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Abstract  

An airfoil-aileron combination is modeled as a 
three-degree-of-freedom system oscillating in 
plunge, pitch and aileron angular deflection, 
and subject to incompressible flow. The 
aeroelastic behaviour of the system is 
investigated taking into account freeplay 
nonlinearities in the pitch and aileron restoring 
moments of the airfoil. Then, the time series of 
the nonlinear system response are analyzed 
using the nonlinear dynamics methodology of 
parameters identification. The estimated 
parameters obtained via the signal processing 
technique are then compared with those directly 
calculated from the model. In the signal 
processing technique, first the phase–space is 
reconstructed using the mutual information 
function and the percentage of false neighbours 
methods. The dynamics of the system is then 
determined from the Lyapunov exponents. This 
paper discusses the limit cycle oscillations and 
chaotic behaviour of the 3-DOF aeroelastic 
system, and the tools to analyze these 
phenomena. 

1  Introduction  

Aeroelastic phenomena are a potential 
source of instability problems for aircraft wings. 
One of the most important aspects of these 
phenomena is self-excited divergent oscillation 
of wings known as flutter. This catastrophic 
phenomenon occurs at speeds above a critical 
value called flutter speed. The onset of flutter 
can be predicted by analyzing the flight test data 
acquired at speeds below the critical flutter 
speed. 

Various methods are being used by 
airframe manufacturers for flutter investigation 
and the estimation of flutter speed. Most of 
these methods are typically based on the 
assumption of linearity, and usually work very 
well for linear systems. However, there are 
several potential sources of nonlinear behaviour 
on modern aircraft, and prediction of flutter 
speed using the linear theories may not be 
adequate in these cases. 

The objective of this investigation is to 
explore the behaviour of an airfoil-aileron 
combination with freeplay structural 
nonlinearities in the pitch and aileron restoring 
moments, and to use modern nonlinear 
dynamics methodologies for the identification 
of flutter parameters from recorded time series. 
This method is expected to give a better 
prediction for the dynamics of the nonlinear 
systems. 

2  Aeroelastic Equations of Motion  

The equations of motion for the two-
dimensional airfoil-aileron combination shown 
schematically in Figure 1(a) may be written in 
nondimensional form as 
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where ξ = h/b is the nondimensional heave 
displacement; ( )′ denotes differentiation with 
respect to nondimensional time τ = tV/b ;  M(α) 
and H(β) are nonlinear functions representing 
the restoring moments in pitch and aileron, 
respectively, normalized with respect to the 
linear stiffnesses; p, r and w are the 
nondimensional aerodynamic force and 
moments defined as  
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U is nondimensional airspeed; rα is the 
nondimensional airfoil radius of gyration about 
the elastic axis, rβ is the nondimensional aileron 
radius of gyration about the aileron hinge line, 
and zβ=rβ

2+(cβ-ah)xβ  ; and, ζξ , ζα  and ζβ are 
viscous damping ratios in plunge, pitch and 
aileron, respectively. ξω  and βω  are uncoupled 
frequency ratios defined as 
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where m is the mass of airfoil-aileron, Iα the 
mass moment of inertia of the airfoil-aileron 
about the elastic axis, Iβ the mass moment of 
inertia of the aileron about the aileron hinge; 
and, Kn , Kα and Kβ are linearized stiffnesses in 
plunge, pitch and aileron hinge, respectively. 

Due to the possibility of non-periodic 
motions of the airfoil, Theodorsen’s equations 
cannot be employed in the present analysis. 
Thus, the aerodynamic force and moments are 
derived for any arbitrary motion of the airfoil-
aileron from Theodorsen’s equations by means 
of a Fourier analysis[1], giving 
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Figures 1(b) and 1(c) show the 

nonlinearities assumed for the pitch and aileron 
moments. The nonlinear moment M(α) and 
H(β) are given by 
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3  Nonlinear Signal Processing  

Aeroelastic investigation of airfoils with 
structural nonlinearities has shown that for 
velocities below the linear flutter boundary the 
airfoil can be stable or it can oscillate 
indefinitely in a periodic or chaotic manner.  

In such cases, the usual flutter parameter 
identification tools based on linear signal 
processing techniques may not be adequate. 
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Thus, one needs to have some reliable means to 
analyze nonlinear response signals having 
decaying, periodic or chaotic characteristics. 
There are various suggested approaches on this 
subject, and amongst these methods, an 
approach used by nonlinear dynamicists offers a 
great potential in flutter signal analysis [2].  

The proposed signal processing technique 
consists of the following steps. 
 

1- Signal measurement 
2- Signal separation 
3- Phase-space reconstruction  
4- Estimation of system invariants 
5- Model making and predictions 

 
The time series of the response can be 

obtained experimentally by placing sensors such 
as accelerometers or strain gages on the aircraft 
structure. The signals are digitally sampled, and 
they are scalar quantities designated by x(n) 
where n is the sample number which can be 
converted to time once the sampling frequency 
is given.  

For nonlinear systems with possibly 
chaotic oscillations, one would like to separate 
noise from the signal without influencing the 
possibly chaotic behaviour of the signal. The 
signal separation process favoured by nonlinear 
dynamicists is the manifold decomposition 
method[2].   

3.1  Phase-Space reconstruction  

After the signal preparation, a phase-space 
reconstruction is carried out using time-delay 
method. To construct the phase-space one 
would typically need to obtain all variables of 
the system, positions and velocities. However, 
one really does not need all these to capture the 
structure of the orbit. For the purpose of 
creating a phase-space any smooth nonlinear 
change of variables will act as a coordinate 
basis for the dynamics. Starting from the 
observed scalar quantity x(n), the state space 
vector y(n) could be formed in de-dimensional 
space using a time-delay T,  
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Plotting this vector in a de dimensional space 
represents the phase-space of the system.  

The key point in the time-delay 
reconstruction method is that x(n) and x(n+T) 
are related by the evolution of the dynamical 
system over a period of time T during which all 
dynamical variables affect the observed variable 
x(n). Therefore, x(n+T) is an unknown, 
nonlinear combination of all variables of the 
system. Alone, it may represent one of the 
variables, but the combination into a de-
dimensional vector of time-delays of x(n) 
represents de active variables of the system 
being observed.  

Selection of appropriate time-delay T, is 
important in the reconstruction technique. If the 
time-delay is too short, not enough time will 
elapse for the system to produce information 
about its dynamics. If it is too large, too much 
information will be lost, and the two data 
samples will not be correlated. The optimum 
time-delay can be obtained using the average 
mutual information function[3][5]. The average 
mutual information identifies how much 
information one can learn about a measurement 
at one time, x(n+T), from a measurement taken 
at another time, x(n). The expression for the 
mutual information is given by 
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where P[x(n)] and P[x(n+T)] are, respectively, 
the probabilities of x(n) and x(n+T) occurring in 
the data set, and P[x(n), x(n+T)] is the joint 
probability. N is the total number of observed 
variable x(n). The value of time-delay T at 
which the first minimum of the mutual 
information occurs is then judged as the 
appropriate time-delay to be used in the phase-
space reconstruction technique. If the average 
mutual information has no minimum, it is 
recommended[2] to use T such that 
I(T)/I(0)≅1/5. By selecting T using the above 
methods, the values of x(n) and x(n+T) are 
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independent enough of each other to be useful 
as coordinates in time delay vector but not so 
independent as to have no connection with each 
other at all. 

To reconstruct the phase-space one also 
needs to determine the dimension of the phase-
space or so called “embedding dimension”. To 
find the embedding dimension de, the method of 
false nearest neighbours is used in the present 
analysis[5][6]. In this method, first the state 
space is reconstructed in a dimension de, and the 
Euclidian distances between each point and its 
nearest neighbouring points in the reconstructed 
state space are calculated. The distance between 
point y(n) and its rth nearest neighbour, yr(n), is 
calculated from  
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for r = 1, 2,  …, Nb. Then, the process is 
repeated in a space dimension de+1, 
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If yr(n) is a true neighbour, then it arrives at the 
neighbourhood of y(n) in the state space through 
dynamic origins. It is a false neighbour if it 
arrives in the neighbourhood of y(n) because the 
present dimension did not fully unfold the 
attractor, and by increasing the embedding 
dimension to de+1, it is possible to move yr(n) 
out of the neighbourhood of y(n). The y(n) and 
yr(n) are considered neighbours if the distance 
between them stays within a tolerance Rtol when 
the embedding dimension is increased from de 
to de+1. The criterion for designating a 
neighbour to be false is given by Kennel et 
al.[6] as follows: 
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Kennel et al.[6] suggest Rtol  > 10.  Once the 
percentage of false neighbours falls below some 
specified limit, then, the corresponding 
dimension may be chosen as a sufficient 

embedding dimension. Kennel et al.[6] suggest 
the limit to be 1%.  

Figure 2 is presented here to show few 
concepts of the phase-space reconstruction. 
Consider a set of available data, x(n).  Figure 2 
shows the reconstructed phase-space in a 2-D 
space, de = 2. Definition of nearest neighbours is 
presented by showing, for example, the 1st 

neighbour of a typical point y(n). Two points A 
and B in the crossing point seem to be very 
close neighbours in the 2-D space. However, 
these points are false neighbours, and 
reconstructing the phase-space in 3-D separates 
the two points and the distance between them 
increases significantly. 

3.2 Calculation of System Invariants  

After reconstructing the phase-space, one 
should be able to classify the dynamical system 
by finding the invariants of the system. 
Eigenvalues are the invariants for a linearized 
system.  For a nonlinear system Lyapunov 
exponents are the most important invariants. To 
determine the exponents, one may use the 
evolution of the state space vector given 
by[7][8][9] 

))(()( nyFTny =+  (12) 
This is the governing map for the 

reconstructed orbit. Function F is not known in 
algebraic form, but locally it can be estimated 
from the reconstructed space. At each point on 
the orbit y(n), a Taylor series for F(y(n)) is 
made in the vicinity of the orbit, and the Taylor 
coefficients are determined numerically by a 
least square fit to the data.  

Small perturbations to the orbit evolve 
according to the linearized dynamics 

)()()( nynDFTny ∆=+∆   (13) 
where DF (n) is the Jacobian matrix of the map 
F(n) at location y(n) on the orbit. The Jacobian 
matrices can be approximated from the linear 
term of the calculated Taylor series for F(y(n)). 
Once the Jacobian matrix of the mapping 
F(y(n)) for each point in the state space is 
known, one can use the Multiplicative Eergodic 
Theorem of Oseledec to determine the 
Lyapunov exponents of the system[10]. The 
theorem states that if we form Oseledec matrix  
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( )( ) LnDFnDFLnOSL LTL 2
1

)(.)(),( =  (14) 
then the limit of this as L → ∞ exists, and it is 
independent of y(n). Lyapunov exponents are 
simply the logarithm of the eigenvalues of this 
matrix when L → ∞.  DFL(n) is the product of L 
Jacobians matrices,  
DFL(n) = DF(n) . DF(n-1) … DF(1),  
where dots represent matrix multiplication. 
Details of the above procedure can be found in 
the paper by Brown et al.[9].  

After calculating the Jacobian matrix, one 
may adapt the following methodology to 
calculate the linearized modal damping and 
frequencies of the system. Using an exponential 
representation, one can write a space 
perturbation ∆y which will evolve according to 
the expression 

( ) ( ) ( )nytTATny ∆∆=+∆ ][exp   (15) 
where the matrix [A] determines the system 
dynamics. Comparing Equation (15) with 
Equation (13) gives the following: 

( ) ( )nDFtTA =∆][exp  (16) 

The Jacobian matrix depends on location in 
the phase-space and hence the term 

( )tTA ∆][exp obtained numerically will not be 
constant for every state vector in the phase-
space. However, they can be averaged to obtain 
a mean ( )tTA ∆][exp  matrix, and the average 
complex exponents λ1cplx, λ2cplx…..λdecplx. These 
exponents are the eigenvalues of logarithm of 
the averaged matrix divided by T∆t. Knowing 
the complex exponents, the frequency and 
damping values of the system can be obtained 
from the following expressions: 
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3.3 Model Making and Predictions   

Finding instability points, such as flutter 
speed, is desirable in the analysis of aeroelastic 

system. For prediction of such points, first, 
behaviour of the system at airspeeds below the 
critical speed should be analyzed and the 
attractors of the system and their corresponding 
invariants should be identified. Then, the 
following methods could be used to predict the 
system behaviour at higher speeds.  

First method is based on the understanding 
of the fundamental physics of the problem. In 
this method, one develops a set of governing 
equations for the aeroelastic system and then 
compares the output of those equations to 
properties of the reconstructed state space. The 
comparison is to be made in terms of the 
quantities such as Lyapunov exponents. The 
characteristic parameters of the equations could 
be adjusted based on the comparisons. The 
refined model then can be used to predict the 
system behaviour at higher speeds. 

Second method is to extrapolate system 
invariants and to predict possibility of a 
bifurcation point at higher airspeeds. For 
example, assume that the system is stable at 
evaluated speeds. This means the system has a 
stable fixed-point attractor. In this case, 
eigenvalues of the linearized system are 
estimated at these speeds, and they are 
extrapolated to predict stability of the attractor 
at higher speeds. This is same as extrapolation 
of frequency and damping values for calculation 
of linear flutter speed.  For an LCO solution, 
which represents a stable periodic attractor, 
Floquet multipliers are representative of the 
attractor’s stability. Thus, in this case Floquet 
multipliers should be calculated for velocities 
below the critical speed and then extrapolated to 
predict stability of the solutions at higher 
speeds. Amplitude of the LCOs should also be 
extrapolated. In using this method one should 
bare in mind the complexity of dynamics of 
nonlinear aeroelastic systems. It has been shown 
that for such systems more than one stable 
solution and variety of bifurcations may exist 
below the linear flutter speed[1][11]. Stability of 
all possible solutions must be investigated in 
such cases. 
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4 Results  

Flutter analysis of the airfoil-aileron 
combination, containing freeplay nonlinearities, 
shows a wide region of limit cycle oscillations 
for airspeeds below the linear flutter speed. For 
the cases where the aileron centre of gravity is 
aft the aileron hinge moment, chaotic 
oscillations are detected at a considerable range 
of airspeeds.  

The results presented here are for the 
following airfoil, aileron and nonlinearity 
parameters; ξω = 0.2, βω =1.5, µ = 100,  

ah = −0.5, xα = 0.25, rα = 0.5, xβ = 0.002,  
rβ

2
 = 0.002, M0 = 0, αf  = −0.25o, dα = 0.5o,  

H0 = 0, βf  = −0.5o and dβ = 1o. For this airfoil, 
the linear flutter speed is found to be U* = 6.16. 

Figure 3a is a typical bifurcation diagram 
of the pitch response obtained using Houbolt’s 
finite difference method. The figure shows the 
value of α when α′  = 0 (i.e. extremums of the 
steady-state oscillations). The significance of 
such a diagram is as follows: if at a particular 
U/U* the system is stable, then a single point is 
obtained; if the motion is an LCO with one 
frequency, then two points are obtained, e.g. 
U/U*>0.74; and, an LCO with two frequencies 
results in four points, e.g. 0.57<U/U*<0.74; etc. 
A large number of points at some velocities 
indicates aperiodic or possibly chaotic motion, 
e.g. 0.3<U/U*<0.5. Figure 3b shows the 
bifurcation diagram of the aileron motion of the 
same airfoil. Both bifurcation diagrams 
illustrate possibility of chaotic motion for a 
wide range of airspeed.  

If freeplay nonlinearities are considered in 
both pitch and aileron restoring moments, then, 
stronger chaos in wider range of airspeed is 
obtained. Figure 4a and 4b show the bifurcation 
diagrams for this double root nonlinearity case. 

Figures 5a and 6a show a sample steady-
state oscillation of the airfoil in pitch and 
aileron directions. Phase-plane plots of the pitch 
and aileron motion are also presented in Figures 
5b and 6b. Further analysis of the airfoil motion 
in terms of the Power Spectral Densities (PSD), 
Poincaré sections and Lyapunov exponents 
shows that the system behaviour is chaotic in 

this range of airspeed. Samples of pitch and 
aileron PSDs are presented in Figure 7.  

The time history of the airfoil motion bears 
some resemblance to linear system signals 
corrupted with noise. Without recognizing the 
chaotic behaviour of the signal, one may 
inadvertently use linear signal processing 
techniques to calculate the frequency and 
damping values of the flutter modes from the 
recorded time series. This can lead to 
misleading results. In order to describe the 
system behaviour properly, we use the more 
suitable method, explained in the preceding 
section, to extract system parameters from the 
recorded signals. 

Using the nonlinear signal processing 
technique described above, the phase-space can 
be constructed from measurements of α or β 
alone. The time-delay required for phase-space 
reconstruction is obtained using the mutual 
information method. The mutual information 
I(T) for β motion is determined from 
Equation(8) and its variation with time-delay is 
shown in Figure 8. The figure shows that for 
small time delays T < 3, the mutual information 
is rather high. That is, reconstructed phase-
space with such time delays will not be fully 
unfolded because the coordinates x(n) and 
x(n+T) are too much related to each other. In 
other word, not enough time elapsed between 
x(n) and x(n+T) that the systems dynamics fully 
affect x(n+T).  On the other hand, time delay 
should not be so long that x(n) and x(n+T) 
become unrelated. The best time-delay in this 
case for phase-space reconstruction is T = 5 at 
which the first minimum of the I(T) occurs. This 
time-delay is then used in the false neighbours 
method to estimate the minimum required 
embedding dimension. The variation of 
percentage of false neighbours is presented in 
Figure 9 as a function of embedding dimension. 
Based on this, embedding dimension of 4 or 
higher is required to unfold this attractor. 

Figures 10 and 11 show the reconstructed 
phase plane of the chaotic attractor. Compared 
with Figure 5b and 6b, which show the direct 
results of the simulation, it is clear that the basic 
structure of the chaotic attractor have been 
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captured. It should be noticed that the presented 
phase planes are two-dimensional sections from 
six dimensional phase-spaces.  

Using the analysis given above, the 
Lyapunov exponents are also computed. The 
largest exponent is approximately 0.1 for this 
case. The agreement between the Lyapunov 
exponents obtained directly using the equations 
of motion and those obtained from the 
reconstructed phase-space is reasonably good 
for the largest exponent, which is the one that 
indicates whether or not the system is chaotic.  

5 Conclusions 

A 3-DOF airfoil with structural 
nonlinearities in pitch and aileron restoring 
moments exhibits rich dynamics below the 
linear flutter speed. A random-like response 
known as chaos can take place in a wide range 
of airspeed for this system.  The time series of 
such signals bear some resemblance to linear 
system signals corrupted with noise. Without 
recognizing the chaotic behaviour of the signals, 
one may inadvertently use linear signal 
processing techniques to calculate the frequency 
and damping values of the flutter modes. Even 
though most available linear signal processing 
techniques work very well for linear systems, 
they can lead to misleading results for nonlinear 
systems.  More suitable methods based on tools 
developed for nonlinear dynamic systems can 
be used to extract parameters in order to 
describe the system behaviour properly. The 
application of these techniques to aeroelasticity 
is still in its infancy stage. The method outlined 
in this paper is potentially useful to analyse 
nonlinear aeroelastic signals, but further studies 
are necessary to address the issues of noise, 
selection and optimization of the various 
parameters used in the method. 
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Fig.1. (a) Schematic of the three-DOF airfoil (b) 
freeplay in pitch moment; (c) freeplay in aileron 
moment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Schematic reconstructed phase-plane 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Bifurcation diagrams for freeplay in 
pitch; (a) pitch angle, (b) aileron angle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Bifurcation diagrams for freeplay in both 
pitch and aileron; (a) pitch angle, (b) aileron 
angle. 
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Fig.5. (a) Time history of pitch angle α, (b) 
Phase-plane plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6. (a) Time history of aileron angle β,  
(b) Phase-plane plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Sample Power Spectral Densities for the 
same airfoil as Figure 4.  
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Fig.8. Variation of mutual information with 
time-delay for the aileron response 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9. Variation of False Neighbors percentage 
with embedding dimension for the aileron 
response 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10. Reconstructed phase-plane of the pitch 
degree of freedom 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11. Reconstructed phase-plane of the aileron 
degree of freedom 
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