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Abstract
A procedure for coupling fluid and structure is
described, in which the structure is given by a
Finite Elements model, and the fluid is com-
puted with a flow solver for compressible flow.
The tool is applied to the wing model of a
modern transport aircraft, which is equipped
with a small contour modification on the upper
surface for drag reduction in the shock region.
The aeroelastic stability is investigated in
comparison to the original contour shape.
Particular emphasis is laid on a proper map-
ping of the flow quantities into the structure
and vice versa.

1 Introduction
In the run-up to even larger transport-aircraft
built by the European aircraft industry, several
research programs were launched in the past to
develop and to assess adaptive features for
transport-aircraft wings. Among others, the
contour bump in the shock region and the
flexible wing are in the focus of attention The
bump is expected to reduce the drag in the
region of shock/boundary layer interaction, the
flexible wing might reduce weight of the
control structures. In any of these cases, an
investigation was part of the program to which
extend the adaptive measures might affect the
aeroelastic stability.

As  an example of the theoretical approach,
the paper presents the results for a contour

modification (named �bump�) on the upper
surface of an Airbus A340-like wing model,
and describes the method and the numerical
tools which have been applied. The wing
model considered is related to a former
program named AMP (Aeroelastic Model
Program) of the French and the German
aircraft industry together with the respective
research establishments. The AMP wing is the
wind tunnel model of a 1:25 scaled Airbus
A340 wing.

In the test setup, the wing was destabilized
on purpose by a torsion spring, and the flutter

characteristics were measured at fairly low
Mach numbers compared to regular flight
conditions.

An overview over the AMP was given by
Zimmermann, Henke and Schulze [1]. A first
prediction of the flutter behavior was made by
the authors [2] with a bump region covering
large parts of the wing span, resulting in an
exaggerated sensitivity to flutter. The effect of
the bump was investigated theoretically, and in
a series of wind tunnel experiments, e.g. [3].
The basic benefits are the reduction of the

Fig. 1. Contour bump on the wing of a
transport-aircraft.



W. Send & R. Voss

412.2

wave drag over a wide range of the lift and an
additional effect on viscous drag for high lift.
For controlling the contour of the bump
several devices were developed, smart SMA
structures as well as conventional tube-like
circular springs. Most of the work was con-
ducted in a joint Project ADIF (The Adaptive
Wing Project) by Daimler-Chrysler Aero-
space, Daimler-Chrysler Research and the
DLR, the German Aerospace Center. The
application of the results is not expected in the
near future.

2 Fluid and Structure
The flow is computed with a 3D Full Potential
code for steady and unsteady flow [4]. The
code includes a 2D boundary layer correction.
The mesh (Fig. 2) with 150.000 nodes is of
medium size to limit the computing time. A
typical result shows Fig. 3, in which a forced
coupled bending and torsional motion is
shown. The aerodynamic model does not
include a fuselage, which was present in the
wind tunnel model. The presence of the
fuselage effects a slightly steeper increase of

the lift coefficient Lc  over the steady angle of
incidence Sα , as will be seen later on.
The FE model has been constructed with the

Fig. 2. The mesh applied to the AMP wing.
Mesh size: 139 x 35 x 31 nodes.

Fig. 3. AMP Wing. Local Mach numbers for a forced unsteady motion.
Two modes (bending and torsion) for Ma = 0.82, Re = 3,57 106, cA = 0.33.
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ANSYS software. The surface is composed
from the same surface data which generate
also the aerodynamic mesh. This �generating�
surface acts as an interface between the FE
mesh and the aerodynamic mesh, which have
different sizes and orientations of spanwise
sections. Fig. 4 shows the interior of the model
with the upper surface removed. The surface
elements consist of a shell type, which has the
capability to pick up the normal as well as the
tangential forces of the fluid (Fig. 5).

Part Element
[ANSYS]

Number Mass
[kg]

Surface SHELL63 1200 2.689
Ribs, Spars SHELL63 646 3.166
Interiors SOLID73 124 6.178
Subtotal 1970 12.033
Torsion spring SHELL63 250 1.773

Total 2220 13.806

Tab. 1. Selected properties of the FE model.

The simplified finite element model is com-
pletely constructed using aluminum as
material. Tab. 1 lists some of the model�s
properties. The wind tunnel model was slightly
heavier with a total mass of 14.48 kg, included
2.71 kg for the wing root structure with the
torsion spring. The original FE model of the
wind tunnel model was a beam model without
any features for accessing the surface. Thus,
the main purpose of designing a new model
was to apply structural elements on the surface
which allow to pass the fluid quantities
pressure and shear stress to the structure
without additional calculations on the aero-
dynamic side.

3 The Mapping Algorithm

The mapping algorithm provides the proper
exchange of data between the physical
domains, the fluid and the structure. The
following part has been presented already at an
earlier conference [5], however it is not yet
published.

Two independent meshes are involved in
the process of fluid/structure coupling, which
both are derived from the wing shape: The
aerodynamic mesh and the structural mesh. A
mesh is generated from the node grid. The
term grid is used in this paper to name the set
of node points which put up the respective
mesh.

The wing shape is given as a series of
profiles. The JW profile sections with IW
discrete data points xW = (xW, yW, zW) in each
section define the wing shape W .

W
x i j y i j z i j

i I j J
W W W W

W W
=

=
= =
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Any point xS = (xS, yS, zS) on the wing surface
S is given by an appropriate interpolation of
the profile points xW:
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Fig. 5. Element SHELL63 with pressure and shear
stress input for wing skin-paneling.

Fig. 4. Simplified FE model for the AMP wing.

Engine
position

Center of torsion
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u interpolates the profile from the trailing
edge on the lower surface (u=-1), to the
leading edge (u=0) , and back to the trailing
edge on the upper surface (u=1). v ranges from
the wing-root section (v=0) to the tip section
(v=1).

The arrays uW and vW

{ }
{ }

u

v

W i W

W j W

u i I

v j J

= =

= =

; , ...

; , ...

1

1
(2a)

are defined such that
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Fig. 6 shows the discrete points of the wing
shape with the profile sections used for the
simplified AMP model. Equation (2) is used
for creating both the aerodynamic grid and the
structural grid. The number of sections JW,
from which the wing surface xS is built up,
may be much smaller.

The aerodynamic grid on the surface is part
of the global mesh around the whole wing. JA
sections with IA discrete data points xA = (xA,
yA, zA) in each section define the aerodynamic
grid A .

A
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A A A A
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The set of points in Eq. (3) forms the inner

boundary of the CFD grid. Size and spacing
have to meet the numerical requirements for
the flow calculations. The grid is not depicted
here. On the wing surface, it looks very similar
to Fig. 6.

In general, the flow computation needs a
grid with a higher node density compared to
the structural grid, which reflects the
mechanical construction of the wing. The
nodes in Fig.7 are oriented to serve as key data
to the finite element program. They are the
corner points for the wing skin-panels, and - in
the simplified model - for the ribs and spars of
the wing. In both figures, Fig. 6 and Fig.7, the
thickness of the sections is displayed by
adding the vertical component to the spanwise
coordinate. The two noticeable nearby sections
in flow direction enclose the engine pylons.

The node arrangement in Fig.7 is achieved
by setting the number KN of sections, the
number LN of nodes in each section, the
trailing edge position yNS and the angle αNS
included by the respective section and the flow
direction. All sections are assumed to have the
same number of nodes. The geometric
positions xN of the nodes for the structure at
rest are given by

x N
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The parameter arrays uF and vF
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Fig. 6. Shape of the AMP wing with profile sections.
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Fig.7. Nodes of structural grid for the simplified
finite element model.
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uF(k,l), vF(k,l) (4a)
are calculated using Eq. (2). The set N of node
points is given in Eq. (4) and depicted in Fig.7.
Notice has to be taken of the numbering: The
points k=KN run along the trailing edge, the
points k=1 are the first ones on the lower side
of the wing towards the leading edge. The
duplicate nodes k=0 are not passed to the finite
element model.

4 The Posed Problem
Under the influence of the aerodynamic

forces on the surface, the structure deforms
(indexed by D), and the points xN are moved to
a different position xND.

x xN ND

aerodynamic forces

deformation

→

In which way the result of the flow
calculation given for A is mapped onto N will
be described later. The new positions are
returned from the finite element calculation,
which is an analysis for a loaded structure. The
set ND of node coordinates for the deformed
structure

N
x k l y k l z k l

k K l LD
ND ND ND ND

N N
=

=
= =

�
�
�

�
�
�

x [ ( , ), ( , , ), ( , )];
,.., , ,..,0 1

(5)
contains the information about the position

of the wing, which is the only information
available. The knowledge about the position of
the aerodynamic grid A refers to the position at
rest, not to the deformed state. Thus, the
problem to be solved is stated as:
•  Where is the position of the aerodynamic

grid AD attached to the respective set ND?
Formulated in other words, the solution of

the problem is the entire reconstruction of the
data for the original A and AD from the set of
nodes N and ND, respectively. AD denotes the
set deformed points. To distinguish original
and reconstructed sets, the reconstructed ones

are indexed by an asterisk, i.e. A* and A*D.
The accuracy of the reconstructed A* can
easily be checked by comparison with the
original set A, which is known, whereas an
original AD does not exist. The accuracy found
for the reconstructed A* is the measure for the
accuracy to be assumed for the deformed
surface A*D.

Several reasons count for proceeding the
described way for coupling fluid and structure.
As a matter of fact, flow solvers and finite
element programs are separate tools, which are
designed for different purposes and, in general,
are developed by different people. The first
ones compute normal and tangential fluid
forces, pressure and shear stress, around a
given surface, despite the complexity of the
body considered. The latter ones determine the
deformation of a structure under the influence
of an external distributed load on the
structure�s surface.

In which way ever the tools manage to
communicate properly: The fluid imposes the
load, and the structure returns the deformation.
Both sides are coupled to each other by the
dynamic equations, which are either formu-
lated in physical or in modal coordinates.

Besides the logical clarity of this
relationship, the user might wish to apply
various flow solvers or try another FE-model
for the same solver. For a larger structure,
which is composed of several individual sub-
structures, the described method holds true for
one surface of these substructures like
fuselage, wing or engine cowling.

5 Reconstruction Procedure
The procedure uses the two-dimensional B-
spline interpolation routine taken from the
IMSL [6]. The well documented routine
guarantees the proper set up of the algorithm:

dbsnak given m data points in the array
x and the order of the spline kX ,
the routine returns a knot
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sequence s that is appropriate
for interpolation of data on x by
splines of order kX.

dbs2in given two arrays x and y of
dimensions m and n , two node
sequences s and t of order kX
and kY, the routine computes a
two-dimensional tensor-product
B-spline interpolant for the
function array f(x,y), and
returns the tensor-product B-
spline coefficients b.

dbs2dg for a given pair of knot
sequences s and t and the B-
spline coefficients b, the routine
returns the interpolated value of
the function f(x,y) for any x and
y in the range of x and y.

Settings throughout the procedure:
kX = 3, kY = 3 (6)

The reconstruction is an iterative scheme in
which the surface A*D is calculated from the
structural grid ND. In this paper, the scheme is
derived for W* (cf. Fig. 6) obtained from N.
The procedure is the same as for getting A*
from N.

The integer indices k,l in Eq. (4a) identify
the nodes, and the parameter arrays uF(k,l),
vF(k,l) relate the nodes to the surface S.

The arrays are treated now as being
functions of real arguments k and l:

u k l with k K l L
v k l with k K l L

F N N

F N N

( , ) [ , ], [ , ]
( , ) [ , ], [ , ]

⊂ ⊂
⊂ ⊂

0 1
0 1

(7)

Thus, it is obvious that W = {xW} in Eq. (1)
may also be given by some values k*(i,j) and
l*(i,j) such that holds true:

xW
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z k i j l i j
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�

�
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�
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�

=
=

( *( , ), *( , ))
( *( , ), *( , ))
( *( , ), *( , ))

,..,
,..,

1
1

(8)

The numbering i,j in Eq. (8) is identical
with the one in Eq.  (1). The two arrays

{ }
{ }

k

l
N N

N N

k k K

l l L

= =

= =

; , ...

; , ...

0

1

and
(9)

are the data arrays in the B-spline
interpolation, on which the parameter arrays uF
and vF in Eq. (4a) are interpolated. The calls

dbsnak K kN N X( , , , )+1 k s (10a)

dbsnak L kN N Y( , , , )l t (10b)

dbs in K L K
k k

N N N N F N

X Y U

2 1( , , , , ,
, , , , )
+ +k l u

s t b
(10c)

dbs in K L K
k k

N N N N F N

X Y V

2 1( , , , , ,
, , , , )
+ +k l v

s t b
(10d)

return the spline coefficients bU and bV  for the
functions uF(k,l) and vF(k,l). This has to be
done once prior to the iteration. The aim of the
iteration is finding k*(i,j) and l*(i,j) such that

u k i j l i j u

v k i j l i j v i j

i

j

( *( , ), *( , ))

( *( , ), *( , )) ,

− <

− <

ε

ε

and

for all 
(11)

with ε  being a small number.

6 Global Iteration
The global iteration repeats the following local
iterations until the differences in Eq. (11) fall
short of the limit set, or the maximum number
of global iterations is exceeded. At present, the
author has not yet gained much experience
with different configurations. Those which
have been investigated converge very fast
within a few steps. The result for the AMP
wing is given at the end of this paragraph.

7 Local Iteration
The local iteration is done in two stages, in
which both times the procedure steps through
all points of the wing arrays uW and vW . In the
first stage the spanwise positions are estimated
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by applying a local Newton iteration, in the
second stage the circumferential positions are
treated the same way using the previously
calculated spanwise position. The result at the
end of the second stage is subject to the poll in
Eq. (11).

8 Local Iteration: First Stage
The outer loop steps through the profile
sections from the root to the tip, i.e. j=1, ...,JW .
A first guess for l* is

( )l v Lij j N
* = + ⋅ −1 1 . (12)

The inner loop runs in circumferential
direction i=1, ...,IW . The initial guess for k* is

)1(2/1* +⋅+= iNij uKk . (13)

in the first global iteration. In the following
global iterations the value k* is taken from the
previous second stage. For each k* in the inner
loop the l* is iterated to

g

g v k i j l v
j

j j

<

= −

ε with

( *( , ), *)

(14)

with a Newton iteration for

l l g k l g k l ln n j n j n n+ = −1
* * * * * * *( , ) / ( ( , ) / )∂ ∂ . (15)

The iteration ends in the way as the global
does. The routine dbs2dg provides the
interpolated function and its partial deriva-
tives. The call for v reads (without the option
for multiple call):

dbs dg p q k l K L
k k v p q

N N

X Y V F

2 1( , , *, *, , ,
, , , , , ( , ))

+
s t b

(16)

p and q denote the order of the partial
derivatives with respect to k* and l*. The
returned function depends on the choice of p,q.
At the end of the first stage the arrays k*N and
l*N are passed to the next stage as inital values.

9 Local Iteration: Second Stage
Here, the outer loop steps in circumferential
direction i=1, ...,IW , and the inner loop runs
through the profile sections from the root to
the tip, i.e. j=1, ...,JW . k* is iterated to

h
h u k l i j u

i

i i

<
= −

ε with
( *, *( , ))

(17)

with a Newton iteration for

k k h k l h k l kn n i n ji n n+ = −1
* * * * ** * *( , ) / ( ( , ) / )∂ ∂ .

(18)
The call for u reads:

dbs dg p q k l K L
k k u p q

N N

X Y U F

2 1( , , *, *, , ,
, , , , , ( , ))

+
s t b

(19)

Since in each stage only one variable is
used for the fit, the global result for both
variables converges slower than the individual
local iterations do.

10 Result for the Reconstruction
Tab. 2 shows the figures during the recon-
struction W* of the wing shape W in Fig. 6
from the node set N in Fig.7. The maximum

Global
it.

Max. number
local it. for l*

Max. number
local it. for k*

Global
error

1 8 3 0.113
2 8 2 1.22d-03
3 8 2 2.65d-05
4 8 1 6.85d-07
5 8 1 1.83d-08
6 8 1 4.92d-10
7 8 1 9.98d-11

Tab. 2. Figures of iteration procedure for ε = 1d-10.

0.2 0.3 0.4 0.5
Spanwise direction          [m]

0.1

0.2

0.3

0.4

Chordwise direction [m]Chordwise direction [m] Input data (node points)Input data (node points)

Reconstructed dataReconstructed data

Original wing shapeOriginal wing shape

Fig. 8. Reconstruction of W* from the set N of node
points; accuracy is demonstrated by comparison to the

original wing shape W.
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number of local iterations for eqs. (15
(18) are given in the two columns i
middle. The global error refers to Eq
The final result

{ }
{ }

k

l

N ij W W

N ij W W

k i I j J

l i I j J

* *

* *

; , ... , , ...

; , ... , , ...

= = =

= = =

1 1

1 1

and

is used to demonstrate the accuracy of
the reconstruction. Fig. 8 shows the
comparison with the orginal wing shape
for one arbitrary section of Fig. 6, which
is clipped to blow up the details.
•  The result of the reconstruction is a

precise knowledge of the wing shape

Fig. 10. Static coupling of fluid and stru
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Fig. 9. Results for static coupling in compar
tunnel experiments. Lift coefficient vers

incidence.
412.8

) and
n the
. (11).

(20)

from the positions of the node points.
•  The position of the deformed aero-

dynamic mesh is assumed to be
known with the same accuracy.

11 Static Coupling
The results for the static coupling are
compared to wind tunnel experiments.

Unfortunately, the global data are taken from
reports which are non public available. The
data lift versus angle of incidence in
Fig. 9 refer to an experimental model with
fuselage, in which the fuselage could be kept
at rest separately from the wing. The few
green data (FP) are the wing turned without

cture. Stress distribution in the simplified AMP FE model.

1.5 2.0

, Re=2.50 10**6
r, Re=3.57 10**6

ison with wind
us angle of

)( SLc α
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the fuselage. They show the same slope as the
theoretical data. The red dots (W) are the
whole model inclined. The slope is slightly
higher. In general differ the theoretical data
(computed for free stream conditions) from the
wind tunnel data by about 0.7 degree. To each
converged solution belongs the full informa-
tion about the structural data. In Fig. 10 the
stress distribution is shown for Lc = 0.3 and
Ma = 0.82.

12 Coupling for Unsteady Flow
The new FE model was needed for the new

strategy of coupling fluid and structure.
Delicate structures like the contour bump (Fig.
11) require full control of the coupling process
between the aerodynamic mesh and the
structural mesh.

 The stability analysis can be carried out
with various sets of natural modes, which is
time consuming even on the newest powerful
computers. The modes are computed in the FE
model. The mode shapes are mapped into the
surface of the CFD code. The minimum set is
a model with N=2 degrees of freedom. The
reduction leads to a mass matrix M and a
stiffness matrix K of the desired order N. The
first two modes are the ones which couple in
the flutter experiment. The selected modes are
expanded again (depending on how the model
has been reduced), and the respective mode
shapes provide the information needed for the
CFD analysis. The CFD code delivers the fluid
force f at any time step.

The system of N differential equations

),( tq,qfKqqM ��� −=+ (21)

is reduced to a first order system of 2N
equations. The q are the generalized coordi-
nates for the individual mode shapes, one
function q(t) for each mode.  The system is
solved by the documented IMSL routine
divpag. The routine offers two classes of

Fig. 11. The contour modification by a �bump�
on the upper side of the wing.
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Fig. 12. Integration in the time domain with the first
two modes �First Bending� and �Rigid Torsion�.



W. Send & R. Voss

412.10

implicit linear multistep methods: The Adams-
Moulton method or Gear�s backward differen-
tiation formulas. The process of stepping back
in time is carefully watched, and the flow
history is monitored. However to the authors�
experience, the proper integration of the
structural part, regarding reliable phase
relations among the DOFs, requires the small
time steps needed in the integration process,
rather than the physics of the flow field.

Fig. 12 shows a typical result. Compared to
the configuration without bump, the bump
causes a slight destabilization, which does not
affect seriously the aeroelastic stability.

In an earlier paper, the authors had
published results with more dramatic changes
in the stability limits. The results were based
on a similar 2-DOFs model like the one shown
here. However, at that time neither the con-
verged solution of the distorted wing had been
included, nor the modes of  a real structure
were used. Instead, the two modes had been
rigid modes for the plunge as well as for pitch.

The findings are confirmed by experimental
investigations with 2D profiles, where varia-
tions of the flutter boundary are within the
scattering of the results by other flow pheno-
mena like forced and free transition.
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