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Abstract

A refined dynamic theory of rotating blades
modeled as anisotropic composite thin-walled
beams, experiencing the flapping-lagging-
transverse shear coupling is presented. The
structural model encompasses a number of
non-standard features, such as anisotropy and
transverse shear, pretwist and presetting angles,
the presence of a rigid hub on which the beam is
mounted, and the rotatory inertia. The developed
theory and the methodology used to determine
the eigenfrequency characteristics are validated
against the results available in the literature, and
new results emphasizing the influence played by
the ply-angle, pretwist and presetting, coupled
with that of the rotating speed on blade free vi-
bration characteristics are supplied, and pertinent
conclusions are outlined.

1 Introduction

The accurate prediction of free vibration charac-
teristics of turbine blades, tilt rotor aircraft, heli-
copter blades and aircraft propellers is of a con-
siderable importance towards the reliable design
of these structural systems. A good knowledge
of their free vibration characteristics is essential

toward determination of their dynamic response
to external excitations, resonant behavior, flutter
instability and of their fatigue life.

In order to be able to predict adequately
the free vibration response of advanced rotating
blades constructed of composite materials, com-
prehensive structural models that encompass a
number of features such as anisotropy and trans-
verse shear, warping restraint, as well as the
pretwist and presetting angles, should be devel-
oped and used. Traditionally, this problem, con-
sidered in specialized contexts, was approached
within a solid isotropic beam model. In this
sense, the reader is referred to the survey-paper
by Rosen [1] where ample references to the lit-
erature addressing various related issues have
been supplied. Within the concept of thin-walled
beams, the treatment of the free vibration prob-
lem of rotating beams was carried out in various
specialized contexts in a number of papers (see
e.g. the most recent survey papers, by Jung et al.
[2, 3], that provide extensive references on the
state-of-the-art of this problem. In addition, ex-
tensive references can be found in the references
[4] through [8].

However, in spite of the extensive work de-
voted to this problem, one should remark the
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absence of a structural model of rotating thin-
walled beams encompassing the basic features of
advanced filamentary composite structural sys-
tems, such as directionality and transverse shear,
as well as the pretwist and presetting effects.
Within this paper, the coupled flapping-lagging-
transverse shear vibrations of a pretwisted rotat-
ing composite thin-walled beam mounted on a
rigid hub of radiusR0 at a setting angleγ, and
featuring the previously mentioned effects are in-
vestigated.

In this context, the effects of the ply-angle of
the filamentary constituent materials and of trans-
verse shear, as well as that of the hub radius and
angular velocity on coupled bending vibrations
are addressed, and pertinent results are provided.

2 Analysis

2.1 Preliminaries

The case of a straight pretwisted flexible beam of
lengthL mounted on a rigid hub of radiusR0, ro-
tating at the constant angular velocityΩ as shown
in Fig. 1 is considered. The beam is allowed to
vibrate flexurally in a plane making an angleγ,
referred to as setting angle with the plane of rota-
tion. The origin of the rotating systems of coor-
dinates(x,y,z) is located at the blade root, at an
offsetR0 from the rotation axis. Besides the rotat-
ing coordinates(x,y,z), we also define the local
coordinates(xp, yp, zp), wherexp andyp are the
principal axes of an arbitrary beam cross-section
(see Refs. [6-8]). The two coordinate systems are
related by the following transformation formulae:

x = xp cos(γ+β (z))−yp sin(γ+β(z)),
y = xp sin (γ+β (z))+yp cos(γ+β(z)),
z = zp (1a-c)

whereβ(z) = β0z/L denotes the pretwist an-
gle of a current beam cross-section,β0 denoting
the pretwist at the beam tip.

In addition to the previously defined co-
ordinate systems, the inertial reference system
(X ,Y,Z) is attached to the center of the hubO.
By (i, j, k) and(I, J, K) we define the unit vec-

tors associated with the rotating and inertial co-
ordinates, (x, y, z) and (X ,Y,Z), respectively.
In addition, a local (surface) coordinate systems
(s, z, n) is considered. The geometric configura-
tion and the typical cross-section, along with the
associated systems of coordinates are presented
in Figs. 1.

Within the present work, the precone angle
of the blade is assumed to be zero. It is fur-
ther assumed that the rotation takes place in the
plane (X, Z) with the constant angular velocity
Ω(≡ ΩJ = Ωj), the spin axis being along the Y-
axis.

The considered structural model corresponds
to a single-cell thin-walled beam (TWB) of
uniform closed-section, where the spanwise,z-
coordinate axis coincides with a straight unspec-
ified reference longitudinal axis.

2.2 Kinematics

The position vector of a pointM(x,y,z) belong-
ing to the deformed beam structure is expressed
as:

R(x,y,z; t) = (x+u) i+(y+v) j+(z+w)k+R0,
(2)

wherex, y and z are the Cartesian coordinates
of the points of the 3-D continuum in its unde-
formed state, whileu, v andw denote displace-
ment components. Recalling that the spin rate
was assumed to be constant, keeping in mind that
the rotation takes place solely in theXZ plane,
and making use of equations expressing the time
derivatives of unit vectors (i, j, k), one obtain the
velocity and acceleration vectors of an arbitrary
pointM of the beam under the form

Ṙ=Vxi+Vyj+vzk (3a)

and

R̈= axi+ayj+axk (3b)

respectively. Their components are as follows:

Vx = u̇+(R0+ z+w) Ω; Vy = v̇;

Vz = ẇ− (x+u)Ω (4a-c)
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and

ax = ü+2ẇΩ− (x+u)Ω2; ay = v̈,

az = ẅ−2u̇Ω− (R0+ z+w) Ω2 (5a-c)

In these equations and the following ones, the su-
perposed dots denote time derivatives, and the
terms underscored by one or two superposed
solid lines are associated with Coriolis and cen-
trifugal inertia terms, respectively. As concerns
the components of the displacement vector, their
expressions have been supplied in Ref. [9], and
are reproduced here for completion

u(x, t,z; t) = u0(z; t)−yφ(z; t); v(x,y,z; t)

= v0(z; t)+xφ(z; t),

w(x, t,z; t) = w0(z; t)+θx(z; t)

[
y(s)−n

dx
ds

]

+θy(z; t)

[
x(s)+n

dy
ds

]
(6a-c)

−φ′(z; t)[Fw(s)+na(s)].

In these equationsu0(z; t),v0(z; t),w0(z; t) denote
the rigid body translations along thex,y and z
axes, whileφ(z; t) andθx(z; t),θy(z, t) denote the
twist about thez-axis and rotations about thex
and y-axes respectively. The expressions ofθx

andθy are

θx(z; t) = γyz(z; t)−v′0(z; t);

θy(z; t) = γxz(z; t)−u′0(z; t). (7a,b)

In Eqs. (6),Fw(s) andna(s) play the role of pri-
mary and secondary warping functions, respec-
tively. For their definition, see e.g. Ref. [9].

In the absence of transverse shear effects
where,γxz andγyz denote transverse shear strains,

θx(z; t) =−v′0(z; t); θy(z; t) =−u′0(z; t). (8a,b)

In these equations, as well as in the forthcoming
ones, the primes denote differentiation with re-
spect to the longitudinalz-coordinate.

2.3 The Equations of Motion and Boundary
Conditions

In order to derive the equations of motion and the
associated boundary conditions, Hamilton’s vari-

ational principle is used. This variational princi-
ple may be stated as (see Ref. [10]).

δJ =
∫ t1

t0

[∫
τ
σi jδεi jdτ−δK

−δ A −
∫

τ
ρHiδvidτ

]
dt = 0 (9)

whereσi j and εi j stand for the 3-D stress and
strain tensors, respectively,

U =
1
2

∫
τ
σi jεi jdτ, andK =

1
2

∫
τ
ρ(Ṙ · Ṙ)dτ

(10a,b)

denote the strain energy functional and the ki-
netic energy, respectively.

In these equations,t0 andt1 denote two arbi-
trary instants of time;dτ(≡ dndsdz) denotes the
differential volume element,Hi denote the com-
ponents of the body forces;ρ denotes the mass
density; an undertilde sign identifies a prescribed
quantity, whileδ denotes the variation operator.
In Eqs. (9) and (10) the Einstein summation con-
vention applies to repeated indices, where Latin
indices range from 1 to 3. In the same equations,
(v1,v2,v3)≡ (u,v,w), and(x1,x2,x3)≡ (x,y,z).

As necessary pre-requisites, the various ener-
gies that are involved in the variational principle
have to be rendered explicitly. Their expressions
are not displayed in this paper. Hamilton’s princi-
ple will also be used, to solve the resulting eigen-
value problems. This method is referred to as the
Extended Galerkin Method [11].

3 Governing System

3.1 The shearable system

In the present paper a special case of ply-angle
distribution inducing special elastic couplings
will be considered. This consists of the lamina-
tion scheme

θ(x) = θ(−x), θ(y) = θ(−y), (11)

whereθ denotes the ply angle orientation consid-
ered to be positive when is measured from the
positive s-axis towards the positivez-axis (see
Fig. ()).
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As it was previously shown, (see Atilgan and
Rehfield [12]), this ply-angle configuration, re-
ferred to as theCircumferentially Uniform Stiff-
ness configuration achievable via the usual fil-
ament winding technology, results in an exact
decoupling between flapping- lagging-transverse
shear, on one hand, and extension-torsional mo-
tion, on the other hand. In the present study
only the former problem involving the bending-
bending coupling will be considered.

The governing dynamical equations of
pretwisted rotating blades expressed in terms of
displacement variables are expressed as:

Herein, px, py,mx and my are the external
loads and moments that are assumed to be func-
tions of bothz andt coordinates.

δu0 :
[
a42(z)θ′y+a43(z)θ′x+a44(z)(u

′
0+θy)

+a45(z)(v
′
0+θx)

]′ −b1ü0+b1u0Ω2

+b1Ω2[R(z)u′0]
′+ px = 0,

δv0 :
[
a52(z)θ′y+a53(z)θ′x+a55(z)(v

′
0+θx)

+a54(z)(u
′
0+θy)

]′ −b1v̈0

+b1Ω2[R(z)v′0]
′+ py = 0, (12)

δθy :
[
a22(z)θ′y+a25(z)(v

′
0+θx)+a24(z)

(u′0+θy)+a23(z)θ′x
]′ −a44(z)(u

′
0+θy)

−a43(z)θ′x−a45(z)(v
′
0+θx)−a42(z)θ′y

−
(

b5(z)+δnb15(z)

)
( θ̈y
...
−Ω2θy)

˜̃ ˜̃ ˜̃

−
(

b6(z)−δnb13(z)

)
( θ̈x
...
− Ω2θx)

˜̃ ˜̃ ˜̃ ˜

+my = 0,

δθx :
[
a33(z)θ′x+a32(z)θ′y+a34(z)(u

′
0+θy)

+a35(z)(u
′
0+θx)

]′ −a55(z)(v
′
0+θx)

−a52(z)θ′y−a54(z)(u
′
0+θy)−a53(z)θ′x

−
(

b4(z)+δnb14(z)

)
( θ̈x
...
− Ω2θx)

˜̃ ˜̃ ˜̃ ˜

−
(

b6(z)−δnb13(z)

)
(θ̈y
...
− Ω2θy)

˜̃ ˜̃ ˜̃ ˜̃

+mx = 0.

For the sake of identification, in the previous
equations, the terms associated with the centrifu-
gal acceleration terms are underscored by two
superposed solid lines(====) ; rotatory iner-
tia terms by a dotted line(· · ·), and centrifugal-
rotatory effect by a solid line superposed on a

wavy line( ˜̃ ˜ ).

Assuming the blade to be clamped atz = 0
and free atz = L, the homogeneous boundary
conditions result as:
At z = 0:

u0= 0, v0= 0, θx = 0, θy = 0, (13)

and atz = L:

δu0 : a42(L)θ′y+a43(L)θ′x+a44(L)(u
′
0+θy)

+a45(L)(v
′
0+θx)=0,

δv0 : a52(L)θ′y+a53(L) θ′x+a55(L) (v
′
0+θx)

+a54(L)(u
′
0+θy) = 0, (14)

δθy : a22(L)θ′y+a25(L)(v
′
0+θx)+a24(L)(u

′
0+θy)

+a23(L)θ′x = 0,

δθx : a33(L)θ′x+a34(L)(u
′
0+θy)+a35(L)(v

′
0+θx)

+a32(L)θ′y = 0.

As is clearly seen, these equations can ad-
dress either the dynamic response of rotating
blades exposed to time-dependent external exci-
tation, or the free vibration problem. In the latter
case, the external loads should be discarded.

In equations (12) and the following ones

R(z)≡ [R0(L− z)+
1
2
(L2− z2)], (15)

whereas the coefficientsai j(z) = a ji(z) andbi(z)
denote stiffness and reduced mass terms, respec-
tively. Their expressions are not displayed here.

3.2 Nonshearable Counterpart of the Previ-
ously Obtained System

Extracting from equations(16)3 and (16)4,
the expressionsa44(u′0+ θy) + a45(v′0+ θx) and
a55(v′0 + θx) + a54(u′0 + θy), respectively, and
their corresponding replacement in Eqs.(16)1,
(16)2, (18)1, and (18)2 followed by consid-
eration of θx → −v′0 and θy = −u′0, yields
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the Bernoulli-Euler counterpart of the shearable
beam model. The corresponding equations will
not be displayed here.

4 Comparisons with Available Numerical
Predictions

The equations derived for the case of rotating
thin-walled beams are similar to the ones corre-
sponding to asolid beam model. The difference
occurs only in theproper expression of cross-
sectional stiffness quantities and mass terms. For
this reason, use of dimensionless parameters in
which these quantities are absorbed, enables one
to obtain universal results, valid for both solid
and thin-walled beams. In order to validate
both the solution methodology and the structural
model developed in this paper, comparisons with
a number of results available in the literature are
presented. The comparisions reveals an excellent
agreement. These comparisons will not be sup-
plied here.

5 Numerical Simulations and Discussion

Although the obtained equations are valid for a
beam of arbitrary closed-cross section, for the
sake of illustration the case of a rotating beam
modelled as a composite box-beam (see Fig.
1) characterized by a cross-section ratioR (≡
c/b) = 5 was considered.

In addition, unless otherwise specified, its di-
mensions are:L = 80in. (2.023m);c = 10in.
(0.254m);b = 2in. (50.8×10−3m); h = 0.4in.
(10.16×10−3m). The mechanical characteristics
of the beam as considered in the numerical sim-
ulations correspond to the graphite/epoxy mate-
rial. Its elastic characteristies can be found e.g.
in Refs. [9]. As a result these are not supplied
here.

EL = 30×106psi(20.68×1010N/m2),

ET = 0.75×106psi(5.17×109N/m2)

GLT = 0.37×106psi(2.55×109N/m2),

GTT = 0.45×106psi(3.10×109N/m2)

µTT = µLT = 0.25;

ρ = 14.3×10−5lb.sec./in4(1,528.15kg/m3)

The eigenvalue problem was solved by using
an exceptionally powerful methodology based on
Extended Galerkin Method (see Ref. [11]).

Fig. 1a Geometry of the pretwisted beam.

Fig. 1b Cross-section of the beam with pretwist and
presetting angles.

Figures 2 and 3 display the variation of the
first two natural frequencies of the rotating beam
(Ω = 100 rad/sec.), as a function of the ply-
angle, for selected values of the setting angle, and
for the pretwist,β0 = 90 deg.
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Fig. 2 Variation of the first coupled flapping-lagging
natural frequency vs. ply angle for different setting
angles (β0 = 90 deg.,Ω = 100 rad/sec.,̄R0 = 0.1)

Fig. 3 Variation of the second coupled flapping-
lagging natural frequency vs. ply angle for different
setting angles. (β0 = 90 deg.,Ω = 100 rad/sec.,̄R0 =
0.1)

The results reveal a continuous increase of
natural frequencies that accompanies the increase
of the ply-angle. Moreover, consistent with the
results reported by the same authors but not
displayed here, depending on the odd or even
mode number, the increase of the presetting an-
gle yields either a decrease or increase of natural
frequencies.

Related to these results, one should remark
from Figs. 4 and 5 that the increase of the ro-
tational speed yields an increase of natural fre-
quencies as compared to those displayed in Figs.
2 and 3, where a lower angular speed was con-
sidered. Moreover, at larger angular speeds, the
effect of the ply-angle is more individualized for
each of the considered setting angles than in the
case of lower angular speeds.

Fig. 4 The counterpart of Fig. 2 forΩ = 400 rad/sec.

Fig. 5 The counterpart of Fig. 3 forΩ = 400 rad/sec.
In Figs. 6 through 8, there is displayed in

succession the variation of the first three natu-
ral frequencies, as a function of the setting angle,
for selected values of the rotational speed. As it
clearly appears also from these figures, the effect
of the setting angle on eigenfrequency of nonro-
tating beam is immaterial.

Fig 6 First coupled flapping-lagging natural frequency
vs. presetting angle for selected rotational speeds (θ =
0, β0 = 30 deg.,R̄0 = 0.1)
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Fig. 7 Second coupled freqnecy vs. presetting angle
for selected rotational speeds (θ = 0, β0 = 30 deg.,R̄0

= 0.1)

Fig. 8 Third coupled flapping-lagging natural fre-
quency vs. presetting angle for selected rotational
speeds (θ = 0, β0 = 30 deg.,R̄0 = 0.1)

On the other hand, the trend of variaton of
various mode frequencies as a function of the pre-
setting angle and angular velocity remains simi-
lar to that previously emphasized. In these nu-
merical simulations, the considered pretwist an-
gle wasβ0 = 30 deg. Results not displayed here
obtained for the case of zero pretwist reveal that
the pretwist has a relatively minor effect on the
natural frequencies.

In Figs. 9 and 10, for selected values of the
setting angle it is displayed in succession the vari-
ation of the first two natural frequencies, as a
function of the pretwist angle. For zero preset-
ting angle, the trend of variation of natural fre-
quencies with that of the pretwist angle, coin-
cides with that reported e.g. in the paper by Song
et al. Refs. [6 and 8].

Fig. 9 Variation of the first coupled flapping-lagging
natural frequency vs. pretwist angle for different set-
ting angles of the rotating beam (θ = 45 deg.,Ω = 100
rad/sec.,R̄0 = 0.1)

Fig. 10 Variaton of the second coupled natural fre-
quency vs. pretwist angle for different setting angles
of the rotating beam (θ = 45 deg., Ω = 100 rad/sec.,
R̄0 = 0.1)

In Figs. 11 and 12 there are displayed the
implications of the hub radius, coupled with that
of the rotating speed on the fundamental coupled
flapping-lagging natural frequency, for the beam
featuring, the setting anglesγ= 0 and γ= 90
deg., and for the ply-angles, in succession,θ= 0
andθ= 45 deg., respectively. Due to the fact that
in both cases, as considered in Figs. 11 and 12,
the pretwist isβ0= 90 deg., the flapping-lagging
coupling is present also in the cases involving
γ= 0 andθ= 0.
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Fig. 11 Variation of the first coupled flapping-lagging
natural frequency vs. the rotational speed for different
hub radii and two setting angles(β0 = 90 deg.,θ = 0)

Fig. 12 The counterpart of Fig. 11 for the ply-angleθ
= 45 deg.

The results reveal that the differences be-
tween the frequencies corresponding toγ= 0 and
γ= 90 deg. tend to decay with the increase of the
hub radius. At the same time, the results reveal
that the increase of the ply-angle tends to exacer-
bate the difference between the frequencies cor-
responding toγ= 0 andγ= 90 deg., and associ-
ated to the samēR0.

Figures 13 through 15 further emphasize the
considerable role that the tailoring technique can
play toward the increase, without weight penal-
ties, of the coupled flapping-lagging natural fre-
quencies of rotating beams. Such a role that ren-
ders the composite material systems overwhelm-
ingly superior to the metallic structures, deserves
well to be highlighted again in these graphs.

In addition, these plots reveal a number of
trends related to the implications of the setting
angle on each mode frequency, trends that have
already been outlined in the previously displayed
numerical simulations.

Fig. 13 First coupled flapping-lagging for selected
ply-angles (β = 0, Ω = 100 rad/sec.,̄R0 = 0.1)

Fig. 14 Second coupled flapping-lagging natural fre-
quency vs. presetting angle for selected ply-angles (β
= 0, Ω = 100 rad/sec.,̄R0 = 0.1)

Fig. 15 Third coupled flapping-lagging natural fre-
quency vs. presetting angle for selected ply-angles (β
= 0, Ω = 100 rad/sec.,̄R0 = 0.1)

6 Conclusions

A dynamic structural model of rotating thin-
walled beams encompassing a number of non-
classical effects was presented. The developed
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structural beam model accounts for the effects of
the directionality of the fibrous composite mate-
rials, and of the elastic couplings induced thereof,
transverse shear, rotatory inertias, and of the
hub radius. In addition, the effects played by
the pretwist and presetting angles, coupled with
the previously mentioned ones have been incor-
porated and their implications on free vibration
have been revealed.

Comparisons of eigenfrequency predictions
based on the developed model and the Extended
Galerkin Solution Methodology used in this pa-
per with some available theoretical and experi-
mental ones for rotating and non- rotating beams
have been carried out, and excellent agreements
have been reached.

It is hoped that the results reported here will
be helpful toward a better understanding of the
implications of a number of non-classical ef-
fects on natural frequencies of advanced rotating
beams, and toward the validation of the finite el-
ement and of other approximate methods that are
used in the context of the dynamics of rotating
beams.

References

[1] Rosen, A., “Structural and dynamic behavior of
pretwisted rods and beams,”Applied Mechanics
Reviews, 44, 12, Part 1, pp. 483-515, 1991.

[2] Jung, S. N., Nagaraj, V. T., and Chopra, I.,
“Assessment of composite rotor blade: model-
ing techniques,”Journal of the American He-
licopter Society, Vol. 44, No. 3, pp. 188-205,
1999.

[3] Jung, S. N., Nagaraj, V. T. and Chopra, I., “Re-
fined structural dynamics model for composite
rotor blades,”AIAA Journal, Vol. 39, No. 2, pp.
339-348, 2001.

[4] Song, O. and Librescu, L., “Structural modeling
and free vibration analysis of rotating compos-
ite thin-walled beams,”Journal of the American
Helicopter Society, Vol. 42, No. 4, pp. 358-369,
1997.

[5] Song, O. and Librescu, L., “Modeling and dy-
namic behavior of rotating blades carrying a tip
mass and incorporating adaptive capabilities,”
Acta Mechanica, Vol. 134, pp. 169-197, 1999.

[6] Song, O., Librescu, L. and Oh, S-Y., “Vibra-
tion of pretwisted adaptive rotating blades mod-
eled as anisotropic thin-walled beams,”AIAA
Journal, Vol. 39, No. 2, February, pp. 285-295,
2001.

[7] Song, O., Librescu, L., and Oh, S.-Y, “Dynamic
of pretwisted rotating thin-walled beams oper-
ating in a temperature environment,”Journal of
Thermal Stresses, Vol. 24, No. 3, pp. 255-279,
2001.

[8] Song, O., Oh, S-Y, and Librescu, L., “Dy-
namic behavior of elastically tailored rotating
blades modeled as pretwisted thin-walled beams
and incorporating adaptive capabilities,”Inter-
national Journal of Rotating Machinery, Vol. 8,
No. 1, pp. 13-25, 2002.

[9] Song, O. and Librescu, L., “Free vibration
of anisotropic composite thin-walled beams of
closed cross-section contour,”Journal of Sound
and Vibration, 167, (1), pp. 129-147, 1993.

[10] Librescu, L., “Elastostatics and kinetics of
anisotropic and heterogeneous shell-type struc-
tures, Noordhoff International Publishing, Ley-
den, Netherlands, pp. 560-598, 1975.

[11] Librescu, L., Meirovitch, L. and Na, S. S.,
“Control of cantilevers vibration via structural
tailoring and adaptive materials,”AIAA Journal,
Vol. 35, No, 8, August, pp. 1309-1315, 1997.

[12] Rehfield, L. W., Atilgan, A. R. and Hodges, D.
H., “Nonclassical behavior of thin-walled com-
posite beams with closed cross sections,”Jour-
nal of the American Helicopter Society, Vol. 35,
No. 2, pp. 42-51, 1990.

431.9


