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Abstract

The wave equation describing the propagation
of sound in an unidirectional shear flow, has
had only two exact solutions in the literature,
one concerning a linear velocity profile and an-
other concerning an exponential boundary layer,
both for an homentropic shear flow and unre-
stricted Mach number. The same wave equa-
tion is shown to apply to the acoustic waves in
an isentropic, non-homentropic shear flow, re-
stricted to low Mach number. This is a particu-
lar case of the acoustic wave equation in an isen-
tropic, non-homentropic shear flow, valid with-
out restriction on Mach number. The cases dealt
with in the literature imply constant sound speed
and hence for a perfect gas, isothermal condi-
tions. The present paper concerns an homener-
getic mean flow which allows for non-uniform
sound speed in a non-isothermal unidirectional
shear. The sound field due to a time harmonic
line source is considered outside the homener-
getic shear flow and compared with the homen-
tropic shear flow for sound incident on a bound-
ary layer over a rigid wall.

1 Introduction

The propagation of sound in shear flows is spec-
ified by a wave equation ([22], [34], [45], [43],
[39]) which has been studied mostly by numer-
ical and approximate analytical methods, with
three motivations in mind: (i) propagation in
ducts containing a shear flow, such as jet engine

ducts ([51], [40], [37], [23], [48], [49], [14], [15],
[31], [50], [36], [28]); (ii) effect of boundary lay-
ers, on sound near a wall, such as fuselage or
cabin of an aircraft ([1], [17], [18], [42], [21]);
(iii) effect of laminar shear layers on sound trans-
mission, e.g. shear layers of a jet exhaust or wake
of a control or high-lift device ([38], [20], [2], [3],
[33]). The model of a shear layer as a laminar
shear flow of finite width ([29]) is intermediate
between a vortex sheet ([38], [41]) as a disconti-
nuity of tangential velocity, and a irregular shear
layer ([26], [5], [6], [7], [8]), which may entrain
turbulence ([35], [46], [25], [24], [9], [10], [11]).

In the present paper sound propagation in
laminar shear flow is considered. The simplest
velocity profile is the linear shear, which may
be matched to uniform streams to represent (i)
a boundary layer near a flat wall, (ii) a double
boundary layer in a parallel-sided duct or (iii) a
shear layer between stream of different veloci-
ties. The effect of the uniform flow reduces to
a Doppler effect, whereas the linear shear has a
critical layer, which has been considered in the
literature, sometimes implicitly, by four meth-
ods of solution: (a) in terms of parabolic cylin-
der functions ([19]), (b) in terms of Whittaker
functions ([29], [30]), (c) in terms of conflu-
ent hypergeometric functions ([47], [32], [33])
and (d) as a linear combination of Frobenius-
Fuchs series which are even and odd relative to
the critical layer ([13]). These four methods ad-
dress the acoustic wave equation in linear shear
flow, which has two singularities: one regular, at
the critical layer and another irregular, at infin-
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ity, where the mean flow velocity diverges. In
the neighborhood of the regular singularity ([27],
[16], [44]), the Frobenius-Fuchs method supplies
a pair of linearly independent solutions in power
series (in the case of a linear shear flow there is
no logarithmic singularity at the critical layer).
In the neighborhood of the irregular singularity
([27]), the Frobenius-Fuchs method breaks down,
i.e. provides no solution at all or at most one
solution; in this case the method of normal inte-
grals or infinite determinants may be used. They
are not needed for the linear shear flow, since the
wave equation has only two singularities and thus
the expansion about the regular singularity (i.e.
the critical layer), has infinite radius of conver-
gence (up to the irregular singularity at infinity).
Note that the critical layer and other singularities
of the wave equation determine the form of its
solution.

All the literature mentioned before, concern-
ing the acoustics of unidirectional shear flow, as-
sumes uniform sound speed; since for an unidi-
rectional shear flow, the mean flow pressure is
uniform, it follows from the equation of state,
that the mean flow mass density, temperature and
entropy are also uniform, i.e. all those results
concerns the acoustics or stability of linear, ho-
mentropic shear flow. In order to assess the ef-
fect of not assuming an homentropic mean flow,
in the present paper a linear homenergetic shear
flow is considered, for which the stagnation en-
thalpy, not the entropy, is conserved. In this case
the sound speed is related to the mean flow ve-
locity, i.e. is no longer isothermal, i.e. it can
support a temperature gradient. This introduces
an extra term in the acoustic wave equation; be-
sides, it adds another two singularities, at the crit-
ical flow conditions, where the sound speed van-
ishes. Thus, whereas the acoustic wave equa-
tion in a linear shear flow has two singularities
in the homentropic case (treated in the literature),
in the present homenergetic case it has four sin-
gularities: (i) a regular singularity at the critical
layer and an irregular singularity at infinity, in-
herited from the low Mach number (or homen-
tropic) case; (ii) two regular singularities at the
critical flow conditions, which occur for high-

speed non-homentropic mean flow.
In order to compare the homentropic and the

homenergetic models, the sound field due to a
time harmonic line source outside the boundary
layer for an homogeneuous shear flow is com-
pared with the homenergetic case.

2 Homentropic and homenergetic mean
shear flows

In [12] the authors derived the wave equation for
an unidirecitonal sheared mean flow where the
sound speed is allowed to vary in a transverse di-
rection:

d
dt

(
1
c2

d2p
dt2

−∇(logρ0) .∇p−∇2p

)

+2U ′ ∂2

∂x∂y
= 0

(1)

Now, since the mean flow properties depend
only on the transverse coordinatey, i.e. the mean
flow is steady and longitudinally uniform, it is
convenient to use the a Fourier decomposition in
time t and longitudinal coordinatex:

p(x,y, t) =
Z

R2
ei(ωt−kx)dωdk (2)

where P(y;k,ω) denotes the acoustic pressure
perturbation spectrum, for a wave of frequency
ω and longitudinal wave numberk at positiony.
The dependence of the acoustic pressure on the
latter is generally not sinusoidal, i.e. is specified
by substituting (2) in (1), viz.:

(ω−kU)P′′+
2[kU′+(ω−kU)c′/c]P′+

(ω−kU)[(ω−kU)2/c2−k2]P = 0.

(3)

All the literature on the acoustics of linear
shear flows ([34], [19], [20], [29], [30], [47],
[32], [33], [13]) assumes an homentropic flow,
i.e. constant entropy; in this case the sound speed
is constant, and the wave equation (3) reduces to
the well-known form ([22], [45], [39])

(ω−kU)P′′+2kU′P′+

(ω−kU)[(ω−kU)2/c2−k2]P = 0,
(4)
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which is the one considered in all of the ref-
erences above. The derivation of (3) applies
equally well to isentropic, non-hometropic mean
flow, in which the wave equation (4) holds only
at low Mach number, when the sound speed is
constant. In the present paper neither the restric-
tion to homentropic mean flow nor the restriction
to low Mach number mean flow is made, so the
equation (3) does not reduce to (4), i.e. the mean
flow temperature is not assumed to be uniform.
Thus the acoustic wave equation (3) describes the
propagation of sound in a non-isothermal unidi-
rectional shear flow, if the isentropic condition is
retained, but the homentropic condition is not im-
posed. A temperature profile, which is consistent
with isentropic, non-homentropic mean flow, i.e.
allowsρ0, T, c to vary from one streamline to the
next (i.e. as function ofy), is the condition ([4])
of homenergetic mean flow, i.e. constant stagna-
tion enthalpy; this relates the sound speedc(y)
and mean flow velocityU(y) at arbitrary stream-
line to the stagnation sound speedc0 by

[c(y)]2 = c2
0− ε2[U(y)]2

whereepsilon=
√

(γ−1)/2. Thus the acoustic
wave equation in a high-Mach number homener-
getic shear flow:

(ω−kU)(c2
0− ε2U2)P′′+

2U ′[k(c2
0− ε2U2)− ε2U(ω−kU)]P′+

(ω−kU)[(ω−kU)2−k2(c2
0− ε2U2)]P = 0

(5)

has the following singularities: (i) a critical layer
where the Doppler shifted frequency vanishes:

0 = ω∗(yc) = ω−kU(yc) ∴ U(yc) = ω/k,

i.e. the mean flow velocity equals the acous-
tic phase speed calculated form the horizontal
wavenumber; (ii) two critical flow points, where
the sound speed vanishes:

0 = c(y±) ∴ U(y±) =±c0/ε =±
√

2/(γ−1);

(iii) the points at infinityy = ±∞ may also be
singularities.

In order to complete the specification of the
wave equation (5) a linear shear flow is consid-
ered:

U(y) = Ωy, (6)

for which the vorticity is constantΩ = dU/dy =
const and specifies the position of the critical
layer, viz.

yc = ω/Ωk,

which is generally distinct from the two critical
flow points

y± =±c0/εΩ.

Coincidence would be possible only foryc = y+
if the phase speed has a precise relation to the
stagnation sound speed

ω
k

=
c0

ε
,

for propagation in the positivex-directionk > 0;
alternativelyyc = y− for propagation in the nega-
tive x-directionk< 0. The change of independent
variable

ζ := y/yc = Ωky/ω,

places the critical layer at the point unityζc = 1
and transform the wave equation (5) to:

(
1−Λ2ζ2)(1−ζ)T ′′+

2
(
1−Λ2ζ

)
T ′−

α(1−ζ)
[
1−Λ2ζ2−β(1−ζ)2]T = 0,

(7)

where T(ζ;α,β,Λ) = P(y;k,ω,c0). Here the
three dimensionless parameters

α := (ω/Ω)2, β := ω/kc0 Λ := εω/kc0

denotes, respectively, (i) the square of the ratio of
wave frequencyω to mean vorticityΩ, which is
smaller for larger shear flow effect; (ii) the square
of the ratio of horizontal phase speedu = ω/k
to sound speedc0, viz. β = u/c0, so thatβ = 1
for horizontal propagation,β > 1 for transversely
propagating wavesω > kc0 andβ < 1 for trans-
versely evanescent waves; (iii)Λ = 0 for low
Mach number flowc = c0 or γ = 1 or ε = 0, so
thatΛ 6= 0 is a measure of high speed effects.
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The change of independent variable

ξ =
ζ−1

1/Λ−1

shifts the regular singularities at the critical layer
and critical flow points to:

ζc,ζ± = 1,±Λ−1 7→ ξc,ξ+,ξ− = 0,1,
Λ+1
Λ−1

:= F

(8)
and leads to the differential equation

ξ(ξ−1)(ξ−F)R′′−2[F−Λξ/(Λ−1)]R′−
α(1−1/Λ)2ξ[(ξ−1)(ξ−F)+β2ξ2/Λ2]R= 0,

(9)

whereR(ξ;α,β,Λ) := T(ζ;α,β,Λ). The point at
infinity is an irregular singulary of the wave equa-
tion.

Since the critical layer corresponds to the reg-
ular singularityξ = 0 of the differential equation
(9), the solution in its neighborhood can be deter-
mined by the Frobenius-Fuchs method (see [12])

R(ξ) = (A+Blogξ)R3(ξ)+B ¯̄R0

whereA, B are constants of integration and

R3(ξ) =
∞

∑
n=0

an(3)ξn+3,

which vanishes at the critical layer and has recur-
rence formula for the coefficients,σ ∈ R:

F(n+σ+1)(n+σ−2)an+1(σ) =
2[Λ/(Λ−1)] (n+σ)(n+σ−2)an(σ)−[

αF(1−1/Λ)2− (n+σ−1)(n+σ−2)
]
an−1(σ)−

(α/Λ)(1−1/Λ)2

[
(1+F)an−2(σ)− (Λ−1)2(1+β2/Λ2)an−3(σ)

]

¯̄R0

∞

∑
n=0

bn(0)ξn,

and
bn(0) = an(0)+ lim

σ→0
σa′n(σ)

3 Line source outside a boundary layer

The linear shear flow assumed before (6) could be
unbounded for the homentropic case and is lim-
ited by the critical flow points (8) in the homen-
ergetic case. In either case the linear shear flow
can be matched to an uniform stream:

U(y) =

{
Ωy if y≤ L

ΩL := U∞ if y≥ L

where L = U∞/Ω is the boundary layer thick-
ness andU∞ the free stream velocity. The criti-
cal layer occurs in the boundary layer ifyc < L or
ω < ΩkL. The acoustic field inside the boundary
layer has been calculated before and the acoustic
pressureP(y;k,ω) and velocity∼ P′(Y;k,ω) are
to be matched acrossy = L to the acoustic field
in the free stream, thus determining the constants
of integrationA, B in the general solutions. In
the free stream the mean flow velocity is constant
and the wave equation (3) simplifies to

P′′∞ +K2P∞ = Sδ(y−y0) (10)

whereK is the vertical wavenumber in the free
stream:

K :=
√

(ω−kU∞)2/c2
∞−k2,

and a line source of strengthSwas placed in the
free stream at a distancey0 from the wall. The
forced solution of (10) is the first term of:

P∞(y;k,ω) =− iS/4K exp[iK |y−y0|]+
C+ exp(−iKy)

and the second term is an upward propagating
wave of amplitudeC+, reflected from the bound-
ary layer (because the source lies in the free
stream). The source strength is chose to beS=
i4K andC+ is determined so as to satisfy a rigid
wall condition. The dimensionless parameters of
the solution in the boundary layer are reconsid-
ered bearing in mind the matching to the uniform
stream, viz.:

α∞ := (ω/Ω)2 = (ωL/U∞)2, β∞ := ω/Kc∞,

Λ∞ = εω/Kc∞ = εβ∞.
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Note the relation between the free stream and
stagnation sound:

c2
0 = c2

∞ + ε2U2
∞ = c2

∞(1+ ε2M2
∞), M∞ := U∞/c∞

whereM∞ denotes the free stream Mach number.
The distance from the wall is made dimensionless
dividing by the boundary layer thickness:

z := y/L = Ωy/U∞,

Finally, using the above non-dimensional param-
eters, the vertical wave number can be written as

K = k
√

(β−M∞)2−1,

so that it is real, i.e. waves propagate in the free
stream iffM∞−1≤ β∞ ≤ 1+M∞.

4 Comparison of homentropic and homener-
gic cases

The sound field due to a time harmonic line
source outside a boundary layer with a linear ve-
locity profile is plotted next as a function of di-
mensionless distance from the wall in the case of
homenergetic and homentropic shear flow.

Figures 1–4 concern a comparison of the
sound field due to a line source over a rigid wall,
at a distance of two boundary layer thickness,
for a boundary layer with a linear velocity pro-
file in homentropic (dashed line) or homenergetic
(solid line) conditions. The first two plots con-
cern a case of wave frequency equal to the vor-
ticity α∞ = 1 and oblique upstream propagation
β∞ = 4, for which there is no critical layer in the
boundary layer. The amplitude (Figure 1) is al-
most identical for the homentropic (S) and home-
nergetic (E) case at low free stream Mach number
M∞ = 0.1, but the differences increases with in-
creasing Mach numberM∞ = 0.3,0.7,1, leading
to very different values of the wall pressure in
the supersonic caseM∞ = 3.5, when the acous-
tic pressure at the wall is much larger in the ho-
mentropic case. The phase (Figure 2) is larger
for homentropic case than for the homenergetic
case, with a small difference at low Mach number
M : ∞ = 0.1 and a more noticeable difference for

increasing Mach numberM∞ = 0.3,0.7,1. The
exception is the supersonic free streamM∞ = 3.5,
for which the phase is the same in the home-
ntropic and homenergetic cases; note that for
β∞ = 4 this is the only case2.5 < β∞ < 4.5 of
propagation in the free stream.

The final two plots (Figures 3–4) concerns
again wave frequency equal to vorticityα∞ = 1,
with the conditionβ∞ = M∞/2 which places the
critical layer at the middle of the boundary layer
zc = yc/L = β∞/M∞ = 0.5. The amplitude (Fig-
ure 3) of the sound field is always larger in the
homentropic case than in the homenergetic case;
it is almost uniform in the homentropic case and
has a dip in the homenergetic case, close to the
border of the boundary layer. With increasing
Mach number, the amplitude decreases monoton-
ically in the homentropic case and tends to in-
crease in the homenergetic case. The phase (Fig-
ure 4) differs most between the homentropic and
homenergetic case for the largest Mach number
and is more uniform in the former case.

The near coincidence of the homenergetic
and homentropic case at low Mach number re-
sults from the sound speed being nearly constant
in that case, so that the wave equation (3) sim-
plifies to the usual form (4); as the Mach number
increases, the extra term in (3) compared with (4)
plays a larger role, which in turn entails both a
quantitative as well as a qualitative difference in
the sound field generated by both methods.
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Fig. 1 Comparison of sound field in a linear
boundary layer generated by homenergetic (solid
lines) and homentropic (dashed lines) models:
magnitude.α∞ = 1, β∞ = 4.

Fig. 2 Comparison of sound field in a linear
boundary layer generated by homenergetic (solid
lines) and homentropic (dashed lines) models:
phase.α∞ = 1, β∞ = 4.

Fig. 3 Comparison of sound field in a linear
boundary layer generated by homenergetic (solid
lines) and homentropic (dashed lines) models:
magnitude.α∞ = 1, β∞ = M∞/2.

Fig. 4 Comparison of sound field in a linear
boundary layer generated by homenergetic (solid
lines) and homentropic (dashed lines) models:
phase.α∞ = 1, β∞ = M∞/2.
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