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Abstract

The paper is concerned with the transition from
dissipative to dispersive cross-stream behaviour
of large turbulence structures outside low super-
sonic axisymmetric cold jets. Such a transition
arises in regions of physical space where noise is
generated and depends to a large extent on the jet
Mach number. It is shown how the issue of deter-
mining these regions can be reduced to analysing
the pressure near field in terms of a turning-point
problem. Physically, at these low supersonic
speeds the radiated sound field associated with
axisymmetric instability waves is not an insignif-
icant part of the total phenomenon, even if their
phase velocities are subsonic. Low frequency in-
stability waves extent from the mixing layer all
the way to the far field.

1 Introduction

The far field noise of jets has received consid-
erable attention in the 1960’s. With recent re-
newed interest in high-speed civil transport, there
is an urgency to gain a still better understanding
of noise generation mechanism.

It is now generally accepted that turbulent
mixing noise of circular high-speed jets consists
of two distinct components. One component ra-
diates principally in the downstream direction.
This is consistent with Mach wave radiation from
the large turbulence structures of the jet flow.
The characteristics of the other component that is
dominant in the upstream direction suggest that

it is the noise from the fine scale turbulence of
the jet flow (see Tam[12]). Presently a consensus
seems to have emerged that the noise generated
directly by the large turbulence structures most
probably constitutes the principal part of the tur-
bulent mixing noise component. More recently,
Tam (1998) extended the same conclusions to
non-axisymmetric jets including jets from rectan-
gular, elliptic, plug and suppressor nozzles.

The shape distribution of the large turbulence
structures responds to the local profiles of the
mean shear flows and may be calculated by using
the linear stability theory. In the sequelx, r and
t denote the streamwise direction, cross-stream
direction and time, respectively. From a stabil-
ity point of view, the most elementary approach
consists in entirely neglecting the spatial devel-
opment of the medium : if the basic flow is as-
sumed to be uniform in the streamwise direction,
the stability properties of normal modes are com-
pletely described by a dispersion relation. That
is, pressure fluctuations are typically decom-
posed into elementary instability waves of the
form φ(r)exp(i(kx�ωt)) of complex wavenum-
ber k and complex frequencyω. The cross-
stream distributionφ(r) is then shown to satisfy
an ordinary differential equation. Enforcement of
appropriate boundary conditions then leads to an
eigenvalue problem whereby eigenfunctionsφ(r)
exist only if k andω are constrained to satisfy a
dispersion relationD(k;ω;R ) = 0, whereR de-
notes a set of control parameters such as the jet
Mach number or the jet temperature. If the flow
is convectively unstable, transients will gradually
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move away from the source. It follows that the
asymptotic (t ! ∞) flow response to a localized
harmonic forcing of real frequencyω f reduces
to the steady-state signal arising from the poles
of its Fourier transform in space and time (see
Huerre and Monkewitz[5]). These poles are read-
ily identified as the zeroes ofD(k;ω f ;R ), i.e.
the spatial eigenvaluesk(ω f ;R ). However, for
the above reasoning to apply, the Fourier trans-
form must be analytic ink (except at points where
the dispersion relation holds). In the case of a
supersonic jet, it is possible to show that com-
pressibility effects give rise to branch cuts in
the complexk-plane (Tam and Burton[13]) corre-
sponding to regions where the Fourier transform
is non-analytic. This non-analycity stems from
the boundary conditions far away from the centre
of the jet, whereφ(r) behaves as a multi-valued
cylinder function. Accordingly, the cross-stream
structure of instability waves may not be always
compatible with boundary conditions asω is dis-
placed along the real axis.

Most supersonic jets are spatially non uni-
form in the streamwise direction as a result of
turbulent (eddy) viscosity. Here, the fine-grained
turbulence plays an indirect but crucial role in
that it controls the development of the coherent
structures. The previous notions can then taken
to apply locally inx, as long as the nonunifor-
mities of the medium are small over a typical
wavelength of the instability. Thus the non par-
allelism of the flow is characterized by a slow
space scaleX = εx, whereε is a small parame-
ter of the same order of magnitude as the scaled
nonuniformities. Decomposition into local nor-
mal modes leads to a dispersion relation of the
form D(k;ω;R ;X) = 0, whereX plays the role
of a parameter. The stability properties of the
flow are then defined at a given stationX in the
same manner as for the uniform case. In connex-
ion with the above discussion, we have the fol-
lowing issue : for a given real frequency, is it al-
ways possible to ensure boundary conditions, or
equivalently, at which locationsX is the problem
formulated as an eigenvalue problem ?

This problem was first studied by Tam and
Morris[10] and Tam and Burton[13]. They

showed that the classical solution based on the lo-
cally parallel approximation is but the first term
of a multiple-scales expansion of the solution of a
more rigorously formulated instability wave the-
ory. The multiple-scales expansion is not uni-
formly valid and consequently should not be used
in the whole physical space outside the jet. Re-
quiring a solution to satisfy an imposed bound-
ary condition in a region where it does not rep-
resent the physical entity naturally would lead
to unsurmountable difficulties. In addition Tam
and Chen[11] showed that for jets with Mach
number up to 2.0 and jet temperature to ambi-
ent temperature ratio up to 2.5 the most amplified
wave (the helical Kelvin-Helmholtz mode) gen-
erates intense Mach wave radiation. The near-
field in this case consists of both the acoustic
and hydrodynamic (non- propagating) fluctua-
tion components and may be evaluated by ap-
plying the method of matched asymptotic expan-
sions. However, for jets operating at low su-
personic Mach numbers, Millet and Casalis[9]
demonstrated, through a combined analytical and
numerical approach, that only the axisymmet-
ric mode can radiate sound in the near-field of
axisymmetric cold jets. As a consequence, the
cross-stream behaviour of axisymmetric fluctua-
tions is no longer exponential in the entire phys-
ical domain ; it exists a locationX where the
cross-stream decay of the pressure amplitude is
algebraic in the near-field and a propagating wave
is generated. This transition holds in a way which
will be given in the present paper.

The main objective of the present article is to
obtain a characterization of the cross-stream be-
haviour of axisymmetric disturbances for low su-
personic jets. The paper is organized as follows.
The basic equations are given in section 2 where
we show that the issue of determining locations
X where the problem cannot be expressed as an
eigenvalue problem can be reduced to analysing
the cross-stream structure of disturbances in the
vicinity of the jet. In section 3, we study the
cross-stream behaviour of axisymmetric distur-
bances in the complexk-plane for low supersonic
jets when the phase velocity at the location of the
peak amplitude is quasi-sonic. In our study we

292.2



Relationship between instability waves and noise of low supersonic jets

consider the case of cold supersonic jets in the
Mach number range of 1:0 to 2:0. In closing, we
give numerical results obtained by using a spec-
tral collocation discretization through a multiple
domain technique.

2 Basic formulation

Consider small amplitude disturbances superim-
posed on the mean flow of an inviscid perfeclty
expanded supersonic jet. Dimensionless vari-
ables withr0 (radius of the jet at nozzle exit),u0

(jet exit velocity),r0=u0, ρ0 (jet density at nozzle
exit) andρ0u2

0 as the length, velocity, time, den-
sity and pressure scales will be used throughout
the analysis. The Mach number of the jet and the
(dimensionless) ambient gas mean density will
be denoted byM andρ∞, respectively.

Following Tam[12], the large-scale fluctua-
tions are mathematically represented by a lin-
ear superposition of instability modes and sub-
stituted into the equations of motion. Therefore,
the standard form of the WKBJ approximation
(see Bender and Orszag[1]) which describes in-
stabilities of weakly non-parallel flows can be
used. This analysis is restricted to axisymmetric
jets, so that the instability waves can be Fourier-
decomposed into azimuthal modes. Thus, with
respect to a cylindrical coordinate system(x; r;θ)
centered at the nozzle exit, to the lowest order,
the solution for an instability wave of angular fre-
quencyω and azimuthal mode numbern has the
form φnexp(inθ� iωt), with

φn� A(X)φ̂n(r;X;ω)exp

�
i
ε

Z X

0
k(s;ω)ds

�
;

(1)
wherek(X;ω) is a local wavenumber originating
in the upper half of thek-plane when the imagi-
nary part ofω goes from a large positive value to
zero (for details, see Huerre and Monkewitz[5]),
A is an unknown complex amplitude determined
at O(ε) andφ̂n is a suitably normalized function,
so that

φ̂n(r;X;ω) = H(1)
n (iλ(k(X;ω);ω)r); (2)

outside the jet, whereH(1)
n is thenth order Han-

kel function of the first kind and the functionλ

is given by the irreducible polynomialλ2+ k2
0�

k2 = 0, with k0 =
p

ρ∞Mω. As discussed in sec-
tion 1, this mathematical description is valid only
inside and in the vicinity of the jet. For larger,
the appropriate variables areX = εx andR= εr as
long asλ has a non-zero finite value in the limit
ε ! 0. The intermediate solution can easily be
obtained by changing the coordinates of the solu-
tion (1) to the intermediate variables, i.e. replac-
ing r by rα=εα, whereα < 1 is a small positive
number. Then the intermediate limit of (2) leads
to the following expansion for the Hankel func-
tion

lim
rα

φ̂n(r;X;ω)�
exp(�λ(k(X;ω);ω)r)p

iλ(k(X;ω);ω)r
; (3)

where the limit process is defined by requiringrα
fixed in the limit ε ! 0. Note that for (3) to be
valid, the algebraic functionλ(k;ω) must satisfy
λ = O(1) andλ 6= o(1). That is, the asymptotic
approximation (3) holds only outside neighbour-
hoods of branch points�k0(ω).

Spatial branches are obtained from the dis-
persion relationD(k;ω;R ;X) = 0 by solving for
complex wavenumbersk whenω is given real1.
For cold supersonic jets in the Mach number
range of 1:0 to 2:0 the large turbulence struc-
tures are associated with the well-known Kelvin-
Helmholtz instability modes (see Tam et al[11])
corresponding to branches of spatial eigenvalues.
If λ = o(1), the cross-stream behaviour ofφ̂n is
not given by (3) and strongly depends on the az-
imuthal wavenumbern through the asymptotic
behaviour of the Hankel function. It follows that
the radiation condition may not be compatible
with the assumptionrα = O(1), α < 1 and, con-
sequently, the problem may not be formulated
as an eigenvalue problem for allX. Regions of
zero real part ofλ are known to be branch cuts
in the complexk-plane. They are defined by
�π=2� argλ � π=2. From the radiation condi-
tion, the left (right) equality sign is to be removed
if ω is negative (positive). Note that for hot su-
personic jets, the jet could support another family

1Following Tam[12],[11], in this paper, we assume the
instabilities to be convective and ignore the transient por-
tion of the response.
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of instability waves generated by the presence of
a Mach wave system inside the jet (see Tam and
Hu[14]). Here, we restrict the discussion to the
Kelvin-Helmholtz instability.

Causality implies that there exists a local
maximum growth rate for the perturbation of the
mean flow, which means that the minimum of
the imaginary partki of k (for ω > 0) is every-
where defined over allX real, as shown in figure
1. In addition, on following the propagation of
instability waves downstream one finds that spa-
tial branches move into the upper half of thek-
plane forω positive. For largeX, only a small
segment of positive frequencies in the vicinity of
the origin leads to amplified waves. Since the
mean velocity of the jet gradually decreases in
the flow direction, phase velocities of instability
waves would eventually be supersonic (kr < k0,
wherekr is the real part ofk) before they reach
the region of the jet where they become damped
(ki > 0). In such cases, the real part ofλ is zero
for ki = 0 and the cross-stream decay of the am-
plitude of these neutral instability waves become
algebraic in the near-field, as indicated by the as-
ymptotic evaluation (3). The cross-stream be-
haviour of damped waves is then obtained by an-
alytic continuations, which give rise to solutions
which become exponentially large asr!∞. This
is permissible because boundedness of solution
at larger is no longer a requirement of the lo-
cal solution (r = O(1)). Thus, at given control
parameter settings, the dominant contribution of
an instability wave to the far-field is given by a
neighbourhood of branch cuts.

Since, in the displacement of the stationX
along the real axis, the spatial branches move,
the cross-stream behaviour of neutral waves may
change from exponential (algebraic) to alge-
braic (exponential) around locations correspond-
ing to regions where their phase velocities change
from subsonic (supersonic) to supersonic (sub-
sonic). These exponential-algebraic (algebraic-
exponential) transitions take place as a result of
the permutation of the regular branches of the
algebraic functionλ(k;ω). Figure 1 shows a
typical spatial branch for two locationsX0 and
X1 > X0. For locationX0, the spatial branch is

(b)

ki

ω0

(a)

Fig. 1 Sketches of typical spatial branches.
Imaginary partki of the local wavenumber versus
frequency for the axisymmetric (n = 0) Kelvin-
Helmholtz instability wave at two locationsX0 (a)
andX1 > X0 (b). Dashed line : analytic continua-
tion intoki > 0 (corresponding to solutions which
become exponentially large asr !∞).

contained in the analycity domain of the func-
tion φ̂n and, consequently, the inner solution is
identical with the eigenfunction of the classical
locally parallel-flow stability theory. In the other
case, the one-term inner solution decays to zero
as r ! ∞ only in small region close to the ori-
gin (ki < 0 for ω > 0) and becomes exponentially
large asr ! ∞ in the complementary region. We
can conclude that the exponential-algebraic tran-
sition of the neutral wave is located betweenX0

andX1. In the following section, we show that
a similar transition holds in the cross-stream di-
rection when the phase velocity of the neutral ax-
isymmetric (n= 0) instability wave is subsonic,
in a way which is given by a turning-point prob-
lem.

3 A turning-point problem

In this section, we study the cross-stream behav-
iour of axisymmetric disturbances for low super-
sonic cold jets. As already indicated, the cross-
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stream structure of local plane waves, to the low-
est order, is governed by the wave equation which
admits Hankel functions for solutions. Let us first
z= iλr be a new independent variable and reduce
the wave equation to its normal form by writing
ψ = φ̂0z1=2. Then, we have

∂2ψ
∂z2 +

�
1+

1
(2z)2

�
ψ = 0; (4)

which defines a real turning-point problem (see
Bender and Orszag[1]) for locationsX such that
jkr j> k0 andki = 0. The turning-point is given by
z0 = i=2, that is,r0 = 1=(2λ) whereλ is defined
by λ2 = k2

r �k2
0. Since the cross-stream decay of

the axisymmetric instability wave is given byφ̂0,
the turning-point gives the radial position of the
dispersive-dissipative transition in physical space
for the axisymmetric mode. This result is com-
pletely compatible with the asymptotic expansion
(3) valid in the intermediate region : forjkr j> k0

the rapidly varying component of the solution (3)
decays exponentially (dissipates) away from the
jet. Forjkr j< k0 andki = 0, the turning point lies
in the complexr-plane and the cross-stream be-
haviour is dispersive for realX. As indicated by
(3), the solution is wavelike with very small and
slowly changing wavelengths and slowly varying
amplitudes as function ofrα.

Forn 6= 0, it is easy to prove that the turning-
point is complex whenk belongs to the domain
obtained by removing the vertical stripjkr j < k0

from the completek-plane. We arrive at the re-
sult, that the cross-stream behaviour of neutral
instability waves with subsonic phase velocities
is dissipative for alln 6= 0. Recall that the in-
equalitiesjkr j > k0 and jkr j < k0 must be con-
sidered in the sense of asymptotic analysis, that
is, jλj = O(1) and jλj 6= o(1). If jλj = o(1)
one might consider trying to apply perturbation
methods to find the asymptotic structures. The
leading-order of the equation to be solved out-
side the jet then reduces to the transverse part
of the Laplace operator. The form of the solu-
tion no longer depends on the phase velocity but
is stronger affected by the azimuthal wavenum-
ber n. For axisymmetric instability waves, the
general solution corresponds to the asymptotic

form of the Hankel function for small argument,
that is φ̂0(z) � lnz. From matching arguments,
we deduce that the real turning-point becomes
larger thanO(1) and has no physical sense. For
non-axisymmetric instability waves, the solution
which matches to the Hankel function is given by
φ̂n(z)� 1=zn for n> 0. Let us note in connexion
with the above discussion, that the branch points
�k0 =�

p
ρ∞ωM go to zero asM ! 0 for finite

values ofω and, consequently, the length of the
vertical strip between the two branch points, rep-
resenting waves for which the convective Mach
number of the flow is supersonic, decreases un-
til zero. Hence only axisymmetric pressure fluc-
tuations may exhibit a dispersive behaviour for
low-speed jets. In what follows, we consider
only supersonic jets and exclude situations where
jλj = o(1) by reducing the analysis to the plane
of the complex variablek with the exception of
small neighbourhoods of branch points.

The next section deals briefly with the numer-
ical formulation for performing calculations of
instability waves. Using the structure of solutions
on a 2-sheeted Riemann surface, to every point
of which correspond one value of the function
λ(k;ω), the computational domain has been re-
duced to the vicinity of the jet, whererα = O(1).

4 Numerical formulation

4.1 Spectral discretization

The approximate solution requires two steps.
First the operator associated with the linearized
equations is converted to a matrix. In the present
case the discretized system is obtained by a spec-
tral collocation discretization through a multi-
ple domain technique (see Khorrami et al[6],
Malik[8]). Such a method can be applied with
no modification when the viscosity effects are
taken into account (the Reynolds number is fi-
nite). None of the above boundary conditions
arises directly from the effect of viscocity, and
are formally the same in an inviscid fluid. Thus,
the physical domain is splitted into several do-
mains. Each domain preserves the advantages
of spectral collocation and allows the ratio of
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the mesh spacings between regions to be sev-
eral orders of magnitude higher than allowable
in a single domain. In the second step the result-
ing nonlinear eigenvalue problem is converted to
a generalized eigenvalue problem by using the
linear companion matrix method (Bridges and
Morris[3]) at axial locationsX where homoge-
neous boundary conditions can be applied. Then,
the eigenvalues are obtained by using standard
algorithms. In the reverse case, we use a lo-
cal method : only the eigenvalue which happens
to lie in the neighbourhood of a guessed value
is computed using iterative techniques such as
Newton’s method. Thereafter, the wavenumber
solutionk at the previous locationX is used as
the initial guess for the wavenumber at the next
axial location. Extrapolating the first guessed
wavenumber at the next location from previous
values often speeds up the convergence. ForX
close to the nozzle exit, numerical results have
shown that the spectrum of the discretized op-
erator is completely compatible with the set of
eigenvalues obtained with the vortex sheet model
(see Tam and Hu[14]).

To simplify the necessary calculations one
can use the inviscid stability theory (the Reynolds
number is infinite). In order to continue the invis-
cid stability calculations into the damped region
(ki > 0), it is well-known that a contour defor-
mation must be made into the complexr-plane to
avoid large viscous regions. Unfortunately, this
stretching transformation leads to a new distri-
bution of nodes along the complex contour and
particularly around the critical point. Follow-
ing anew the multi-domain spectral collocation
method, the domain which contains the critical
point is divided into two domains in which the
standard collocation points are the Gauss-Lobatto
points.

4.2 Mean-flow profile

Before numerical calculations can be performed,
it is necessary to provide a description of the
mean velocity and density profiles in the jet. The
mean velocity profiles are taken from experimen-
tal measurements of perfectly expanded super-
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Fig. 2 Mean velocity (solid lines) and mean den-
sity (dashed lines) profiles for a cold supersonic
jet of Mach number 1:5. From the left to the right
: x= 1, x= 5, x= 9 andx= 13.

sonic jets obtained by Lauet al.[7] whose data
were fitted by an error function profile and Troutt
and McLaughlin[16] who fitted data by a half-
Gaussian profile. It is known that a supersonic
jet can be divided into three regions, i.e. the core,
the transition and the fully developed regions ac-
cording to the characteristics of the mean velocity
profile. Here, we restrict the analysis to the core
region where the mean velocity may be approxi-
mated by the half-Gaussian profile

u=

8><
>:

1 (r < h)

exp

 
� ln2

�
r�h

b

�2
!

(r � h)
(5)

whereh is the radius of the potential core andb
is the velocity half-width of the annular mixing
region. The density is related to the mean axial
velocity using a Crocco relationship,

ρ =
�

u+
T∞
T0
(1�u)+

γ�1
2

u(1�u)M2
�
�1

(6)
whereT∞ andT0 denote the ambient temperature
and the jet exit temperature, respectively ;γ is
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Fig. 3 Evolution of the spatial branch associated with the axisymmetric (n = 0) Kelvin-Helmholtz
instability mode as the axial locationX is increased in the core region, for a cold supersonic jet of Mach
number 1:5 : (a) imaginary partki of k versus real frequencyω ; (b) phase velocityω=kr versusω. 2,
x= 3:0 ; O,x= 5:0 ;4, x= 7:0 ;5, x= 9:0 ; dashed line, analytic continuation intoki > 0 ; red line,
curve described by the intersection point between the branch cuts and the spatial branch.

the ratio of specific heats. Figure 2 shows mean
velocity and mean density profiles for a cold su-
personic jet of Mach number 1:5. Note that for
cold jets the ratioT∞=T0 is a function of the Mach
number so that, the only control parameter is the
Mach number.

On substituting foru andρ equations (5) and
(6) into the momentum integral equation, an al-
gebraic relationship can be found betweenh and
b in the annular mixing region. Then, the axial
development of the jet is completely defined by
the axial variation of the jet half-widthb(X). The
length of the uniform core is obtained by using
the modified formulae given by Tam et al[15]. In
the literaturedb=dx is referred to as the spreading
rateσ of the mixing layer. For the Gaussian mean
velocity profile, we have the relationdb=dx=
ε = 1:2658=σ. The variation ofσ as a function
of the jet exit Mach number,M, has been tab-
ulated by Birch and Eggers[2]. As an example,
for M = 1:5, we havedb=dx= ε = 0:088 in the
core region. Note also that for supersonic cold
jets, experimental measurements have shown that
db=dx� 0:10.

5 General methodology ; numerical results

Different complex pairs(ω;k) were determined
by numerical integration of the linearized invis-
cid, compressible equations of motion, together
with boundary conditions given by (2) outside
the jet. At each value of the axial location, the
phase velocity of the neutral wave was located
by searching for the zero of the growth rate�ki ,
for positiveω. As the location is varied, the spa-
tial branch moves in the complexk-plane. The
associated parametric dependence of the real and
the imaginary partskr andki on ω andx is dis-
played in figure 3, for a cold jet of Mach num-
ber M = 1:5 and for the axisymmetric Kelvin-
Helmholtz mode. The numerical procedure to
determine the spatial branches involves the defi-
nition of the functionλ(k;ω) on its Riemann sur-
face. Subsequently spatial branches are analyt-
ically continued into the second Riemann sheet
for damped waves (ki > 0), if necessary, as shown
in figure 3 forx� 6:3.

It is interesting to note that the point of zero
growth rate describes a curve in the complexk-
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Fig. 4 Cross-stream behaviour of neutral axisymmetric instability waves for a cold supersonic jet of
Mach number 1:5, for several axial locations. (a), (b) :x= 5:5 (solid line) ;x= 6:0 (dashed line). (c),
(d) : x= 6:5 (solid line) ;x= 7:0 (dashed line).

plane, asx is increased from the origin to the
end of the core region. This curve may lie in
the vertival stripjkr j < k0 corresponding to su-
personic phase velocities as shown by the solid
red line in figure 3. According to the defini-
tion of branch cuts, this part of the curve gives
axial locationsxi < x < xs and frequencies for
which the cross-stream decay of neutral insta-
bility waves is algebraic, as shown in figure 4
(c,d), for x = 6:5 andx = 7:0. For 0< n < 4
andM = 1:5, the spatial branches remain in the
domains of analicity of (pressure) eigenfunctions
φ̂n so that the amplitudes become exponentially
small (dissipate) asr ! ∞, as for the axisym-
metric instability wave in the region 0< x < xi ,
xi = 6:3. It follows that the cross-stream decay of
pressure disturbances satisfies boundedness con-
ditions for all positive frequency. Figure 4 (a,b)
shows the cross-stream decay of the neutral ax-
isymmetric instability wave forM = 1:5 and for
two locationsx = 5:5, x = 6:0. The above rea-
soning presents the advantage of uniquely deter-
mining which spatial branches are pertinent to
acoustic radiation outside the jet. Figure 5 gives
the evolution of the lower boundxi as the Mach
number varies in the range 1:0 < M < 2:0. For
low supersonic jetsxi moves outside the core re-

gion to go into the fully developed region, where
the centreline mean velocity of the jet is a de-
creasing function ofx. One may think of contin-
uing the numerical computations in order to have
xi . But the present approach fails when the order
of magnitude of the frequency becomes compa-
rable with that of the slow space variableX = εx
and, a complete asymptotic analysis must be de-
veloped in the case whereλ is a small parameter.
Note also that for the axisymmetric mode, it was
not possible to find an upper boundxs within the
core region whereas it was obtained with no dif-
ficulty for other azimuthal wavenumbers. This is
illustrated in figures 5-6.

6 Concluding remarks

We have examined the near-field pressure decay
generated by instability waves in low supersonic
cold jets as a source of noise. As already indi-
cated in section 3, the subsonic-supersonic tran-
sition is governed by a turning-point problem,
which gives the evolution of the cross-stream
transition from a dispersive behaviour to a dis-
sipative behaviour, outside the jet. For cold jets
this transition holds only for the axisymmetric in-
stability waves associated with the large turbu-
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Fig. 6 Evolution of lower and upper boundsxi

andxs, respectively, forn= 1 (solid line) andn=
2 (dashed line) when the Mach number varies.
The circle gives the point wherexi = xs, corre-
sponding toω = 1:7, for the helical mode.

lence structures. This axisymmetric structure is
then the dominant contributor to acoustic radia-
tion with a cross-stream wavenumber which be-
haves as the square root of the threshold distance
k2�k2

0 wherek is the wavenumber of the neutral
instability wave. This result is in good agreement
with the measurements of Yu and Dosanjh [17],
obtained for a cold jet withM = 1:5.

For supersonic jets at moderate supersonic
Mach number (typicallyM > 1:6), the entire his-
tory of the spatial evolutions of instability waves
need to be taken into account in determining the
contribution of each azimuthal wavenumbers and
the physical regions concerned by the radiation
of sound.

Finally, we note that the generalization of
these concepts to subsonic jets is an open ques-
tion (see Cooper and Crighton[4] for a discussion
of acoustic radiation in low-speed axisymmetric
jets).

This study has been supported by the French
government and by ONERA.
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