∆,
which causes instability [18] with respect to its struc-
ture (see commments below (4)). In the left plot of
figure 7, lower bounds are calculated and plotted with
line-connected ’*’-symbols. Lower values of the min-
imum perturbation denote the more sensitive frequen-
cies. In the right plot, corresponding indices of the
real parameters (wr

� ∆rzr , indices 1-37) and complex
uncertainty control feedback loops (3 output loops,
wo

� ∆ozo with indices 38-40) are marked, also plot-
ted with individual ’*’-symbols. This information
shows which parametric uncertainties (indices 1-37)
or complex-multiplicative loop uncertainties (indices
38-40) in each feedback, at specific frequencies, result
in the minimum perturbation-to-instability condition
of the left plot. For example, complex-multiplicative
uncertainty in all output loops (indices 38-40) is very
significant, as seen from a congestion of values at the
top of the right plot (3 rows corresponding to indices
38-40 at multiple frequencies). Real parameters,∆Θ,
contributing to roll rate are the other perturbations im-
portant in the instability mechanism, as seen from the
row and scatter of points plotted at the bottom. There

are no critical real perturbations in the yaw rate (in-
dices 14-25) or lateral acceleration (indices 26-37)
loops.

6 Conclusions

Aeroservoelatic model identification with uncertainty
is addressed in this paper to present a robust data-
oriented procedure for model development. Surface
command inputs and control system feedbacks are
used as signals in a wavelet-based modal estimation
procedure for modal parameter updates. Transfer
functions are incorporated in a robust minimax es-
timation scheme to identify input-output parameters
and structured error bounds consistent with the data.
Uncertainty estimates derived from the data in this
manner provide appropriate and relevant representa-
tions for robust stability analysis useful for model val-
idation and control system design. This procedure
is an automated, efficient, and reliable approach for
analysis of numerous flight data sets for robust stabil-
ity and model development.
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