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Abstract

In order to obtain a mathematical model of two-
dimensional buffet carried out in a wind tunnel, a
Van der Pol oscillator has been enhanced with a
transfer function identified from measurements.
Using a peculiar control engineering technique, the
above model has been used to define a control law
aiming to suppress the buffet observed on an airfoil
in a wind tunnel. The effects of this law proved to
conform to the theory, thus validating the principles
of this new type of modelling and design. The same
method has been applied to the compressors surge,
where measurements are simulated from the Greitzer
equations ; the first results are very encouraging.

Nomenclature

u(t) input of the oscillator ;
E(t) input of the complete system ;
f(y) non-linear function in the oscillator ;
G(s) linear control transfer function ;
L(s) linear transfer function in the oscillator ;
N(y0) harmonic gain of f(s) for y = y0 sinωt ;
s Laplace variable ; symbol of derivation

with respect to time ;
R(ω), I(ω) real and imaginary parts of [L(jω)]-1 ;
y(t) output of the oscillator ;
Y(t) output of the complete system ;
z, k, ωn coefficients of the Van der Pol oscillator ;
t time ;
T symbol of derivation with respect to ω ;
U feedback control variable ;
Φ(s) linear transfer function of the equivalent

oscillator when control is applied ;

ϕ phase of y(t) ;
ω frequency (rad/sec). ;
Γ, Ψ mass flow and pressure variables in

the compressor Greitzer model ;
ξ nondimensional time

in the Greitzer model ;
α, β, γt

Ψc0, Η, W
coefficients in the Greitzer model ;
coefficients in the Greitzer model.

Subscripts :

A, B type of the oscillator ;
n for the natural self-sustained oscillation ;
0 for equilibrium of sinusoidal regime ;
s for the synchronisation threshold.

1 Introduction

    In the absence of precise explanations and of ma-
thematical equations from physics laws to describe
some oscillatory phenomenons, it seemed useful to
find a mathematical model which could reproduce the
observations obtained in the experiments and which
could then be used, away from the experiment site, as
a tool in the research of control laws. The second
order Van der Pol oscillator is one of the most
widely-studied models in existence. It is particularly
flexible, as all intervening parameters can be standar-
dised. Nevertheless it has to be enhanced with trans-
fer functions upstream and downstream, allowing the
effects observed to be reproduced and a reliable
mathematical model thus to be identified.
    For a best understanding of our original control
law synthesis, we present a general description of
systems where self-oscillations appear and their
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general mathematical modelling using the Van der
Pol oscillator. The 2D buffet phenomenon is then
described, as well as the test installation, the model
and the actuator used in a wind tunnel. The found
control law and the experimental results are then pre-
sented as well as an other possible application to
compressor surge.

2 A theory of oscillators

2.1 Forced oscillation

    Let us consider the system of figure 1. It corres-
ponds to the equation

[ ] tsinu)y(fy)s(L 0
1 ω=+− . (1)

u = u0 sin ωt

N.L.

-

+ y
L(s)

f(y)

Fig. 1.  A  diagram describing oscillators.

It is assumed that the linear transfer function L(s)
efficiently filters the harmonics above the funda-
mental ω, thus allowing them to be ignored. We thus
have, in established sinusoidal regime,

y(t) = y0 sin(ωt + ϕ) (2)
with
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where N(y0) is the equivalent harmonic gain of the
non-linearity f(y) ; it is supposed not to depend of ω.
In the complex plane, -1/N(y0) is sometimes called
the "critical plot". Let us write y and f[y(t)]) as

y(t) = y0 sin(ωt + ϕ) = V sin ωt + W cos ωt            (4)

f[(y(t)] = q1(V,W) sin ωt + q2(V,W) cos ωt

It is shown in references [1-2] that the identification
of the coefficients of sin(ωt) and cos(ωt) in the two
sides of (1) leads to
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The forced sinusoidal equilibrium (V0,W0) is
obtained by the operation s = 0 in (5), i.e.
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Let us consider small perturbations (dV, dW) around
(V0,W0). We have the linear system
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The stability of the forced oscillation (V0,W0)
depends on the roots of the characteristic polynomial
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obtained by expanding the matrix eTsu into series. The
main coefficients are found to be
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For stability the Routh-Hurwitz criterion must be ap-
plied to the αi coefficients. The highest degree coeffi-
cient being positive, a necessary condition is that all
the αi must be positive too ; but with the approxi-
mation of slowly varying parameters, we keep only
the two first of these conditions. It is shown in [1]
that the required inequality α0 > 0 is equivalent to
(dy0/dω) < 0, i.e. it excludes the solutions between
two vertical tangent points of the curve y0(ω) plotted
for a constant amplitude u0. This explains the ampli-
tude jumps of y(t) observed when proceeding at
increasing or decreasing frequency. The condition
α1 > 0 means a synchronisation threshold for u0 ; it
will be studied later with the Van der Pol oscillator.

2.2 Self-sustained oscillations

    If the system is the site of a self-sustained oscilla-
tion when u0 = 0, (3) gives
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Thus a necessary condition required for self-sus-
tained oscillation to exist mathematically is that there
is an intersection of the Nyquist plot L(jω) with the
critical plot -1/N(y0) in the complex plane. Let ωn and
s0n be the corresponding frequency and amplitude. In
the phase plane (dy/dt , y) self-sustained oscillations
correspond to stable limit-cycles (see the references
[1-9]). The oscillation really exists provided that it is
stable. It can be shown that for self-sustained oscilla-
tion we have α0 = 0 and that the remaining stability
condition α1 > 0 means : when examining the Nyquist
plot of L(s) in the direction of the increasing frequen-
cies, on the left is the direction of the increasing y0 on
the critical plot -1/N(y0) at their intersection. This is
a known stability criterion for non linear systems.
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Fig. 2. Nyquist plot and non-linear critical plot for
A- and B-type oscillators.

See figure 2. In this way, two types of oscillators are
encountered : type A when harmonic equivalent gain
N(y0) is a decreasing function of  y0, and type B when
it is an increasing function of  y0. One example of
type A is the stable transfer function
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associated to f(y) = k sign(y) whose the harmonic
gain is NA(y0) = 4k/(πy0). The critical plot is on the
negative real axis. A stable ωn auto-oscillation thus
exists This type of oscillation is seen in systems
including saturations.

One example of type B is the unstable linear part
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associated to the cubic function f(y) = ky3  whose the
harmonic gain is
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The critical plot -1/NB(y0) is once again on the real

negative axis. The stable ωn self-sustained oscillation
has the amplitude
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This oscillator is known as a "Van der Pol" oscillator.
For the cubic non-linearity we have

   sin3ωt = 0.75 sin(ωt) - 0.25 sin(3ωt)

The third harmonic is three times smaller than the
first. It is attenuated even more by the linear filter
L(s) and this reinforces the first harmonic approxi-
mation on which everything we have said so far is
based.

2.3 The Van der Pol oscillator

    The above B-type oscillator is used to describe
numerous natural phenomena. It is equivalent to the
well known Van der Pol equation

   tcosuyky3yyz2y 0
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Carrying (4) into (14) we find the ω sinusoidal
regime
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    The self-sustained oscillation corresponds to σ = 0,
A2 = 0 and ρ = 1. In figure 3 the curves ρ(σ) are
plotted for different values of A2. The conditions of
stability α0 > 0 and α1 > 0 given by the above method
can be written respectively

(3ρ−1) (ρ −1) + σ2 > 0 (19)

ρ > 0.5 . (20)
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Fig. 3. Van der Pol oscillator :  ρ vs σ  and A2.

    The ellipse (3ρ - 1)(ρ - 1) + σ2 = 0 is the locus of
the points with vertical tangents of the curves ρ(σ)
for all the A2. (19) means a saddle instability inside
this �jump� ellipse. (20) corresponds to unstable
focus that are due to a residual ωn self-oscillation ;
such a focus is a stable ωn limit cycle in the (V,W)
plane. For details about the kinds of instability, see
references  [5-10]. Clearly, since ρ is an increasing
function of A2 outside the ellipse, (20) expresses the
existence of a threshold for A2 (and thus for u0)
below which the ω forced oscillation cannot appear
alone, its amplitude and frequency remaining con-
fused by the residual ωn self-oscillation. Above this
threshold, the ωn frequency is muffled and only the ω
frequency remains. The synchronisation threshold e0s

is obtained by carrying  ρ = 0.5 into (15) and (17) :
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    Inside the jump ellipse, approximately for σ < 0.5,
the forced oscillation is unstable, and the calculation
of the synchronisation threshold has to be made using
the new boundary of stability, i.e. the upper part of
the ellipse ; when ω is near from ωn , we find

    nn0s0 y2u ω−ω= .  (22)

For the self-oscillation frequency (ω = ωn) the syn-
chronisation threshold is obviously zero.

2.4 Mathematical modelling of experimental
results

F1(s) Van der Pol oscillator :
z, k, ωn

 E = E0 sin(ω t) y Yu
F2(s)

Fig. 4. General mathematical model.

   See figure 4. To find a mathematical model of mea-
sured oscillations, let us consider a Van der Pol oscil-
lator equipped with the linear transfer functions F1(s)
and F2(s), upstream and downstream. These func-
tions, as well as the parameters ωn, z and k of the
oscillator, have to be identified together so that the
amplitude and the phase of Y(t) coincide as well as
possible with measurements corresponding to same
inputs E = E0 sinωt. The natural frequency ωn is
known.  For given E0, z, ω, and F1(s) we have

)j(FEu 100 ω=  ; then (17) gives A2, (15) gives ρ,
(16) gives y0 ; at last the complex gain of the oscilla-
tor is computed  by (3) :
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Let Ymessin(ωt + ϕmes) be the first harmonic of the
measured signal Y(t). From the complex identity
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arg[F2(jω)] = ϕmes � arg[H(y0,jω)] � arg[F1(jω) (25)

The identification of F1(s) is mainly concerned with
the adjustment of the synchronisation thres-
hold. When F2(s) is found from (24) and (25), the
relations Y0n= n0n2 y)j(F ω  and (13) give the new
value z/k :
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So we do again all the previous calculations until the
convergence of z/k. The mathematical model is then
a good image of the experimental reality, and it can
be used now, more easily than costly experiments, to
elaborate an active control law.
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3 Synthesis of a control law

   With no input (E = 0), the system is the site of a
self-oscillation which we aim to suppress with a
negative feedback transfer function G(s) like in figure
5-a. For a sinusoidal regime the complex gain is now
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It is easy to see that the system in figure 5-b is the
same that in figure 5-a ; clearly it is a new oscillator
like  in figure 4 and it happens that it is no longer
L(s) which is now with the negative feedback f(y),
but the new transfer function Φ(s).

L(s)

f(y)

F2(s)

G(s)

- -

(E = 0) y Yu

a)

F1(s)

Φ(s)

f(y)

F2(s)
-

(E = 0) y Y

b)

F1(s)

Fig. 5. a) System looped in feedback by a control
transfer function G(s).   b) Equivalent system.

    To muffle the oscillation, G(s) has to be chosen so
that the new equivalent system can be made to be no
longer a B-type oscillator as defined earlier. Thus
G(s) will be such that the Nyquist plot of Φ(s) shall
never cut the negative part of the real axis on which
the non-linear critical plot -1/N(y0) is situated. In
other words, the phase of Φ(jω) must never be equal
to π, whatever the frequency. A sufficient condition
for the phase of a transfer function never to equal π is
that this function be stable (i.e. no root of the deno-
minator should have positive real part) and that its
relative degree does not exceed 2. Taking into
account the difference of degrees, we have the follo-
wing fundamental result : if the linear transfer func-
tion Φ(s) is stable, then the self-sustained oscillation
cannot exist. (27) shows that Φ(s) is equivalent to

L(s) looped in feedback by G(s)F1(s)F2(s) ; so, for
Φ(s) to be stable, it is known that the Nichols plot of
G(s)L(s)F1(s)F2(s) (gain vs phase) must leave the
critical point (± 180°, 0 db) to the right when it is fol-
lowed in the direction of the increasing frequencies
(see reference [9]). When there are unknown parasite
gains and phases, due to error parameters or measure-
ments, gain and phase margins must be large enough
so that the critical point remains on the right side.
Moreover we will impose all the roots of the denomi-
nator of G(s) to have negative real part (this stability
is not essential, but it is better for safety). We impose
also the difference of degree between the denomi-
nator and the numerator to be greater or equal to zero,
so that the transfer G(s) is physically possible.

4 Application to buffet

In transonic flow conditions, the shock wave/
turbulent boundary layer interaction and flow sepa-
rations, which induce flow instabilities, �buffet�, and
then structure vibrations, �buffeting�, can have an
important influence on the behavior of an aircraft.
The �buffet� appears at high lift coefficient when the
Mach number or the angle of attack increases. This
phenomenon limits the flight envelope. The objec-
tives of our active control are to decrease the aerody-
namic instabilities due to this type of flow. The used
system is a new moving part located at the trailing
edge of the wing, the �Trailing Edge Deflector�,
designed at ONERA. For more details about the test
installation, see the appendix and the references
[10-13]

4.1 Identification of the mathematical model

   For identification we have used 15 available tests in
forced sinusoidal regime with frequencies of 60, 70,
80, 90 and 100 Hz and with E0 amplitudes of 2.5, 5
and 10 degres (fig. 4). Whatever the frequency, the
synchronisation threshold is always within the 2.5 to
5 range. Below this threshold, beatings are observed
with both ωn and ω frequencies (figure 6).
   We also have free tests (E0 = 0) for which the
system is self-oscillating at the natural frequency 80
Hz as it is shown on figure 10. It is this oscillation
(i.e. the buffet) which we aim to eliminate here.
   The identification of F1(s) is mainly concerned with
the adjustment of the synchronisation threshold, but it
is convenient here to choose F1(s) = 1 since a small

U
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error only is made here on the synchronisation thres-
hold. Moreover we hope that this error will later be
absorbed by sufficient stability margins when the
control is developed further. Using a suitable pro-
gram, the relations (24) and (25) allows then to
identify F2(s) :

.
1026.9s1009.1s1020.5s

1075.6s1029.3s1035.7s1045.1)s(F 86233

862231

2 +++
−+−=

The roots of the denominator have negative real part
since we identify an obviously stable system. The
figure 7 gives the gain and the phase of F2(jω) vs ω
as well as  the experimental points deduced from (24)
and (25) for E0 = 5 and E0 = 10 (the value 2.5 is
excluded because it is under the synchronised thres-
hold). These two families does not coincide exactly ;
it would be possible to choose better functions f(y)
and L(s) in order to minimise this difference. Never-
theless the result is fairly satisfactory.
    The value of ωn/2π is obviously the frequency of
the free oscillation (= 80 Hz). The measured ampli-
tude is  Y0n = 0.023. The parameter z/k, determined
from (25), is z/k = 5 10 �7. For E0 < E0s, a good
coincidence of Y(t) with measurements is found with
z = 0.027 and k = 54000. The theoretical and experi-
mental synchronisation thresholds are shown on
figure 8 ; their coincidence is excellent too.

Fig. 6. E0 =2.5 and 2π/ω = 70 Hz : beatings observed
and simulated with the Van der Pol oscillator.
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Fig. 7. Identification of the F2(s) frequency response

Fig. 8. Synchronisation threshold.

4.2 Control laws

    Using a suitable algorithm, a lot of G(s) functions
have been found which take into account the previous
constraints. The two below are particularly efficient :

0.04
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identified Van der  Pol  treshold
corresponding to ρ = 0.5

identified Van der Pol
treshold corresponding
to the upper part
of the ellipse

frequency Hz

experimental points

z = 0.027
z/k = 5 10-7
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To figure 9-a we give the Nichols plot of
L(s)G1(s)F2(s) and a time simulation. The time simu-
lation shows the instability of the Van der Pol oscilla-
tor at zero (due to the negative damping of its linear
part), followed by the appearance of self-sustained
oscillation ; this oscillation means an overall stability
due to the positive damping caused by the non-linea-
rity at high amplitudes. The control U = G1Y is
applied at time 0.7 second ; the self-sustained oscilla-
tion is then immediately and spectacularly muffled.

2) )/2T(e95)s(G nn
sT2.0

2
n ωπ== −

This pure delay control has been found experi-
mentally on the wind tunnel. By its Padé approxima-
tion, we can verify that it is equivalent to a rational
fraction respecting the imposed constraints. The same
results as above are given in figure 9-b. Figure 10
shows the experimental self-sustained oscillation
before application of control, and the residue measu-
red afterwards ; the frequency analysis of these two
signals is also shown, as well as the control time si-
gnal. These experiment results are close to those pre-
dicted by the theory.
    As seen in figure 9-a, the G1(s) phase margin is
φ = 65° and corresponds to Fm = 95 Hz ; for G2(s) we
have 90° and 125 Hz. In both cases, the maximum
time delay φ/(360 Fm) is found to be about 1.8 10-3

second ; this is very large in comparison of the
measurements sampling rate and is thus quite
satisfactory for safety.
    The mathematical model is a convenient assembly
of two parts, the oscillator and the identified transfer
function F2(s). It is not possible to consider any inter-
nal disturbance which may occur, without greater
study of the physical reality of this model. For input
and output sinusoidal disturbances, i.e. added in the
closed loop of the figure 5-a just before F1(s) and just
after F2(s), the figure 11 give the gains of the system
with feedback controls G1(s), G2(s) and G(s) = 0. It
can be seen that the gain around the resonance is the
best with the function G1(s). This is quite normal
since the relative degree of G1(s) is 2, which guaran-
tees a filtering that does not exist with the pure delay
G2(s), whose gain, always equal to 95, is independent
of the frequency.

Y

time (s) time (s)

db

U

G1(p G2(p

Fig. 9. Nichols plot of L(s)Gi(s)F2(s), output and
control signals.

a)

b)

c)

time (s)

frequency (Hz)

Fig. 10 - Measured signals :  a) Output without con-
trol.  b) Output  with control G2(s).  c) Control signal.
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output disturbance
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from 0.02 to 0.07

2

G = 0

frequency (Hz)

Y0/D0

input disturbance
amplitude D0  increasing
from 2 to 12 degrees

G = 0

Y0/D0

Fig. 11. Closed loop gain  for disturbances D0 sin ωt.

5 Application to compressor surge

    We do not have experimental measurements of an
axial flow compressor surge. Thus we use the
Greitzer equations to simulate the measurements :
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Ψc(Γ) is the compressor characteristic, ΓT(Ψ) the
throttle characteristic. For a complete analysis of
these equations, and for others synthesis of control
laws, see references [14-17]. When E = 0 and for
convenient numerical values of the Greitzer model
coefficients, self-oscillations (surge) appear. Nume-
rous simulations of forced oscillations (E = E0 sin ωt)
are used instead true measurements to identify an
equivalent Van der Pol model like it was done pre-
viously with buffet. The same theory has been
applied and an efficient control function G(s) has
been found to suppress the surge. This success is
quite normal since the Greitzer model is close to a
Van der Pol oscillator (it is an exact one for γt = 0). In
order to have a zero control signal at the equilibrium,
the control law has been enhanced here with the
following auto-adaptation :

[ ] )s(U
)s1(s

k)s(,)s()s()s(G)s(U
τ+

=ΓΓ−Γ= .

Ψ

Γ

U

Γ

Fig. 12. Control of a compressor surge. The control
is applied at time 100.
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6 Conclusions

    This paper has presented an original method for
finding active control laws aiming to suppress self-
oscillations encountered in engineering. The success
on the 2D aerodynamic buffet, as well as the first
results on the control of compressor surge, opens an
interesting range of applications for this theoretical
study.

APPENDIX

Aerodynamic studies on stiff 2D airfoil, conduc-
ted by ONERA, were performed to analyze the effect
of the control system on the instabilities. See the refe-
rences [10-13] for a complete description.
    Tests were carried out in the T2 wind tunnel of
ONERA Toulouse. T2 is a transonic, pressurized and
cryogenic wind tunnel with closed circuit. The
ONERA OAT15A airfoil was chosen with the
�Trailing Edge Deflector� actuator (fig. 13). The 200
mm wing chord is equipped with 60 steady and 19
unsteady pressure transducers. The boundary layer
transition is fixed at 7% of chord on upper and lower
sides of the model. The tests were performed at
ambient temperature with a chord Reynolds number
of 4,5 millions and free stream Mach numbers bet-
ween 0.72 and 0.78. The unsteady measurements
were carried out simultaneously at a sampling rate of
15000 points per second and with a filtered signal of
5000 Hertz. The model structure was not subject to
vibration. It was rigid and fixed to the test section
walls.

The buffet onset can easily be detected by the
pressure fluctuations levels measured on the upper
side of the model, at the shock position or between
the shock and the trailing edge. During buffet condi-
tions, the measured signals are nearly periodical (fig.
10). The frequency, around 80 Hertz for this airfoil,
depends on the model chord and on free stream flow
conditions. The instantaneous position of the shock is
deducted from the pressure measurements of the very
closing transducers.

The deflector can be driven by dynamic move-
ments around a static position. Various deflector mo-
tions in open loop (sinusoids, steps, phase shifts, etc.)
were tested to try to understand the unsteady aerody-
namic effect of the deflector with and without natural

buffet. Only transients realized with induced phase
shifts (deflector angle/shock position) resulted in a
short stabilization of the unsteady flow. In open loop
with sine-shaped signals of deflector motions, the
oscillation of the shock tends to become dependant
on the deflector movement for some frequencies and
amplitude. The oscillation of the shock becomes
stronger and takes its movement frequency from the
deflector. For flow conditions without natural buffet,
it causes oscillations of the shock position for each
amplitudes and frequencies. For flow conditions with
natural buffet, it causes influenced buffet for certain
amplitudes and frequencies of its motion. An influen-
ced field and a synchronization threshold exist and
depends on the natural buffet level and on the ampli-
tudes and frequencies of the deflector motion (fig. 8).
The buffet is dependent on the deflector motion. It is
a very important result for dynamic control. An other
important result for control is that the increase or the
decrease of the deflector angle modifies the shock
position. The shock position goes downstream with
an increase of the deflector angle and vice versa.
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Fig. 13. a) The Trailing Edge Deflector.
         b) The OAT15A airfoil and the instrumentation.
         c) OAT15A model in T2 wind tunnel.
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The open loop tests have shown that, for
frequencies of the deflector motion near to buffet
frequency, the deflector has a big influence in fre-
quency, amplitude and phase on the shock position
movement and on separation flow level. Buffet could
only be stabilized with a closed loop approach, based
on the unsteady measurements of the distribution of
static pressure on the airfoil section. The idea is to
move the deflector against the natural movement of
the shock position. When the shock position wants to
go upstream, the deflector angle is increased and vice
versa. With the increase of the angle of attack for
example, the shock goes downstream. Just at the
buffet onset, it wants to go upstream ; it is the begin-
ning of the shock position movement, the beginning
of the buffet. The deflector angle is increased to force
the shock to go downstream and vice versa. A control
law has been found experimentally ; it agrees with
the theoretical result of this study.
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