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Abstract  
Full-scale aircraft structural fatigue tests are 
extremely complex from a control systems 
viewpoint.  There are usually a large number of 
actuators with significant interactions between 
them.  Control is made more difficult because 
the tests are run in load control and the load 
cells usually move with the actuators.  A linear 
state space model of a single channel structural 
test was previously developed and 
experimentally verified as an aid to better 
understand these tests. 

This paper presents an expansion of the 
model to a multi-channel configuration.  A 
model of a cantilever beam with two actuators 
is developed as an example and the frequency 
response of the system presented.  The features 
of the responses are discussed and related to the 
physical system.  The implementation of the 
state space models within a simulation package 
with a graphical user interface is also 
described.  This makes the models more useful 
to test engineers. 

1  Introduction 
Full-scale aircraft structural tests are extremely 
complex from a control systems viewpoint.  
There are usually a large number of actuators 
and the response of any one actuator depends on 
the control parameters, the actuator dimensions, 
the servo-valve characteristics, the other 
actuators, the structure and the loading 
attachments and reaction fixtures.  The situation 
is further complicated because these tests are 
run in load control and it is usually necessary to 
attach the load cells to the moving actuator rod 
rather than fixing them to the reaction structure 

as in load frame applications.  The feedback 
disturbances caused by the moving load cell 
significantly reduce the allowable gain that can 
be used and make test control more difficult [1]. 

There are also pressures on the test 
engineer to both set up and complete the test 
more quickly, in spite of the increasing 
complexity of the test spectra and loading 
systems.  Thus the need has arisen for tools to 
help the test engineer better understand the test 
system and be able to predict the influences of 
various changes that he can make during the test 
design phase. 

Some earlier work [2] documented the 
development and experimental verification of a 
linear state space model of a single channel 
structural test.  It was shown to be sufficiently 
accurate to allow a greater understanding of 
these systems and predict the relative stability of 
different systems.  This paper presents the 
expansion of the model to a multi-channel 
configuration using modal analysis concepts.  A 
simple example of a cantilever beam is 
developed and example frequency responses are 
presented and discussed. 

For the modeling to be useful to test 
engineers, it must be possible to build system 
models without a detailed knowledge of the 
state space equations of the subsystems.  The 
incorporation of the state space equations within 
a simulation package that provides a graphical 
user interface for building models as block 
diagrams is discussed. 

2  Structural Test System Model 
The structural test system model developed in 
[2] consisted of individual linear state space 
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models of a servo-valve, an actuator and a 
simple structure.  These were then combined 
together, as shown in Figure 1, using standard 
analysis tools to form a single state space 
system.  The structure in this case consisted of a 
spring, mass and damper. 
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Fig. 1. Model of single actuator test system. 

It was noted in [2] that expansion to a 
multi-channel configuration simply required the 
state space modeling of the more complex 
structure. 

3  State Space Model of Generalized 
Structure 
Rather than attempting to build the more 
complex structure in terms of additional springs 
and masses, it is more appropriate to make use 
of dynamic finite element models that often 
exist for the test structure, particularly for 
aircraft structural tests.  In addition, solution 
techniques are simpler if the model can be 
formulated in terms of independent differential 
equations.  Thus the generalized structure is 
modeled using modal analysis concepts. 

3.1 Modal Analysis Concepts 
The underlying assumption used in modal 
analysis is that the structural response of any 
system can be considered as a linear 
combination of the response to each natural 
mode.  Thus if all the mode shapes of a structure 
are known, together with the proportion of each 
mode in response to a forcing function, the 
combined shape or displacements can be 
determined.  The mode shapes and natural 
frequencies can be determined either 
analytically or experimentally.  Determination 
of the proportions of the different modes for a 
given forcing function can be achieved by use 
of the modal transformation matrix.  This allows 

the equations of motion of the system to be 
separated into a series of independent 
differential equations, one for every natural 
mode of the structure.  Then the forcing 
function can be transformed to provide the 
forcing function for every mode, the solutions 
obtained for each mode independently and then 
the total response calculated by combining the 
contributions from each mode. 

3.2 Generalized Structure  
A general structure can be described in terms of 
modal forces, N, and modal coordinates, �, by 
the equations [3] 

Ni i i i i i i� � ��� �� � � � � �2 2   (1) 

where �i is the natural frequency and �i is the 
structural damping for mode i. 

To make use of this modal representation, 
two transformations are required, one to 
transform the applied forces, F, into modal 
forces and another to turn the modal 
displacements back into standard displacements, 
y.  These can be written [3] 

N U F
y U

Tm r m r
m r m r

�

� �

  (2) 

where [U] is the modal transformation matrix 
and can be obtained from the mass normalized 
modal vectors, typically obtained from a 
dynamic finite element analysis.  The 
transformation matrix is only required for 
locations of interest (i.e. actuator locations) and 
for modes of interest. 

3.3 State Space Representation 
Assuming that the modal displacements are the 
only required outputs, equation (1) can be 
written in state space form as 

�� �

�

{ } m r m r
m r m r m r

� �

� �

A B N

C D N�

  (3) 

where, for 3 modes, for example 
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and the state space matrices, A, B, C, and D are 
defined in [4].   

Applying the transformations of equation 
(2), the system can be described in terms of 
applied forces and displacements directly as 

�H A H B U F

y U C H D U F

T

T

{ } m r m r
m r m r m r

� �

� �

 (5) 

The structure can thus be treated in the 
same manner as in [2]. 

4  Single Actuator Cantilever Beam System 

4.1 Cantilever Beam 
The natural frequencies and mass normalized 
displacements of a cantilever beam can be 
obtained analytically.  It is therefore a simple 
matter to derive the state space matrices for a 
cantilever beam with actuators at defined 
locations as shown in [4]. 

4.2 System Model 
The model for a single actuator cantilever beam 
test system is developed by combining the 
cantilever beam model with the valve and 
actuator models to form a simple closed loop 
system as in the block diagram of Figure 1.  
This is identical to the single actuator system of 
[2].  A single state space system can then be 
obtained and analyzed using standard software 
tools, e.g. [5,6]. 

4.3 Model Parameters 
The parameters for the valve and actuator 
models were for the 9.5 l/min valve and 35 cm 
stroke, 25 kN actuator of Reference 2.  The 
cantilever beam parameters were defined so that 
the beam stiffness at the free end was the same 

as for the spring of Reference 2 and the first 
natural frequency was the same as for the 
spring/mass structure.  The first four natural 
frequencies for the beam were about 27, 170, 
476 and 930 Hz.  The natural frequency of each 
actuator, considered as a mass on the oil column 
spring, was 154 Hz. 

4.3 Frequency Response 
Figure 2 shows the predicted response for the 
system of Reference 2 without including the 
effects of the digital controller, together with the 
equivalent response for the cantilever beam with 
a single actuator at the tip. 
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Fig. 2. Comparison of Bode plots for spring/mass system 

and equivalent cantilever beam system. 

The zero is at the same frequency since the 
structure appears the same to the actuator 
system.  However, the pole is reduced in both 
magnitude and frequency because this is 
primarily a function of the natural frequency of 
the complete system (structure plus actuator 
system) and this will be affected by the 
distributed mass of the beam.  There are 
additional zeros at the other natural frequencies 
of the beam.  These are shown more clearly in 
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Figure 3, which is for the same system but with 
lower structural damping.  Three additional 
poles can be observed in this figure, which are 
related to the additional natural frequencies of 
the total system and relate to resonance of the 
total system. 
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Fig. 3. Bode plot for cantilever beam system with reduced 

damping. 

5  Two-Actuator Cantilever Beam Test 
System 

5.1 Model 
The model for a multi-actuator test system is 
developed in a similar manner to the single 
actuator system as shown in Figure 4.   
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Fig. 4. Model of two-actuator beam test system. 

The blocks are grouped together and 
reduced to a single state space system using 
standard software analysis tools. 

5.2 Model Parameters 
The cantilever beam parameters were defined as 
above but with actuators at both the tip and mid 
span.  The damping was maintained at 0.02 so 
that the various poles and zeros were clearer.  
The parameters for the two actuators and valves 
were the same as used for the single actuator.  

5.3 Frequency Response 
Figure 5 shows the response at the tip and mid 
span to an input at the tip, while Figure 6 shows 
the responses due to an input at the mid span. 
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Fig. 5. Bode plot for two-actuator cantilever beam system 

with an input to the tip. 

For an input to the tip, the response at the 
tip is very similar to the single actuator case 
shown in Figure 3, although the presence of the 
mid span actuator clearly adds significant 
damping as the zero is much flatter.  Since the 
mid span actuator is controlling at zero load, the 
tip actuator effectively sees simply the beam on 



 

332.5 

MODELING OF FULL-SCALE AIRCRAFT STRUCTURAL TESTS

its own and so the frequencies of the zeros are 
simply the natural frequencies of the beam.   
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Fig. 6. Bode plot for two-actuator cantilever beam system 

with an input to the mid span. 
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Fig. 7. Bode plot for an input to the tip with decreased 

mid span gain. 

However, if the gain on the mid span 
actuator channel is reduced, the mid span 
actuator adds stiffness to the system that the tip 
actuator sees and the frequency of the zero 
associated with the first natural frequency is 
increased as shown in Figure 7.  There are no 
observable differences at the other zeros as 
these natural frequencies are not altered much 
by the addition of the mid span actuator. 

It is interesting to note that the decrease in 
gain on the mid span actuator channel increases 
the magnitude of the first pole of the tip 
channel.  This illustrates one of the difficulties 
in tuning a multi-channel test of this type since 
changing the gain on one channel can result in a 
change in stability on another.  The cross 
coupling effects are also evident in Figure 7 
which shows the relatively large response at the 
mid span for an input to the tip.  This may be 
compared with the frequency response of Figure 
8 where the gain on the mid span channel has 
been increased.  In this case the cross coupling 
effect is significantly reduced as shown by the 
minimal response at the mid span for a tip input. 
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Fig. 8. Bode plot for an input to the tip with increased mid 

span gain. 
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The response at the mid span for an input 
at the tip in Figure 5 exhibits two zeros and four 
poles.  The poles occur at the same frequency as 
for the tip response since the poles for the tip 
response are caused by resonance of the total 
system.  The first zero is at the natural 
frequency of the actuator.  At the natural 
frequency of the actuator, it would be difficult 
to generate a load in that actuator since no load 
is required for displacement at the natural 
frequency.  The second zero is at the third 
natural frequency of the beam because at this 
frequency, there is a node at the mid span and 
therefore no load will be transmitted to the 
actuator. 
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Fig. 9. Bode plot for an input to the mid span with 

increased tip gain. 

The frequency responses to an input at the 
mid span, shown in Figure 7, have a similar 
form to those for the tip input.  The mid span 
response shows four poles and four zeros.  The 
first zero is at a frequency considerably higher 
than the first natural frequency of the beam as 
the tip actuator has a larger stiffening effect than 
the mid span actuator.  This is confirmed in 
Figure 9, which shows the effect of increasing 

the gain on the tip channel.  The first zero now 
lies closer to the beam first natural frequency.  
The poles are again at the natural frequencies of 
the total system. 

The response at the tip shows two zeros 
and four poles and is very similar to the 
response of the mid span to an input at the tip.  
The poles, as expected, are at the frequencies of 
the total system.  The first zero is at the natural 
frequency of the actuator and the second is at 
the third natural frequency of the beam. It is not 
possible to excite the beam at this frequency at 
the mid span location because it is a node.  
Thus, there can be no response at the tip. 

6  Use of the Model for Test Simulation 
The structural test system models used above 
consisted of individual linear state space models 
of servo-valves, actuators and structures that 
were combined, using standard Matlab analysis 
tools, to form a single state space system.  
While this system is extremely efficient in terms 
of computing time, it requires a detailed 
knowledge of Matlab and the Control System 
Toolbox and the building of new system models 
using the basic component models is both time 
consuming and tedious.  For the modeling to be 
useful to test engineers, it must be possible to 
build and use system models in a much simpler 
manner without the necessity of a detailed 
knowledge of Matlab. 

6.1 Implementation within Simulink 
Simulink [7] provides a graphical user interface 
for building models as block diagrams, using 
click-and-drag mouse operations.  Thus, if the 
model elements previously developed in Matlab 
are converted into Simulink blocks, the user can 
build system models by simply connecting the 
relevant blocks using the mouse. 

There are several ways of implementing 
model elements within Simulink.  However, the 
most efficient system is one where the state 
space matrices for each component are 
calculated only at the start of simulation from a 
list of basic parameters.  This has been achieved 
using model callback routines that run a script  
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Fig. 10. Simulink model of two-actuator test system. 

when the block is opened or at the start of 
simulation.  The scripts were written to 
calculate the state space parameters and then 
load these parameters into the Simulink state 
space block.  Each block has a specific icon and 
dialog box that allows the user to change a 
limited number of parameters. 

Figure 10 shows a Simulink model of the 
two-actuator cantilever beam example used 
earlier, with basic inputs and outputs.  By using 
a signal generator as an input and an 
oscilloscope as an output, the user could 
simulate the response to a test load spectrum.  
However, this is not very efficient because, 
although all the individual blocks are linear, 
Simulink does not take full advantage of the 
linearity.   

6.2 Improving Simulation Speed 
The simulation time can be reduced by a factor 
of about 50 by extracting the linear model.  This 
is achieved using a simple Matlab command 
that places the state space matrices of the 
complete system in the workspace.  A new 
model with a single state space block as shown 
in Figure 11 is then used, with the matrices 
within the block defined to use those in the 
workspace.  These matrices are the same ones as 
would be derived using the earlier method. 
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Fig. 11. Single state space block model of two actuator 
system. 

6.3 Example Test Simulation 
One of the most difficult tasks in setting up and 
running a full scale structural test is defining the 
segment times, i.e. the time between end points.  
Segment times are often set by assuming they 
are limited by the flow into the slowest actuator, 
where the flow is calculated as the nominal 
valve flow at full opening multiplied by the 
error and the proportional gain [8].  To examine 
how well this works, the model was used to 
determine the simulated response of the two-
actuator cantilever beam system to a variable 
amplitude loading sequence. 

The loading sequence consisted of a series 
of equal loads applied on the two actuators, 
followed by a series of opposing loads on the 
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two actuators.  The time between endpoints was 
based on simple flow requirements for the 
critical actuator, the tip actuator in this case.  As 
a result, the maximum errors for the tip actuator, 
as shown in Figure 12, are constant at about 3% 
and occur at the mid point of the segment. 
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Fig. 12. Simulation for variable amplitude sequence with 

a proportional gain of 10. 

Since this system becomes unstable if the 
proportional gain is increased significantly, it is 
common practice to use integral gain to reduce 
the errors.  Figure 13 shows the effect of adding 
an integral gain of 25.  

The maximum error has been reduced to 
about 1%, but it is no longer constant for each 
segment.  Thus the times between end points for 
this sequence are no longer optimum, since for a 
1% error, many of the segments could be run 
faster.   

However, being able to run a model in 
advance of the test allows a test engineer to 
check how well a test may run and see the effect 
of modifying segment times on the overall test 
times. 

With further experimental validation of 
additional valves and actuators and the multi-
channel structure, it may also be possible for the 
test engineer to experiment with hardware 
components, such as different valve sizes, in 
addition to control parameters, prior to the test.  
It may then be possible to optimize the test set 
up in the design phase. 
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Fig. 13. Simulation for variable amplitude sequence with 

a proportional gain of 10 and integral gain of 25. 

7  Conclusions 
The extension of a state space model of a single 
actuator, moving load cell structural test to a 
multi-channel test has been described using 
modal analysis concepts.  An example using an 
analytically determined cantilever beam model 
has been presented and the frequency responses 
obtained for the example system. 

For a response at the same location as the 
input, there are poles at the natural frequencies 
of the total system (structure plus all actuator 
systems) and zeros at the natural frequencies of 
the system that is being driven (structure plus 
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actuator systems other than driving actuator).  If 
the gain on the other actuator systems is 
sufficiently large, they are effectively de-
coupled in terms of the driving actuator, and the 
zeros are at the natural frequencies of the 
structure. 

For a response at an actuator location other 
than the input location, there are again poles at 
the system natural frequencies.  There is also a 
zero at the natural frequency of the actuator at 
the response location and an additional zero if 
the actuator is attached at a node of the 
structure. 

The implementation of the state space 
models within Simulink has been described 
briefly.  This makes the models simpler to build 
and use once the basic component blocks have 
been developed and makes them more 
accessible to test engineers. 

The multi-actuator model provides a useful 
tool for understanding the behaviour of multi-
actuator test systems and the interaction 
between actuators.  With further experimental 
validation, it may also be useful for predicting 
system behaviour during the design phase of a 
structural test. 
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