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Abstract

Thispaperinvestigateslaminar-to-turbulenttran-
sition in incompressibleflow past a 3-D open
shallow rectangularcavity. Previousstudieshave
indicatedthat the transition may occur at high
Reynolds numbers. This study includes two
parts: 1) numericalsimulationof the transition,
and2) predictionof the areaof the transitionin
theshearlayerof thecavity. Thelargeeddysim-
ulation(LES) approachis usedin thesimulation
study. Thefiltered,3-D unsteadyincompressible
Navier-Stokesequationsaresolved usingfinite-
differenceschemes,with a localized dynamic
subgrid-scalemodel to simulatethe small-scale
motions. For the predictionof the areaof the
transition,a new, spectral-entropy basedmethod
is studied. The proposedmethodintegratesthe
spectralentropy and energy of the pressureto
form a parameterfor predictingthe location of
thetransition.

Typicalresultsof computationwith Reynolds
numbersof 20,000,50,000and100,000arepre-
sented. The results indicate that the transi-
tion to turbulence occurredin the shearlayer
at Reynolds numbersof 50,000 and 100,000.
TheΛ-vortex structuresandthe"half mushroom"
structuresareobserved in the transitionalflows.
The proposedmethodfor predictingthe transi-
tion is tested. The resultsof the predictionare
comparedwith theresultsobtainedbasedonLES
andhaveshown goodaccuracy.

1 Introduction

This paper studies the numerical simulation of
laminar-to-turbulent transition in incompressible
flow past a 3-D cavity on solid surface. This re-
search is an extension of our previous studies,
which were concerned with incompressible lam-
inar flow past a 3-D open rectangular cavity, at
moderate Reynolds numbers in the range from
3,000 to 10,000 [9, 10, 11, 12]. As revealed
in the previous studies, as the Reynolds number
was increased, the flow fields became highly un-
steady and complex, which would strongly af-
fect the boundary layer downstream of the cav-
ity; at some higher Reynolds number, the flow
would go into the transitional and turbulent re-
gions. This paper continues the study, focus-
ing on two subjects: 1) numerical simulation of
laminar-to-turbulent transition in incompressible
flow past a 3-D open shallow rectangular cavity,
and 2) prediction of the area of the transition in
the shear layer. The prediction and control of
transition in shear flows is of high practical rel-
evance. It affects not only skin friction and flow
separation, but also heat and mass transfer [1].

Transition and turbulence are unsteady and
inherently three dimensional, with both large-
scale and small-scale motions. The most straight-
forward approach to the solution of transition and
turbulence is direct numerical simulation (DNS),
which directly solves the unsteady Navier-Stokes
(NS) equations. This has the advantage that
all the scales of turbulence can be resolved, in-
cluding those that are difficult or impossible to
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measure experimentally. But this approach can
be computationally expensive, and therefore has
largely been limited to simple geometries (e.g.
flat plate boundary layers or homogeneous flows)
at low Reynolds numbers [5]. To overcome this
problem, different methods have been studied
which approximate the turbulent flow field as a
combination of a mean flow field plus a disturb-
ing flow field. The mean flow field accounts
for the large-scale motions, which can be re-
solved with large grid space; the disturbing flow
field simulates the unresolved small-scale mo-
tions, which can be produced by an additional
turbulence model. Typically, the mean flow field
may be obtained by averaging the NS equations
over time or space, and the turbulence model
may be an empirical model or a subgrid-scale
(SGS) model. These correspond to the Reynolds-
averaged NS equations (RANS) approach and the
large eddy simulation (LES) approach, respec-
tively. More specially, in LES, the spatially av-
eraged NS equations are used to resolve dynam-
ically important large scales, and an SGS model
is used to simulate the effect of the unresolved
small-scale motions. The SGS model is crude,
but in most cases it gives a sufficiently accu-
rate estimate of the effect of the small motions.
The LES approach provides a simple yet effec-
tive means of simulating the mean-motion prop-
erties of a flow throughout the transition region
for a reasonably large class of flows. LES can
track the temporal evolution of flow disturbances
and preserves the frequency content of the free-
stream disturbances, which is vital to the transi-
tional process [7].

In this paper, the LES approach is used in
the simulation of the transition, with Reynolds
numbers equaling 20,000, 50,000 and 100,000,
respectively, assuming a laminar Blasius bound-
ary layer inflow condition. In addition, a new,
spectral-entropy based method is proposed for
predicting the area of laminar-to-turbulent tran-
sition in the shear layer of the cavity. The
new method locates the transition based on the
changes in the pressure spectrum from laminar
flow to transitional/turbulent flow. The proposed
method may be used for the selection of an ap-

propriate numerical method for the flow structure
being modeled. For example, based on the re-
sult of the prediction, the laminar NS equations
may be used for the laminar flow while LES is
used for the transitional and turbulent flow. In
comparison to the use of only LES for the whole
flow field, this model adaptation method can sig-
nificantly reduce the computation time and at the
same time retain the simulation accuracy.

2 Large Eddy Simulation

It is assumed that the flow is modeled by the
3-D, unsteady, incompressible NS equations.
The LES approach includes two parts: 1) the
spatially filtered NS equations for large-scale
motions, and 2) the SGS model for the small-
scale motions that are unresolved in 1). The
filtered governing equations are given as follows:
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∂xi

� 0 (1)
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where, the over-bar denotes the filtered variables
corresponding to the large-scale motions,

ui is the non-dimensional velocity, which is a
function of the non-dimensional coordinate
x j and the non-dimensional timet;

p � p � x j � t � is the non-dimensional pressure;

Re
� U∞L � ν is the Reynolds number, whereU∞

is the free stream velocity,L is the length of
the cavity, andν is the kinematic viscosity;

andτi j represents the subgrid-scale (SGS) stress
tensor, given by

τi j
� uiu j

� ūiū j (3)

The SGS stress componentsτi j correspond to
small-scale (i.e. disturbing) motions. These are
not resolved in the filtered governing equations.
The dynamic SGS viscosity model proposed by
Germano [2] is used to simulateτi j. Further de-
tails are given later.
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A pressure Poisson equation is employed to
couple changes in the velocity field with changes
in the pressure field, to satisfy the required conti-
nuity condition Equation (1). The filtered version
of the pressure Poisson equation can be shown as
follows

∂2p̄
∂xi∂xi �

∂
∂xi

	 1
Re

∂2ūi
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∂τi j
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 ū j
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∂
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�
(4)

Equations (1), (2) and (4) are solved using the
second-order implicit Crank-Nicolson finite dif-
ference scheme, which has second-order accu-
racy in both time and space. At each time step
the computation involves the solution of a lin-
ear algebraic system with a tri-diagonal matrix.
This can be efficiently solved using the alternat-
ing direction implicit (ADI) method, which is the
method employed in present computation. The
SGS stress Equation (3) are modeled by a lo-
calized version of the dynamic SGS model, de-
scribed by Piomelli and Liu [6]. In this model,
the model coefficient is calculated by performing
a local five-point average for the streamwise and
spanwise directions and a three-point average for
the wall-normal direction. The total viscosity, in-
cluding the molecular viscosity and the eddy vis-
cosity, is forced to be non-negative to ensure nu-
merical stability.

Fig. 1 shows the geometric configuration
of the rectangular cavity used for computation,
whereL, W andD represent the length, width and
depth of the cavity, respectively. Only a half span
of the cavity is shown for clarity. In all the stud-
ies, an open shallow cavity is assumed, which has
a length-to-depth ratioL � D � 4, and a length-
to-width ratioL � W � 1� 3. The Reynolds num-
bers are chosen based on the length of the cavity.
A laminar boundary layer inflow condition is as-
sumed.

The buffer domain technique, proposed by
Street and Macarage [8], is used for the out-
flow boundary condition, in which the governing
equations are gradually parabolized in a buffer re-
gion which is appended at the end of the compu-

tational domain, thus eliminating the necessity of
applying the outflow boundary conditions.

Three-dimensional Cartesian non-uniform
grids are generated with clustering of nodes near
walls and in the shear layer region. These clus-
tered nodes account for greater gradients in ve-
locity and pressure in these regions.

Fig. 1 The rectangular cavity used for computa-
tion (only half span is shown for clarity)

3 Typical LES Results of Transition

This section presents selected results of compu-
tation of incompressible flow past the 3-D open
shallow rectangular cavity, shown in Fig. 1, with
Re � 20 000, 50 000 and 100 000, respectively.
The thickness of the laminar boundary layer in-
flow is δ � 0� 05 for Re � 20 000,δ � 0 � 035 for
Re � 50 000, andδ � 0 � 025 for Re � 100 000,
which correspond to an inflow distance of ap-
proximately 2L.

Fig. 2 shows the contours of the streamwise
velocity on thex 
 y plane atz � 0� 26 (with	
z 
 D

� � δ � � 0 � 3), away from the bottom of the
cavity, forRe � 20 000, 50 000 and 100 000, re-
spectively. AtRe � 20 000, small vortices can
be seen around the side walls of the cavity. Al-
though the Kelvin-Helmholtz (K-H) instability
can be observed in the shear layer over the cav-
ity, the flow should remain laminar due to the
absence of theΛ-vortices [3]. At Re � 50 000,
theΛ-vortices are apparent in the shear layer, as
structures at about 60� to the main flow direc-
tion caused by curving and stretching of the K-H
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vortices into the cavity. They have already be-
come strong enough and gone into the stage of
transition. TheΛ-vortices are followed imme-
diately by the laminar breakdown and transition
into turbulence. AtRe � 100� 000, the occur-
rence of theΛ-vortices, and hence the transition,
is moved upstream closer to the front wall of the
cavity. ForRe � 50� 000 and 100� 000, the 2-D
Tollmien-Schlichting (TS) waves are observed in
the boundary layer before the cavity, as shown
in Figure 2 (b) and (c). Above the cavity, the
laminar flow is approaching breakdown and is
in transition; three-dimensional disturbances are
obtained in the shear layer. At the downstream of
the cavity, the flow becomes turbulent.

Fig. 3 shows the instantaneous velocity vec-
tors on thex � z plane aty � 0, for Re � 20� 000,
50� 000 and 100� 000, respectively. In all the three
cases, a primary vortex is found at the down-
stream end of the cavity, and a secondary vortex
is found upstream. In addition, some tertiary vor-
tices can be found upstream of the cavity below
the shear layer. All the three cases indicate the
K-H instability in the shear layer over the cavity.
As shown in Fig. 3, as theRe increases, the K-H
instability becomes stronger, as indicated by the
increasingly violent shear layer oscillations, and
the tertiary vortices become larger and develop
closer to the front wall of the cavity. It can be no-
ticed that, as theRe increases, the occurrence of
the K-H instability is located away from the rear
wall of the cavity towards upstream.

Fig. 4 presents the contours of the span-
wise vorticity corresponding to Fig. 3, showing
the variations of the boundary layer and shear
layer during the transition. AtRe � 20� 000, the
shear layer directly impinges on the downstream
boundary of the cavity, indicating that the flow
may have not undergone transition to turbulence.
At Re � 50� 000, a vortex is shed from the shear
layer in the middle of the cavity, a detached high
shear layer appears above the cavity, and multi-
ple shear layer roll-ups occur, indicating that the
flow reaches laminar breakdown and is in tran-
sition to turbulence. A similar transitional vor-
tical phenomena can be observed for the flow at
Re � 100� 000. In comparison toRe � 50� 000,

atRe � 100� 000, the occurrence of the transition
is moved upstream closer to the front wall of the
cavity, due to an earlier shedding of the vortex
from the shear layer.

Fig 5 shows the contours of the streamwise
velocity on they � z plane atx � 2� 5, located
at the downstream of the cavity. As shown, for
Re � 50� 000 and 100� 000, the distortions of the
mean velocity are so strong that the so-called
"half mushroom" structures are observable. This
structure (or vortex rollover state) is accompa-
nied by the double inflection points in the wall-
normal profiles of the streamwise velocity.

4 Prediction of the Location of Transition -
Theory

In this paper, a new approach for locating the area
of laminar-to-turbulent transition is proposed.
This approach locates the transition based on the
changes in the pressure spectrum from laminar
flow to transitional/turbulent flow. To illustrate
this approach, Figure 6 shows the power spec-
trum of the pressure fluctuation at differentx lo-
cations, i.e. before, within, and after the cavity,
for Re � 50� 000. As shown in the figure, be-
fore the cavity (x � 0), there is almost no ran-
dom disturbance in the pressure, indicating that
the flow is laminar. Fluctuations in the pressure
are seen within the cavity (0� x � 1), which are
slow before the transition and so the spectrum is
concentrated in the low-frequency region. After
the transition, at the downstream of the cavity
(x � 1), the pressure becomes violent, so mul-
tiple spectral peaks are seen across a wider fre-
quency range. In general, it may be assumed
that the pressure of laminar flow exhibits a slow-
varying and often pseudo-periodic characteristic,
and therefore its power spectrum is concentrated
in the low-frequency region with a small band-
width; when the flow goes into transition and into
turbulence, the pressure becomes more erratic,
showing the characteristic of a white noise, and
therefore its power spectrum will be distributed
in a much wider frequency range. Therefore,
the difference in the spread or bandwidth of the
power spectrum of the pressure fluctuation can

4



Prediction of Laminar-to-Turbulent Transition in Incompressible Flow Past 3-D Cavity

be exploited for separating the laminar flow and
transitional/turbulent flow. To achieve, the en-
tropy defined in information theory can be used
to quantify this difference.

In information theory [4], entropy is a mea-
sure of the degree of uncertainty on the value of a
random variable. Assume that a random variable
can take any of theN valuesυ1, υ2, � � � , υN , with
a probabilityq � υn � for taking valueυn, satisfying
the constraintsq � υn ��� 0 and ∑N

n � 1 q � υn ��� 1.
Then the entropy is defined as

H �! 
N

∑
n � 1

q � υn � lnq � υn � (5)

It can be shown that when allq � υn � ’s are equal,
i.e., when the random variable takes each of the
N values with equal probability and hence its
value is most uncertain,H reaches the maxi-
mum [4]. In the maximum-entropy situation, the
probability distributionq � υn � spreads over the
entire value setυ1, υ2, � � � , υN and the shape of
the distribution is completely flat. As such, the
value of entropy reflects the spread and flatness
of a distribution. To apply this to the power
spectral distribution, for a given power spectrum
s � fn � , where s � fn � represents the power at the
frequency componentfn, n � 1, 2, � � � , N, we can
obtain a probability distributionq � fn � based on
s � fn � by normalizing thes � fn � , i.e.

q � fn �"� s � fn �
∑N

k � 1 s � fk � (6)

Since a laminar flow typically has a narrow-band
power spectrum that is neither flat nor widely
stretched over the entire frequency domain, its
distribution q � fn � should have a low entropy.
Since a transitional/turbulent flow has a more
widely spread and hence more flat power spec-
trum than the laminar flow, its distributionq � fn �
should have a higher entropy. Thus, a significant
rise in the value of the entropy can be an indica-
tion of the occurrence of a laminar-to-turbulent
transition.

When the pressure fluctuation is dominated
by random numerical instability, a high entropy

may also result. This problem can be overcome
by ignoring the pressure fluctuation with a small
energy. This leads to a parameter, the product of
the entropy and energy for predicting the transi-
tion:

α � H � E (7)

whereE is the energy of the pressure fluctuation.
In the simulation, the parameterα is calcu-

lated for each time t and each location (x, y, z).
The required power spectrum and energy of the
pressure fluctuation for each location at timet
are calculated based onM pressure samples at
that location observed at and beforet (M � 100
in the present computation). The power spec-
trum is derived using Fast Fourier Transforma-
tion (FFT) and the energy is obtained as the sum
of the squared samples.

5 Prediction of the Location of Transition -
Typical Results

The above method has been applied to the lo-
cation of laminar-to-turbulent transition, for the
problem of incompressible flow past a 3-D rect-
angular cavity described in Section 3. As an ex-
ample, Figs. 7, 8 and 9 show the values of the
entropyH, energyE and the parameterα, for
Re � 20# 000, 50# 000 and 100# 000, respectively,
as a function ofx at t � 20, y � 0 andz � 0$ 26.
Fig. 7 indicates that the entropy increases with
Re, which correctly captures the flow instabil-
ity. In particular, Fig. 7 (b) and (c), forRe �
50# 000 and 100# 000 respectively, show a sharp
increase in entropy in the shear layer atx % 0$ 5
andx % 0 $ 1, where the respective transition takes
place. However, before the cavity (x & 0) where
the flow is laminar, the entropy is not small be-
cause of the random numerical instability. Fig. 8
indicates that the energy of the pressure fluctua-
tion caused by the numerical instability is usually
extremely small. Therefore, the effect of the nu-
merical instability can be effectively removed by
multiplying the entropy shown in Fig. 7 by the
corresponding energy shown in Fig. 8. This leads
to the parameterα shown in Fig. 9, which clearly
indicates, by a sharp increase in theα value, that
a transition may have occurred atx % 0 $ 5 for
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Re ' 50( 000, and atx ) 0* 1 for Re ' 100( 000.
The occurrence of a transition forRe ' 20( 000
may be ruled out because of the smallα values.

A further example, showing the parameterα
as a function ofx andy , at t ' 20 andz ' 0 * 26,
is given in Fig. 10. The new feature has clearly
indicated the transition/turbulence areas in bothx
andy directions, at the given time and the hori-
zontal plane. These results of location have been
compared with the results obtained based on LES
described in Section 3 and have shown good ac-
curacy.

References

[1] Bippes H. Basic experiments on transition in
three-dimensional boundary layer dominated by
crossflow instability.Progress in Aerospace Sci-
ence, Vol. 35, pp 363–412, 1999.

[2] Germano M, Piomelli U, Moin P, and Cabot
W. H. A dynamic subgrid-scale eddy viscosity
model. Phys. Fluids A, Vol. 3, pp 1760–1765,
1991.

[3] Huai X, Joslin R. D, and Piomelli U. Large-
eddy simulation of transition to turbulent in
boundary layers. Theoretical and Computa-
tional Fluid Dynamics, Vol. 9, No 2, pp 149–
163, 1997.

[4] Kullback S. Information Theory and Statistics.
1st edition, New York: Dover, 1969.

[5] Piomelli U. Large-eddy simulation: achieve-
ments and challenges.Progress in Aerospace
Science, Vol. 33, pp 335–362, 1999.

[6] Piomelli U and Liu J. Large eddy simulation of
rotating channel flow using a localized dynamic
model.Phys. Fluids, Vol. 7, pp 839–848, 1995.

[7] Singer B. A. Modeling the transition region.
NASA CR-4492, 1993.

[8] Street C. L and Macaraeg M. G. Spectral multi-
domain for large-scale fluid dynamics simu-
lations. Int. J. Applied Num. Meth., Vol. 6,
pp 123–139, 1989.

[9] Yao H, Cooper R. K, and Raghannathan S.
Computation of incompressible flow over three-
dimensional cavities.Proc Advances in Fluid
Mechanics (AFM’2000), Vol. III, pp 125–133,
Montreal, Canada, 2000.

[10] Yao H, Cooper R. K, and Raghannathan S.

Incompressible laminar flow over a three-
dimensional rectangular cavity.International
Journal of Thermal and Fluid Sciences, Vol. 9,
No 3, pp 199–204, 2000.

[11] Yao H, Cooper R. K, and Raghannathan S. Nu-
merical simulation of incompressible laminar
flow over 3-d cavity.Proc Computational Fluid
Dynamics 2000 (ICCFD’2000), pp 253–258,
Kyoto, Japan, 2000.

[12] Yao H, Cooper R. K, and Raghannathan S.
Simulation of three-dimensional incompressible
cavity flows.Proc 22nd International Congress
of Aeronautical Sciences (ICAS’2000), pp pp.
296.1–296.8, Harrorgate, UK, 2000.

6



Prediction of Laminar-to-Turbulent Transition in Incompressible Flow Past 3-D Cavity

(a) Re + 20, 000

(b) Re + 50, 000

(c) Re + 100, 000

Fig. 2 : Contours of the streamwise velocity on
thex - y plane atz + 0 . 26, t + 20

(a) Re + 20, 000

(b)Re + 50, 000

(c) Re + 100, 000

Fig. 3 Instantaneous velocity vectors on thex - z
plane aty + 0, t + 20
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(a) Re / 200 000

(b) Re / 500 000

(c) Re / 1000 000

Fig. 4 : Contours of the spanwise vorticity on the
x 1 z plane aty / 0 , t / 20

(a) Re / 200 000

(b) Re / 500 000

(c) Re / 1000 000

Fig. 5 : Contours of the streamwise velocity on
they 1 z plane atx / 22 5, t / 20

Fig. 6 : Power spectral densities of the pressure
fluctuation at different streamwise locations be-
fore the cavity (x 3 0), in the cavity (04 x 4 1)
and after the cavity (x 5 1), for Re=50,000
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(a) Re 6 207 000

(b) Re 6 507 000

(c) Re 6 1007 000

Fig. 7 : The values of entropyH as a function of
x at y 6 0, z 6 08 26, t 6 20

(a) Re 6 207 000

(b) Re 6 507 000

(c) Re 6 1007 000

Fig. 8 : The values of energyE as a function of
x at y 6 0, z 6 0 8 26, t 6 20
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(a) Re 9 20: 000

(b) Re 9 50: 000

(c) Re 9 100: 000

Fig. 9 : The values of the parameterα as a func-
tion of x at y 9 0, z 9 0; 26, t 9 20

(a) Re 9 20: 000

(b) Re 9 50: 000

(c) Re 9 100: 000

Fig. 10 : The values of the parameterα as a
function ofx andy at z 9 0; 26, t 9 20
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