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Abstract

An airfoil-aileron combination is modeled as a
three-degree-of-freedom system oscillating in
plunge, pitch and aileron angular deflection,
and subject to incompressible flow. The
aeroelastic behaviour of the system is
investigated taking into account freeplay
nonlinearities in the pitch and aileron restoring
moments of the airfoil. Then, the time series of
the nonlinear system response are analyzed
using the nonlinear dynamics methodology of
parameters identification. The estimated
parameters obtained via the signal processing
technique are then compared with those directly
calculated from the model. In the signal
processing technique, first the phase-space is
reconstructed using the mutual information
function and the percentage of false neighbours
methods. The dynamics of the system is then
determined from the Lyapunov exponents. This
paper discusses the limit cycle oscillations and
chaotic behaviour of the 3-DOF aeroelastic
system, and the tools to analyze these
phenomena.

1 Introduction

Aerodadgtic phenomena ae a potentid
source of ingability problems for arcraft wings.
One of the mogt important aspects of these
phenomena is sdf-excited divergent oscillation
of wings known as flutter. This catasirophic
phenomenon occurs a speeds above a critica
vaue cdled flutter speed. The onset of flutter
can be predicted by andyzing the flight test data
acquired a gpeeds beow the criticd flutter
Speed.

Vaious methods ae beng used by
arframe manufecturers for flutter investigation
and the edimation of flutter speed. Most of
these methods are typicdly based on the
assumption of linearity, and usudly work very
wel for liner systems. However, there are
severd potentid sources of nonlinear behaviour
on modern arcraft, and prediction of flutter
goeed usng the linear theories may not be
adequate in these cases.

The objective of this invedtigation is to
explore the behaviour of an arfoil-aleron
combination with freeplay Sructurd
nonlinearities in the pitch and aleron restoring
moments, and to use moden  nonlinear
dynamics methodologies for the identification
of flutter parameters from recorded time series.
This method is expected to give a better
prediction for the dynamics of the nonlinear
systems.

2 Aerodlastic Equationsof Motion

The equaions of motion for the two-
dmendond arfoil-alleron combination shown
schematicdly in Figure 1(@ may be written in
nondimensiona form as
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where X = h/b is the nondimensond heave
displacement; ( )¢ denotes differentiation with
respect to nondimensond time t = tV/b ; M(a)
and H(b) ae nonlinear functions representing
the restoring moments in pitch and aleron,
respectively, normdized with respect to the
liner diffnesses p, r and w ae the
nondimensiond aerodynamic  force  and

moments defined as
- - M
pE)=—5—, r()=——%—,
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U is nondimensond arspeed, rg is the
nondimengond arfoil radius of gyration about
the dadic axis, rp is the nondimensond aileron
radius of gyration about the aleron hinge ling,
and z= 1+ (Coran)Xp ; ad, zx, za and zpare
viscous damping ratios in plunge, pitch and
aleron, respectively. W, and W, are uncoupled
frequency ratios defined as

_ Kx/m _ [Ky/m
e V%‘Jx—a/%’

where m is the mass of arfail-aleron, 15 the
mess momet of inetia of the arfoil-aleron
about the dadtic axis, Ip the mass moment of
inatia of the aleron about the aleron hinge
and, K. , Kgz and Kp are linearized stiffnesses in
plunge, pitch and aleron hinge, respectively.

Due to the posshility of nonperiodic
motions of the arfoil, Theodorsen's equations
canot be employed in the present andyss.
Thus, the aerodynamic force and moments are
derived for any abitray motion of the arfoil-
aleron from Theodorsen's equations by means
of aFourier andysig 1], giving

L(t) =prov2[xt) - a,adt) - 2 bét)
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Figures 1(b) ad 1(c) show the
nonlinearities assumed for the pitch and aleron
moments. The nonliner moment M(a) and
H(b) are given by

la-a, +M, for a<a,,
M@=i M, for a, £afa, +d,
la-a, -d+M,, for a+d<a,

1b-bs +Hg for b<bg,
H(b):_{Ho, for bf £b £b¢ +dy,
ib-byf-dp+Hg for b+dp <b,

3 Nonlinear Signal Processing

Aeodadic invedigdaion of arfoils with
dructurd  nonlinearities has shown that for
velocities below the linear flutter boundary the
arfol can be dade or it can ostllae
indefinitely in a periodic or chaotic manner.

In such cases, the usud flutter parameter
identification tools based on linear sSgnd
processng techniques may not be adequate.
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Thus, one needs to have some rdiable means to
andyze nonliner respone  dgnds  having
decaying, periodic or chaotic characterigtics.
There are various suggested gpproaches on this
subject, and amongst these methods, an
approach used by nonlinear dynamicists offers a
great potentid in flutter sgnd andyss[2].

The proposed dgnd processng technique
cong s of the following steps.

1- Sgnd measurement

2- Signd separation

3- Phase-gpace recongtruction
4- Edimation of system invariants
5- Modd making and predictions

The time series of the response can be
obtained experimentdly by placing sensors such
as accelerometers or strain gages on the aircraft
gructure. The dgnds are digitdly sampled, and
they are scdar quantities designated by x(n)
where n is the sample number which can be
converted to time once the sampling frequency
isgiven.

For nonliner sysgems with possbly
chaotic oscillations, one would like to separate
noise from the dgnd without influencng the
possbly chaotic behaviour of the sgnd. The
ggna separation process favoured by nonlinear
dynamicigs is the manifold decompostion
method[2].

3.1 Phase-Spacereconstruction

After the sgnd preparation, a phase-space
recondruction is caried out usng time-dday
method. To construct the phase-space one
would typicdly need to obtan dl varidbles of
the sysem, postions and veocities. However,
one redly does not need al these to capture the
dructure of the orbit. For the purpose of
cregting a phase-space any smooth  nonlinear
change of variables will act as a coordinate
bass for the dynamics Sating from the
observed scalar quantity x(n), the state space
vector y(n) could be formed in de-dimensond
goace using atime-delay T,
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y(n) =[x(n),x(n+T),x(n+2T) ...

- X(n+(d, - JT)] )
Potting this vector in a de dimensona space
represents the phase- space of the system.

The key point in the time-dday
recongruction method is that x(n) and x(n+T)
ae reaed by the evolution of the dynamicd
system over a period of time T during which dl
dynamica variables affect the observed variable
x(n). Therefore, x(n+T) is an unknown,
nonlinear combingtion of dl vaiadles of the
sysem. Alone, it may represent one of the
vaidbles, but the combination into a de
dimensond vector of time-ddays of Xx(n)
represents d. active vaiables of the sysem
being observed.

Sdection of agppropriste time-delay T, is
important in the recondruction technique. If the
time-dday is too short, not enough time will
eapse for the sysdem to produce information
about its dynamics. If it is too large, too much
information will be log, and the two daa
samples will not be corrdaed. The optimum
ime-dday can be obtaned usng the average
mutual information functio3][5]. The average
mutud  informetion  identifies  how  much
information one can learn about a measurement
a one time, x(n+T), fom a measurement taken
a another time, x(n). The expresson for the
mutud informeation is given by

N
1(T) =@ PIx(n),x(n+T)]

n=1 ] . (8)
€ P[x(n),x(n+T)] U
“EPIX(M].PLX(n+T)] 4
where P[x(n)] and P[x(n+T)] are, respectively,
the probabilities of x(n) and x(n+T) occurring in
the data set, and P[x(n), x(n+T)] is the joint
probability. N is the tota number of observed
vaidble x(n). The vaue of time-dday T a
which the fird minimum of the mutud
information occurs is then judged as the
aopropriate time-delay to be used in the phase-
gpace recondruction technique. If the average
mutud information has no minimum, it is
recommended[2] to wuse T such that
I(T)/I(0)@/5. By Hecting T usng the above
methods, the vdues of x(n) and x(n+T) are
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independent enough of each other to be useful
as coordinates in time dday vector but not so
independent as to have no connection with each
other at dl.

To recongruct the phase-space one aso
needs to determine the dimenson of the phase-
pace or so cdled “embedding dimensor’. To
find the embedding dimenson de, the method of
fdse nearest neighbours is used in the present
andysg[5][6]. In this method, firs the date
gpace is recondructed in a dimenson de, and the
Eudidian distances between each point and its
nearest neighbouring points in the reconstructed
state space are cdculated. The distance between
point y(n) and its r'" nearest neighbour, y'(n), is
caculated from

de-1
RZ(n,r)=g [X(n+KT)- X' (n+KkT)]? )
k=0
foor =1, 2, ..., Np. Then, the process is
repested in a gpace dimension det 1,
R (N, 1) =RE (n,r) +[x(n+d,T)

- X" (n+d.T)]?

If y'(n) is a true neighbour, then it arives a the
neighbourhood of y(n) in the state space through
dynamic origins. It is a fdse neghbour if it
arives in the neighbourhood of y(n) because the
present dimenson did not fully unfold the
dtractor, and by increesng the embedding
dimendon to det+1, it is possible to move y'(n)
out of the neighbourhood of y(n). The y(n) and
y'(n) are considered neighbours if the distance
between them says within a tolerance R when
the embedding dimenson is increased from de
to detl. The citeion for dedgnaing a
neighbour to be fdse is given by Kennd e
a.[6] asfollows.

, 2 1/2
ERea(n1)- Re (1)
<

(10)

&8 R.0n g w
|x(n+ d.T)- X (n+d.T)
= >R
Rie (N,1)

Kennd e d.[6] suggest Ro > 10. Once the
percentage of fadse neighbours fdls bdow some
goecified  limit, then, the corresponding
dmenson may be chosen a a sufficent
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embedding dimenson. Kennd e d.[6] suggest
the limit to be 1%.

Fgure 2 is presented here to show few
concepts of the phase-gpace reconstruction.
Condder a st of avalable data, x(n). Figure 2
shows the reconstructed phase-space in a 2-D
space, de = 2. Definition of nearest neighbours is
presented by showing, for example, the 1%
neighbour of a typicd point y(n). Two points A
and B in the crossng point seem to be very
close neighbours in the 2-D space. However,
these points ae fdse neghbours and
recongtructing the phase-space in 3-D separates
the two points and the distance between them
increases Sgnificantly.

3.2 Calculation of System Invariants

After recondructing the phase-space, one
should be able to dassfy the dynamicd system
by finding the invaiats of the sydem.
Eigenvalues are the invaiants for a linearized
sygdsem.  For a nonlinear sysem Lyapunov
exponents are the most important invariants. To
determine the exponents, one may use the
evolution of the dae gpace vector given
by 7][8][9]
y(n+T)=F(y(n) (12)

This is the govening map for the
reconstructed orbit. Function F is not known in
dgebraic form, but locdly it can be estimated
from the reconstructed space. At each point on
the orbit y(n), a Taylor series for F(y(n)) is
made in the vicinity of the orbit, and the Taylor
coefficents are determined numericdly by a
least squarefit to the data.

Smadl perturbations to the orbit evolve
according to the linearized dynamics
Dy(n+T) =DF (n) Dy(n) (13)
where DF (n) is the Jacobian matrix of the map
F(n) a location y(n) on the orbit. The Jacobian
matrices can be gpproximated from the linear
term of the caculated Taylor series for F(y(n)).
Once the Jacobian matrix of the mapping
F(y(n)) for each point in the date space is
known, one can use the Multiplicative Eergodic
Theorem of Osdedec to determine the
Lyapunov exponents of the system10]. The
theorem States that if we form Oseledec matrix
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1
O (n,L)= ((DF L (n))T.DF L(n)ﬁ (14)
then the limit of thisas L ® ¥ exids and it is
independent of y(n). Lyapunov exponents are
amply the logarithm of the egenvaues of this
matrix when L ® ¥. DF(n) is the product of L
Jacobians matrices,
DF-(n) = DF(n) . DF(n-1) ... DF(1),
where dots represent matrix - multiplication.
Detals of the above procedure can be found in
the paper by Brown et d.[9].

After cdculaing the Jacobian matrix, one
may adgpt the following methodology to
cdculae the linearized modd damping and
frequencies of the sysem. Usng an exponentid
representation, one can write a gpace
perturbation Dy which will evolve according to
the expression
Dy(n+T) =exp({ ATD)DY(n) (15)
where the matrix [A] determines the system
dynamics. Comparing Equaion (15) with
Equation (13) givesthe following:

exp([AITDt) = DF (n) (16)

The Jacobian matrix depends on location in
the phasespace and hence the term
exp([ATDt) obtained numerically will not be
condant for every date vector in the phase-
space. However, they can be averaged to obtain
a mean exp([A]TDt) matrix, and the average
complex exponents | 1cpix, | 2cpix. .. ..l decpix. These
exponents are the egenvaues of logarithm of
the averaged matrix divided by TCX. Knowing
the complex exponents, the frequency and
damping values of the sysem can be obtained
from the following expressions.

Rell )

JIRell i JF +im{l )

W = Re(l icplx)
' 2pz

z = (17)

(18)

3.3 Moded Making and Predictions

Fnding indability points, such as flutter
oeed, is dedrable in the andyss of agrodadtic
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sysdem. For prediction of such points, fird,
behaviour of the system at argpeeds below the
citical speed should be andyzed and the
attractors of the system and their corresponding
invariants should be identified. Then, the
following methods could be used to predict the
system behaviour at higher speeds.

Firs method is based on the understanding
of the fundamentad physcs of the problem. In
this method, one develops a set of governing
equations for the aerodagic system and then
compares the output of those equations to
properties of the reconstructed state space. The
comparison is to be made in tems of the
quantities such as Lyapunov exponents. The
characteristic parameters of the equations could
be adjusted based on the comparisons. The
refined modd then can be used to predict the
system behaviour at higher speeds.

Second method is to extrapolate system
invariants and to predict posshility of a
bifurcation point a higher argpeeds. For
example, assume that the system is dable at
evauated speeds. This means the system has a
dable fixed-point attractor. In this case
ggenvdues of the linearized sydem ae
edimated a these speeds, and they are
extrgpolated to predict stability of the attractor
a higher speeds. This is same as extrgpolation
of frequency and damping vaues for caculation
of linear flutter speed. For an LCO solution,
which represents a dable periodic attractor,
Floguet multipliers ae representative of the
atractor's dability. Thus, in this case Hoquet
multipliers should be cdculated for veocities
below the critical speed and then extrapolated to
predict dability of the solutions a higher
gpeeds. Amplitude of the LCOs should dso be
extrapolated. In usng this method one should
bae in mind the complexity of dynamics of
nonlinear aerodagtic sysems. It has been shown
tha for such sysems more than one dsable
solution and variety of bifurcaions may exis
below the linear flutter speed[1][11]. Stability of
dl posshle solutions must be invedigaed in
such cases.
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4 Results

Hutter andyss of the arfoil-aleron
combination, containing fregplay nonlinearities,
shows a wide region of limit cycle oscllaions
for argpeeds below the linear flutter speed. For
the cases where the aleron centre of gravity is
at the aleon hinge moment, chaotic
oxcillations are detected at a condderable range
of airspeeds.

The results presented here ae for the
folowing arfail, aleon and  nonlinearity
parameters, W, = 0.2, W, =15 m = 100,

anh = -05, xa =025 ra =05 xp=0.002,
res =0.002, Mo =0, & =-025° g, = 0.5°,
Ho =0, bx =-0.5° and 6, = 1°. For thisarfail,
the linear flutter speed isfound to be U* = 6.16.

Fgure 3a is a typicd hifurcation diagram
of the pitch response obtained usng Houbolt's
finite difference method. The figure shows the
vadue of a when a¢ = O (i.e. extremums of the
steady-state oscillations). The ggnificance  of
such a diagram is as follows if a a particular
U/U* the sysem is sable, then a single paint is
obtained; if the motion is an LCO with one
frequency, then two points are obtained, eg.
U/U*>0.74; and, an LCO with two frequencies
results in four points, eg. 0.57<U/U*<0.74; etc.
A large number of points & some veocities
indicates aperiodic or posshbly chaotic motion,
eg. 0.3<U/U*<05. Figure 3b shows the
bifurcation diagram of the aleron motion of the
sane arfoil. Both  bifurcation  diagrams
illustrate posshbility of chaotic motion for a
wide range of airspeed.

If freeplay nonlinearities are considered in
both pitch and aleron restoring moments, then,
dronger chaos in wider range of arspeed is
obtained. Figure 4a and 4b show the bifurcation
diagrams for this double root nonlinearity case.

Figures 5a and 6a show a sample steady-
dae osdllaion of the arfol in pitch and
aleron directions. Phase-plane plots of the pitch
and aleron motion are dso presented in Figures
5b and 6b. Further andyss of the arfoil motion
in terms of the Power Spectrd Dendties (PSD),
Poincaré sections and Lyapunov exponents
shows that the sysem behaviour is chaotic in
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this range of argpeed. Samples of pitch and
alleron PSDs are presented in Figure 7.

The time higory of the arfoill motion bears
some resemblance to liner sysgem ggnds
corrupted with noise. Without recognizing the
chaotic behaviour of the dgnd, one may
inadvertently  use liner sSgnd  processing
techniques to cdculate the frequency and
damping vaues of the flutter modes from the
recorded time series This can lead to
mideading results. In order to describe the
sysem behaviour properly, we use the more
suitable method, explained in the preceding
section, to extract system parameters from the
recorded sgnals.

Usng the nonliner dSgnd  processng
technique described above, the phase-space can
be congructed from messurements of a or b
done. The time-delay required for phase-space
recondruction is obtaned usng the mutud
information method. The mutud information
I(T) for b motion is deemined from
Equation(8) and its variaion with time-dday is
shown in Fgure 8. The figure shows that for
gndl time ddays T < 3, the mutud information
is raher high. That is, reconstructed phase-
gace with such time ddays will not be fully
unfolded because the coordinates x(n) and
X(n+T) are too much related to each other. In
other word, not enough time elgpsed between
x(n) and x(n+T) that the sysems dynamics fully
affect x(n+T). On the other hand, time delay
should not be so long that x(n) and Xx(n+T)
become unrdated. The best time-dday in this
case for phase-space recondruction is T =5 a
which the fird minimum of the I(T) occurs. This
time-delay is then used in the fdse neighbours
method to edimate the minimum required
embedding dimenson. The vaidion of
percentage of fase neighbours is presented in
Fgure 9 as a function of embedding dimengon.
Based on this, embedding dimenson of 4 or
higher is required to unfold this attractor.

Figures 10 and 11 show the reconstructed
phase plane of the chaotic attractor. Compared
with Figure 5b and 6b, which show the direct
results of the amulation, it is clear that the basic
dructure of the chaotic attractor have been
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captured. It should be noticed that the presented
phase planes are two-dimensond sections from
gx dimensond phase-spaces.

Usng the andyss given aoove the
Lyapunov exponents are dso computed. The
largest exponent is approximately 0.1 for this
case. The agreement between the Lyapunov
exponents obtained directly usng the equations
of motion and those obtaned from the
reconstructed phase-space is reasonably good
for the largest exponent, which is the one that
indicates whether or not the system is chaotic.

5 Conclusons

A 3-DOF arfol  with  dructurd
nonlinearities in  pitch and aleron restoring
moments exhibits rich dynamics beow the
linear flutter speed. A random:like response
known as chaos can take place in a wide range
of argpeed for this sysem. The time series of
such dgnas bear some resemblance to linear
sysem ggnds corrupted with noise. Without
recognizing the chaotic behaviour of the sgnds,
one may Iinadvetently wuse liner dgnd
processing techniques to cdculate the frequency
and damping vaues of the flutter modes. Even
though most avallable liner dgnd processng
techniques work very wdl for liner sysems,
they can lead to mideading results for nonlinear
sysems. More suitable methods based on tools
developed for nonlinear dynamic sysems can
be used to extract parameters in order to
describe the system behaviour properly. The
application of these techniques to aerodadticity
is dill in its infancy stage. The method outlined
in this paper is potentidly usgful to andyse
nonlinear agrodadtic sgnds, but further studies
are necessary to address the issues of noise,
section and optimization of the vaious
parameters used in the method.
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