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Abstract
Three-dimensional boundary layer theory has
been applied to the air inlet design problem
studied by GARTEUR Action Group 34. The
essential part of the problem is a stream
surface that passes through a conical shock, as
generated by a right circular cone in super-
sonic flow. Ahead of the shock the stream
surface represents a flat plate. Downstream of
the shock the stream surface involves a bump
of cross section that tends towards that of the
cone surface, as the conical flow extends
toward infinity.

Boundary layer calculations indicate
that downstream of the shock, flow divergence
is sufficient to overcome the effects of adverse
pressure gradient on the forward part of the
bump. Thus flow assessment can focus on the
shock boundary layer interaction.

It is shown that the boundary layer
condition at the shock is largely determined by
the attitude of the incoming inviscid flow to the
projection of the shock on the plate. The
attitude of the inviscid flow together with the
velocity jump through the shock determines the
lateral inviscid streamline deflection within
the local stream surface. The streamline
deflection is a function of distance from the
bump centre line and it is convenient to
examine the boundary layer state as a function

of streamline deflection or shock sweep.
Ahead of the shock the boundary layer

is two-dimensional, with limiting streamlines
parallel to the free stream. Through the shock
these surface streamlines are deflected to a
greater extent than for inviscid flow and rotate
away from the bump centreline. Providing
inviscid deflection is less than a critical value,
boundary layer calculation indicates attached
flow. For greater values, limiting streamlines
rotate towards the shock plane and the
boundary layer solution shows singular
behaviour associated with separation.

Above the critical value, conditions
downstream of the shock remain capable of
supporting attached flow and so appear
conducive to reattachment. Thus calculations
appear consistent with formation of a vortex
that develops along the shock foot from an
identifiable critical point.

The method can be more generally
used for flows involving shock boundary layer
interaction. It is particularly suited for flows
where shocks can be determined using Euler
or shock-expansion theory methods. The
resulting shock solution determines the
inviscid stream deflection, so providing an
important parameter for viscous calculations.

1  Introduction
Aerodynamic design often involves

high Reynolds number turbulent flow,
featuring shock boundary layer interaction and
separation. Three-dimensional flow separation
can result in vortex generation and the control
of shocks and vortices often features in design.
Accurate prediction of these flows is still a
major challenge for CFD as the need for fine
field grids, to capture the boundary layer,
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results in intensive computing requirements.
The required fineness of the field grid
increases with Reynolds number, such that
modelling error is an issue when using
computational methods to analyse Reynolds
number effect. Thus to progress designs
efficiently, application of Navier-Stokes
methods needs to be supported by use of
simpler methods that adequately represent the
effects of shocks, separations and vortices.

Even when the upstream character of a
boundary layer is two-dimensional, if a shock
intersection is oblique to the advancing front
of the layer its downstream development is
three-dimensional. Thus, for example, while
two-dimensional methods can be used with
some success for the flow on wings, three-
dimensional methods are more generally
required when shocks are involved. For this
reason the capability considered here is based
on three-dimensional boundary layer theory.

Here a three-dimensional boundary
layer method has been applied to the shock
boundary layer interaction problem
represented through consideration of a stream
surface passing through a particular case of
fully supersonic conical flow. A GARTEUR
action group studied this flow as it involves a
conical shock and isentropic recompression,
making it suitable for air inlet applications as
described by Seddon and Goldsmith [1].
Through application of the method considered
in this paper, key features of the flow have
been identified and quantified in a manner that
allows improved designs to be considered. The
key features relate directly to the three-
dimensional nature of the boundary layer and
the conditions for separation. It is reasoned
through wider applicability of the method that
it can be used for more general shock
boundary layer interaction problems.

2  Design Problem and Analysis Method

2.1  GARTEUR test case
The test case studied by GARTEUR

Action Group 34 is described by Bradbrook
[2] and involves geometry that, for an
appropriate supersonic Mach number and
inviscid flow condition, generates a simple
conical shock wave and supersonic flow
solution. Upstream of the shock the flow is

uniform, while downstream the flow is subject
to isentropic compression.

While conical flow can be generated
using a cone, by choosing a stream surface that
passes through conical flow, other geometry
can be defined that can be used to generate
such flow. However for any real application a
boundary layer develops on the defined
surface. Thus, for the solution to remain valid
the boundary layer must be thin requiring high
Reynolds number and/or the stream surface
must be corrected for viscous displacement.

The GARTEUR test case involves a
free stream, of Mach number 8.1=∞M , set
parallel to the '' x direction and axis of a right
circular cone having a semi vertex angle,α , of
23 degrees. The particular stream surface
chosen involves a flat plate ahead of the shock
generated by the cone apex. The apex is at the
origin of a Cartesian zyx ,, , co-ordinate system
and the plate is offset from the cone axis, in
the '' z  direction. The intersection of the plate
and shock provides the starting front for
tracing the downstream development of the
stream surface and this results in a semi
infinite, symmetric, bump that rises from the
plate. The characteristic dimension of the
geometry that uniquely defines the bump is the
height, ,h of the plate above the cone axis.

As the bump is semi infinite, for the
GARTEUR test case it is truncated at down-
stream location 4/ =hx  and terminated with
an after body to produce a finite bump suitable
for a real intake. Thus, the flow over the rear
of the GARTEUR bump is not conical.
However the key features of the problem are
the shock boundary layer interaction and
boundary layer state during compression, so
here it is only necessary to consider the
forward conical element of the test case.

For a given cone angle and free stream
Mach number two possible conical solutions
can exist, as considered by Ferri [3]. The weak
shock solution can involve fully supersonic
flow downstream of the shock while the strong
shock solution can involve fully subsonic
downstream flow. With reduced Mach number
the two solutions approach each other and for
Mach numbers below this condition conical
flow ceases and the shock detaches from the
cone apex.
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The GARTEUR test case conditions
are summarised in table 1 and are appropriate
to weak shock solution. Particular solution is
determined by the flow backpressure and so
intake operating condition. In table 1 ψ  is the
shock angle relative to the x  axis.

Parameter Value

∞M 1.8
α 23°
ψ 43.92°

hR 4105x  < hR  < 7105x
Table 1. Test case conditions

Figure 1a shows the conical element of
the GARTEUR test case in terms of sectional
cut through the bump on the symmetry plane,

.0/ =hy  The figure shows the equivalent
cone surface, stream surface and shock.

Figure 1a. Key flow features as
viewed on symmetry plane

Figure 1b shows front views of the
bump in terms of a series of sectional cuts.
These cuts are normal to the free stream and
plate. The geometry for the solution can be
represented by a hyperbolic approximation, as
reported by Seddon and Goldsmith [1] and
attributed to Bower et al [4]. The
approximation is very accurate for the bump
considered here and is represented by the
following parametric equations,

( ) φψα
α

2222

222

sectantan1
tan

−+
=

h
xr

φsinry = , φcosrz =

(1)

Figure 1c shows a top view of the
intersection of the upstream stream surface
with the shock, so indicating the footprint of
the bump on the plate. The intersection is
precisely defined by the geometry of the shock
cone and relative position of the plate, so is
described by the hyperbolic curve,

2222 tan hxy −= ψ (2)

Figure 1b. Sections through bump
at constant values of  x/h

Figure 1c. View of bump defined by shock
intersection with flat plate in plane z/h=1

For the GARTEUR test case, Bradbrook
[2] obtained a Navier-Stokes solution
corresponding to a Reynolds number based on
plate height of 51087.7 xRh =  and for a value
of boundary layer displacement thickness at the
shock foot of h07.0 . This solution involved
wall functions that compromised accuracy in
the near wall region but reduced computational
requirements to enable a practical calculation.

For the boundary layer calculations
considered here, conditions have been chosen
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appropriate to a small-to-medium size aircraft,
for which mh 1.0= , operating at an altitude of

m000,11  within an International Standard
Atmosphere. This corresponds to a Reynolds
number of 61036.1 xRh = .

2.2  Conical flow calculation
By definition, conical flow properties

are constant along radials emanating from the
cone apex. For the general case, the resulting
form of the Euler equations are provided by
Sears [5] in a convenient spherical co-ordinate
system. For the right circular cone with axis
parallel to the free stream, the conical flow is
symmetric about the cone axis and the Euler
equations can be reduced to a one-dimensional
form in terms of angular displacement from the
axis. This approach allows weak and strong
shock solutions to be calculated to high
precision.

The equations are solved iteratively as it
is first necessary to estimate the shock angle.
From the assumed shock position and free
stream state the appropriate Rankine-Hugoniot
shock jump conditions are calculated so
allowing the Euler equations to be solved
between the shock and cone surface. The flow
tangency condition at the cone surface is then
checked and the shock angle adjusted if
necessary. If correction is needed the whole
process is repeated until convergence is
achieved.

Once a converged solution is obtained,
the upstream stream surface can be tracked
through the solution field in order to generate
the bump stream surface and associated flow.
This approach enables a computationally
efficient and accurate analysis.

2.3  Boundary layer calculation
For air vehicle applications supersonic

flow occurs at conditions of high Reynolds
number so boundary layers are thin. Thus, the
inviscid solution provided by conical flow
theory is applicable to the forward part of the
GARTEUR bump. Similarly this solution can
be used as data for calculating the turbulent
boundary layer development. However, as the
flow downstream of the shock intersection line
is three-dimensional, it is necessary to make use
of a three-dimensional boundary layer method.

The boundary layer method of
references [6] and [7] is considered here,
where [7] considers specific application to
supersonic high Reynolds number flow. This
integral method solves the entrainment,
stream-wise momentum and cross-flow
momentum equations using a three-
dimensional form of logarithmic velocity
profile. As a consequence of the use of the
logarithmic profile and compressibility
transformations, the solution variables are
equivalent incompressible values of the stream
wise and cross flow components of friction
velocity and the boundary layer thickness. The
friction velocity is also made non-dimensional
using the actual velocity at the outside edge of
the boundary layer. The three solution
variables are respectively designated cs qq ′′   ,
and δ ′ . Once the development of these
variables has been calculated, the full
boundary layer solution can be calculated from
the equations of the velocity profile. Important
for assessing the state of the three-dimensional
boundary layer are the equivalent
incompressible shape parameter, ,H  the skin
friction coefficient, ,fC and the angle of the
surface streamline relative to the streamline at
the outer edge of the boundary layer, .0β  The
latter parameter, usually referred to as the
limiting streamline angle, is calculated from
the local direction of the friction velocity,

( )sc qq ′′= −1
0 tanβ (3)

This parameter is a measure of lateral
distortion of the boundary layer and so
important when considering three-dimensional
aspects of shock boundary layer interaction.

Local skin friction coefficient is also
calculated from the definition of the friction
velocity but due to compressibility involves
the local total to static temperature ratio,

,ete TT  at the outer edge of the layer. Thus,

( )( ) 5.0222 −′+′= etecsf TTqqC (4)

The boundary layer method requires
the stream surface to be defined by a two-
dimensional array of surface points. The points
can be set in some general non-orthogonal
coordinate system but need to be smoothly
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distributed in order to minimise numerical
error. The best approach involves longitudinal
distributions that march along streamlines and
lateral distributions that lie on isobars.

2.4  Method of analysis
Figures 2a, 2b and 2c show part of the

non-orthogonal surface grid at which the
conical flow was calculated to produce data for
calculating the turbulent boundary layer.

Figure 2a. Side view of grid points on stream surface

Figure 2b. Front view of grid points on stream surface

The grid points are aligned along surface
streamlines and in the vicinity of the shock are
concentrated in order to capture adequately the
pressure rise through the shock. The grid
points also lie on span-wise generators that
follow the shock front at the bump leading
edge.

When considering figure 2b it should be
noted that the grid points do not lie on lines of
constant x , so unlike figure 1b the figure does
not convey the true sectional shape of the
bump. Figure 2c shows that all the streamlines

commence from 0=x  and this was chosen to
provide a convenient place for prescribing the
initial conditions of the boundary layer.
Upstream of the shock, on the plate, the
boundary layer is two-dimensional and so
constant values were applied at the upstream
boundary.  The initial conditions used for the
boundary layer are provided in table 2.

Figure 2c. Plan view of grid points on stream surface

For these initial conditions the full boundary
layer development was calculated but here it is
useful to focus on two key areas in order to
demonstrate the nature of the design problem
and value of the design method. The first area
is in the region of the centreline of the bump
and characterised by the boundary layer
development on the symmetry plane. The
second area is away from the centreline where
three-dimensional effects are important and
where it is necessary to focus on consideration
of the possibility for boundary layer separation
along the shock front.

Parameter Value
x 0

θR 26,130

H 1.265

0β 0

Table 2. Boundary layer initial conditions

3  Discussion and Results

3.1  Symmetry plane results
Figure 3a shows the pressure coefficient

distribution on the symmetry plane and clearly
indicates the pressure rise through the shock,
located at 0385.1=hx . Also evident is the
adverse isentropic pressure rise, downstream of
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the shock that shows the pressure coefficient to
rise asymptotically towards the cone surface
value of 4441.0=pC . By 4=hx , which
corresponds to the end of the conical flow
section of the GARTEUR test case, the pressure
coefficient is quite close to the cone surface
value. Upstream of the shock the pressure
coefficient is at the free stream reference value.

Figure 3a. Pressure coefficient on symmetry plane

Figure 3b. Momentum thickness Reynolds
number on symmetry plane

Figure 3b shows the development of
the Reynolds number based on momentum
thickness, θR . Ahead of the shock this quantity
increases at an almost linear rate. Through the
shock there is a sudden increase of the
Reynolds number and this is followed by a
reduction to a minimum value of 13900=θR
at 5.7=hx . The Reynolds number then starts
to increase again at a very modest rate, but
remains well below the initial value at the
plate leading edge. The reduction of the
Reynolds number downstream of the shock is
unlike that experienced in two-dimensional

adverse pressure gradient flow. The results
experienced here are due to the flow diverging
laterally as it moves in a radial direction away
from the cone axis and can be referred to as a
radial divergence effect. Thus while the
momentum thickness reduces the lateral extent
of the boundary layer increases such that there
is an overall degradation in momentum.

Figure 3c. Skin friction coefficient
on symmetry plane

On the plane of symmetry the state of
the boundary layer can be judged by the shape
parameter, H , and skin friction coefficient,
and the development of the latter parameter is
shown in figure 3c. The skin friction falls
through the shock to a value of 00045.=fC
before increasing again to surpass the pre
shock value. For this case, these results
indicate that at least on the plane of symmetry
the strength of the shock is insufficient to
cause separation. The results also show that
once through the shock, radial divergence in
the boundary layer prevents the risk of
separation in the region of adverse pressure
gradient caused by isentropic pressure
recovery.

For an air intake the consideration of
separation will limit the pressure recovery
achieved at the design condition. However
from the calculations on the plane of
symmetry it can be seen that the favourable
effects of radial divergence limit the
possibilities for separation and so the primary
requirement is to ensure that the boundary
layer negotiates the shock without separation.

3.2  Shock locus results
So far, it is demonstrated that for this

class of design problem the primary
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consideration must be for assessing the
boundary layer development through the shock.
Away from the centre line, three-dimensional
cross flow effects become important and so it is
necessary to consider the more general
boundary layer development through the shock
front as illustrated in figure 1c.

The development of the boundary layer
through the shock is determined by the conical
flow pressure distribution and in figure 3a the
condition on the symmetry plane has already
been considered. Away from the symmetry
plane the pressure rise through the shock
remains constant but there develops a span-
wise pressure gradient as the shock becomes
oblique to the flow on the plate. This affects
the direction of flow that impacts on three-
dimensional boundary layer development and
so it is convenient to consider the velocity
change at the shock. Sketch 1 shows upstream
and downstream velocities on the stream
surface at some general point on the shock
footprint away from the symmetry plane.

Sketch 1. Flow at shock in stream surface plane

In the sketch the flow is viewed on a
plane that lies in the stream surface, as this is
the plane in which the three-dimensional
boundary layer is calculated. Ahead of the
shock the plane lies on the plate, while
downstream it is in the surface of the curved
bump. In this boundary layer computing plane
each inviscid surface streamline is deflected
laterally as it passes through the shock.
Through the shock the velocity component, V ,
in the shock plane is conserved, while the
change in the component, U , normal to the
shock is determined by the Rankine-Hugoniot
conditions. The streamline deflection at the
shock is determined by these conditions and
with reference to the sketch is given by,

21 λλω −= (5)

With reference to the sketch it can be
seen that at the shock,

VCosQCosQ == 2211 λλ

Thus generally on a stream surface at a shock,

( )[ ]121
1

1 coscos λλω QQ−−= (6)

While from the equation for the shock
footprint on the flat plate, for the right conical
flow problem the angle subtended by the
shock and the incoming stream direction is
given by,

ψλ 2
1 tantan

y
x

dx
dy ==

Which after again using the footprint equation
for the elimination of x , gives,

( )( ) �
��
� += − ψλ tan1tan 2

121
1 yh (7)

This demonstrates for the GARTEUR
test case that the streamline deflection through
the shock is just a function of the non-
dimensional lateral distance, hy / , from the
plane of symmetry. The deflection has been
calculated over the range 1/0 << hy  and the
results are presented in figure 4. At the plane of
symmetry the lateral streamline deflection is
zero and rises to 6.628° at 1/ =hy , while as

hy /  tends towards infinity the streamline
deflection asymptotically approaches the
limiting value of 9.888°.

Figure 4. Inviscid streamline defection at shock

The pressure rise and other inviscid
flow property changes through the shock are
constant and determined solely by the free
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stream Mach number and equivalent cone
angle. Thus for the GARTEUR test case, the
streamline deflection angle is the primary
independent variable for the boundary layer
development through the shock. It is therefore
convenient for all other independent variables
to be held constant, in order to assess the
impact of the primary variable. Thus the
boundary layer was calculated using revised
initial conditions at the shock and involved
some convenient rounding to minimal
significant figures of the earlier values. The
revised values are recorded in table 3.

Parameter Value

θR 20,000

H 1.3

0β 0

Table 3. Revised shock entry conditions

As the calculation was only required to
cover the pressure rise through the shock, a
much finer mesh could be considered than that
described earlier for calculating the full
boundary layer solution and needed for
providing results on the plane of symmetry. A
finer mesh was required in order to avoid
numerical accuracy being an issue. To
improve accuracy this approach was
complemented further, by treating the shock as
a discontinuity and integrating the boundary
layer equations with respect to velocity rather
than stream-wise displacement. Thus for the
flow through the shock front a more rigorous
analysis was considered than for the results
shown earlier.

It was considered convenient to present
the results in terms of the incremental change of
the boundary layer parameters through the
shock in order to show how these vary with the
streamline deflection, which in itself is an
incremental effect of the shock. Thus figure 5a
shows how the increment in the momentum
thickness Reynolds number, θR∆ , varies with
streamline deflection. For deflections of say
less than three degrees the increase is very
similar to the result for 0=ω , which
corresponds to conditions on the bump plane of
symmetry. Above three degrees there is a
notable increase in the Reynolds number and
above five degrees the increase becomes

asymptotic and indicative of some limit. Figure
5b shows the reduction in skin friction
coefficient through the shock and reveals
similar characteristics.

Figure 5a. Jump in momentum thickness at shock

Figure 5b. Jump in skin friction coefficient at shock

Particularly interesting are the results of
figure 5c, which shows the variation of the
limiting streamline angle as a function of the
inviscid stream deflection. Also included in the
figure is the variation of 2λ  as this represents a
limit for the boundary layer calculation, which
involved a direct solution technique. On the
plane of symmetry the limiting streamline angle
is zero and this corresponds to the surface layer
of the boundary layer being in the direction of
the local inviscid streamline. As the limiting
streamline increases, so the surface layer of the
boundary layer turns towards the direction of
the shock front which is the non-orthogonal
lateral computing axis. Thus when 20 λβ =  the
surface flow is entirely in the direction of the
non-orthogonal axis and the boundary layer is
highly skewed across its thickness. The
significance of this condition is that it indicates
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when the boundary layer equations, in their
direct form, become singular and this form of
behaviour is associated with the onset of three-
dimensional, boundary layer separation.

Figure 5c. Jump in limiting streamline angle at shock

From figure 5c, it can be seen that for
inviscid streamline deflections of less than
around three degrees the limiting streamline
angle is below ten degrees. This indicates little
skewing of the boundary layer with conditions
close to that of the flow on the bump centre
line. For higher inviscid streamline deflections
the limiting streamline angle increases and the
limiting condition is reached at an inviscid
streamline deflection value of 5.66°,
suggesting that this is the limit for attached
flow for the GARTEUR test case at the
conditions considered. As the flow
downstream of the shock is conducive to
recovery within the boundary layer this further
suggests that reattachment of the boundary
layer is possible on the bump surface but this
is beyond the analysis considered here. If
reattachment does occur then this would
indicate that, as the separation is three-
dimensional, it is likely associated with the
formation of a vortex.

3.3  Design parameters
From the previous results and analysis it

was demonstrated that the inviscid stream
deflection through the shock, ,ω  is important
when considering the shock boundary layer
interaction and the likelihood of separation. For
the more general case it was also shown that the
angle subtended by the shock and flow
direction immediately ahead of the shock, ,1λ
determines the streamline deflection.

Figure 6. Jump in streamline angles at shock

While boundary layer analysis suggests
that the inviscid streamline deflection is the
most appropriate design parameter, it will often
be more convenient to think in terms of the
shock sweep as the design variable. With
reference to sketch 1 the shock sweep in the
plane of the plate and relative to the oncoming
flow is simply defined as,

12 λπ −=Λ

When couched in terms of shock sweep, the
general equation for inviscid streamline
deflection through the shock provides the link
between these two parameters and gives,

( )[ ] Λ−Λ= − sinsin 21
1 QQω (8)

It will also be noted that the total
deflection of the limiting streamline as it passes
through the shock is given by the value,

ωβω += 00

While the limit condition for separation can be
written as,

Λ+=Λ++= 002 ωωβπ (9)

The significance of the limit is that for
Λ−−> ωπβ 20  the flow at the surface

immediately downstream of the shock would
be moving towards the shock and consistent
with reversed flow normal to the shock front.

Figure 6 shows the results of presenting
the inviscid and limiting streamline deflection
data together with the separation limit indicator
as functions of shock sweep. From this the
shock sweep at which separation is found to
occur is .41.32 °=Λ
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4  Conclusions
Three-dimensional boundary layer

theory has been applied to the supersonic air
inlet design problem studied by GARTEUR
Action Group 34. The essential part of the
inlet geometry is a stream surface that passes
through a conical shock wave as generated by
a right circular cone. Ahead of the shock the
stream surface is equivalent to a flat plate
aligned to uniform supersonic flow.
Downstream of the shock the stream surface
forms a bump and the bump cross section
tends towards that of the right cone as the flow
extends towards infinity. On the bump surface
the flow is isentropic and the pressure rises
asymptotically from the value at the shock
towards the cone surface value. Downstream
of the shock the boundary layer calculation
indicates that radial flow divergence is
sufficient to overcome the effects of adverse
pressure gradient on the forward part of the
bump surface. Through this effect the
consideration of separation can be restricted to
the area of shock boundary layer interaction.

It is shown that at the shock the
boundary layer calculation is determined by
the attitude of the incoming inviscid flow to
the shock front. The attitude of the inviscid
flow together with the velocity jump through
the shock determines the deflection of the
inviscid stream through the shock. The
streamline deflection is a function of the
distance from the bump centre line while the
pressure rise remains constant, so for the shock
boundary layer interaction it is convenient to
examine the boundary layer interaction as a
function of inviscid streamline deflection.

Ahead of the shock the boundary layer
is two-dimensional, with limiting streamlines
on the plate surface being parallel to the free
stream. Through the shock these surface
streamlines are deflected to a greater extent
than the inviscid flow and rotate away from
the bump centreline. Providing the inviscid
streamline deflection is less than 5.66° the
boundary layer calculation indicates that the
flow remains attached. For values of
streamline deflection greater than 5.66° the
limiting streamlines rotate and approach the
plane of the shock. For these large limiting
streamline angles the boundary layer solution

shows singular behaviour associated with three-
dimensional separation.

As the inviscid streamline deflection
increases beyond 5.66°, the related flow
conditions downstream of the shock remain
capable of supporting attached flow and so
appear conducive to reattachment. For this
reason the boundary layer calculation appears
consistent with the occurrence of a vortex that
develops along the foot of the shock and starts
from the lateral position 783./ =hy .

While the application considered by
this paper involves a particular type of air
inlet, the form of analysis that has been
demonstrated can be used more generally for
flows involving shock waves. This type of
analysis is particularly advantageous when a
shock wave is generated by a salient edge or
discontinuity at a surface, as the shock position
and shock strength then directly relate to the
configuration geometry and can be accurately
determined using Euler or shock wave theory.
Once the shock position and strength are
known the streamline deflection angle can be
readily calculated along the shock front so
providing an important design parameter and
insight of the nature of the design problem.
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