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Abstract

In this paper, a numerical study is presented con-
cerning three-dimensional co-operative instabil-
ities in vortex pairs. The vortex pair studied
is a generic model for the wake of an aircraft
in cruise flight at large distance behind this air-
craft. A counter-rotating vortex pair can de-
velop two fundamentally different types of insta-
bilities: short-wavelength or elliptic instabilities
and long-wavelength or Crow instabilities. Both
types are considered in this study, as is the role
of both types in the break-up or decay of an air-
craft vortex wake. A brief review is presented
of proposed methods to enhance the wake vor-
tex decay. In a number of these methods, the
short-wavelength instability plays an important
role. Therefore, improving the understanding of
the dynamics of this instability is of great rele-
vance to wake vortex studies. In this paper, the
dynamics of the short-wavelength instability in a
vortex pair is studied in some detail, as is the de-
pendence on Reynolds number.

1 Introduction

A well-known problem in the operation of com-
mercial jet transports is the so-called ’wake vor-
tex hazard’. This problem originates from the
strength and persistence of the vortex pair formed
in the wake of an aircraft. When a following air-
craft encounters this vortex wake, a strong mo-
tion is induced. This can be either a rolling mo-

tion or an acceleration in the vertical direction,
depending on the type of encounter. In the land-
ing and take-off phase of flight the vortex wake
is particularly hazardous. Since the 1970s, the
wake vortex problem has received a lot of at-
tention from various researchers. Crow[3] pre-
sented a linear stability analysis of a counter-
rotating vortex pair, predicting sinusoidal insta-
bilities at wavelengths very similar to those ob-
served in condensation trails of jet transport air-
craft in cruise flight. Following this publica-
tion, this long-wavelength instability (from then
on known as Crow instability) has been an impor-
tant aspect of aircraft wake vortex studies. In the
1970s, more theoretical studies concerning insta-
bilities of vortex flows were performed, for ex-
ample [10], [11], [12], [4], [9]. The research de-
scribed in these publications focused on the char-
acteristics of three-dimensional linear instability
modes. The temporal evolution of the instability
modes was not studied.
The linear stability analyses showed that for the
counter-rotating vortex pair, two fundamentally
different branches exist: the long-wavelength or
Crow instability and the short-wavelength or el-
liptic instability.
In contrast to the long-wavelength instability, the
short-wavelength instability is typically not ob-
served in aircraft trailing vortices, and as a re-
sult has not received as much attention in aircraft
wake vortex studies as the Crow instability. How-
ever, in many of the proposed methods to en-
hance wake-vortex decay, for example [5], [6],
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the short-wavelength instability is forced. This
short-wavelength instability can be expected to
be an effective decay mechanism for wake vor-
tices due to its small-scale structure and large pre-
dicted growth rates. Understanding the dynamics
of this type of instability is therefore of practical
relevance. The numerical results presented in this
study highlight some of the complex features of
this instability at later stages of the temporal evo-
lution. The numerical results in the present study
have been obtained using a three-dimensional
high-order accurate method for the Navier-Stokes
equations for an incompressible medium, as de-
scribed in[8]. The method uses a Fourier colloca-
tion method in the periodic axial direction of the
vortex pair and a compact finite-difference spa-
tial discretization method for the two remaining
non-periodic directions.

2 The decay of a wake vortex

The vortex wake of an aircraft decays under the
influence of molecular viscosity, (atmospheric)
turbulence, stratification and the action of three-
dimensional instabilities. This decay or destruc-
tion progresses relatively slowly, as will be illus-
trated in section 4. In the vicinity of airports this
problem is most severe and, as a result, various
methods to enhance the decay of aircraft wake
vortices have been studied by a number of re-
searchers. Examples of proposed methods are:

• configuring the inboard vortices, in a high-
lift configuration, such that these vortices
remain in a region of high strain. Perturba-
tions on these vortices will then grow very
rapidly. These inboard vortices will excite
a long-wavelength instability in the wing-
tip vortex pair. Examples of such methods
were presented in[6] and [1]

• perturbing the wing-tip vortices by internal
and external density perturbations. This
method was analyzed in [5] as a means
of initiating short-wavelength instabilities.
The density perturbations were conjectured
to be created by temperature variations pro-
duced by combustion of fuel in the wing-

tip region. This method was envisaged for
use during take-off and landings.

Extensive research remains necessary before ei-
ther of these methods can be used in practice.
Passive methods have also been studied. These
methods have less potential benefit, but could
be more easily introduced in practice. A de-
sign optimization of a new airliner for minimum
vortex-wake generation is an example of a pas-
sive method. Since the wake-vortex hazard is par-
ticularly severe in the landing phase, this design
optimization should emphasize high-lift configu-
rations. The ratio of the vortex core radius and
the spacing of vortices in a counter-rotating vor-
tex pair forms the major parameter in the devel-
opment of cooperative instabilities. Both theoret-
ical and numerical studies indicate that this ratio
should be maximized for maximum wake decay.
Therefore, a design optimization is needed that
leads to a roll-up process that creates a maximum
vortex core radius for a given wing span and re-
quired lift.

3 Numerical method

The three-dimensional Navier-Stokes equations
for an incompressible flow are integrated in
time using a fractional-step temporal integration
method of second-order accuracy in time. The
time-advancement method uses a combination
of explicit integration of the non-linear convec-
tion terms, employing the second-order accurate
Adams-Bashfort method, and implicit integration
of the diffusion terms by the Crank-Nicholson
method. The spatial discretization method is de-
scribed in some detail in [8] and is based on
a combination of fourth-order accurate compact
finite-difference techniques and a Fourier collo-
cation method in the periodic axial direction.

4 Numerical results for Crow instability

Figure 1 shows the temporal evolution of the
Crow instability in a vortex pair. The initial
vortex pair consists of two Lamb-Oseen vortices
with a core radius rc. The spacing b of the vor-
tex pair in the unperturbed situation is 5 times
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T = 3.310

T = 3.565

T = 3.820

T = 4.074

Fig. 1 Temporal evolution of Crow instability:
ReΓ = 1.67 · 104, 1283 mesh, rc/b = 0.2, λ/b =

8.0. Shown are iso-surfaces |ω| = 500 s−1.

this core radius, i.e. rc/b = 0.2. Linear stabil-
ity predicts a wavelength λ for the most ampli-
fied Crow instability mode of 8 times this spac-
ing. The computational domain is chosen such
that the dimension is 8.0 b in each of the three
coordinate directions. In this paper, T denotes
non-dimensional time T = t ·Γ/2πb2, i.e. time is

scaled with the time needed for the unperturbed
vortex pair to sink a distance b.
The figure shows iso-surfaces of vorticity magni-
tude |ω| = 500 s−1. This level was chosen since
it highlights many of the characteristic features of
the evolving instability.
The features shown in figure 1, such as the re-
connection of the vortices and the formation of
vortex-ring structures, are typical for the Crow
instability.
To obtain quantitative information on the effect
of the long-wavelength instability on the decay
of the vortex pair, the kinetic energy of the flow
contained in the computational domain is com-
puted. A frame of reference is used that moves
downward with the vortex pair. Then, a Fast Co-
sine Transform in the axial direction of the flow
is applied to the computed kinetic energy con-
tained within the computational domain. The re-
sulting coefficients give information about the ki-
netic energy contained in the finite domain at spe-
cific wavelengths. The mode k = 0 represents the
total kinetic energy of the computational domain.
The evolution of this quantity is shown in figure 2
for two Reynolds numbers. Shown is this energy
normalized by the initial value. The contribution
of the Crow instability can be seen by comparison
with the result for the vortex pair without evolv-
ing Crow instability. As can be expected, the
decay of the total kinetic energy is stronger for
the lower Reynolds number simulation (which
has a kinematic viscosity that is 10 times higher
than that of the higher Reynolds number simula-
tion). For both Reynolds numbers, the effect of
the Crow instability is very significant. However,
the kinetic energy decay is weak for the practical
situation of the wake of a large jet transport. For
example at T = 3, about half of the kinetic en-
ergy is left for a Reynolds number that is a factor
100 lower than for a wake of a large jet trans-
port. Translating T to a distance behind the air-
craft, shows that for a Boeing 747 in cruise flight,
T = 3 corresponds to a distance of more than 16
kilometers. Although the kinetic energy studied
here is not a direct measure for the threat posed
by a wake vortex pair, it does show that the pro-
cess of decay or destruction of a vortex wake by
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Fig. 2 Kinetic energy within computational do-
main: evolution of coefficient k = 0 of Fast Co-
sine Transform in axial direction. With and with-
out developing Crow instability.

the Crow instability is slow. This motivates the
research into devices that enhance this deacy.

5 Numerical results for Widnall instability

Figure 3 shows the temporal evolution of the el-
liptic instability in a vortex pair. The figure shows
iso-surfaces of vorticity magnitude |ω|. The iso-
surfaces 600 s−1 and 900 s−1 show the outer
part of the vortices and are only shown for the

T = 0.000

T = 0.637

T = 1.273

T = 1.909

Fig. 3 Temporal evolution: k̃ = 2.261, rc/b =

0.2, 64×128×128 mesh, ReΓ = 1.67 ·104. |ω|=
600 s−1, 900 s−1 and 1200 s−1.

lower half of the computational domain. The iso-
surfaces 1200 s−1 show the structure of the in-
ner part of the vortices. The instability mode is
characterized by a strong distortion of the vor-
tices, stronger in the inner part of the vortices
than in the outer region of the vortices. This pat-
tern is qualitatively very different from the struc-
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ture of the Crow instability mode. The time-
accurate simulations in this section are initialized
with a pair of Lamb-Oseen vortices with two el-
liptic instability modes superposed on them. The
spatial structure of the initial instability is com-
puted from a normal mode analysis of an iso-
lated Lamb-Oseen vortex, using a procedure sim-
ilar to that of [7]. This analysis gives a set of
non-dimensional axial wave numbers k̃ and a nor-
mal mode corresponding to these wave numbers
for a chosen azimuthal wave number. Here, the
smallest non-dimensional axial wave number, i.e.
k̃ = 2.261, is used. This wave number corre-
sponds to a axial wavelength of 2.512 rc, i.e.
roughly two and a half times the vortex core ra-
dius. The structure is then computed by super-
position of the normal modes for azimuthal wave
numbers −1 and +1. Figure 3 shows the com-
puted initial flow at T = 0.000. Noticeable is the
relatively large initial amplitude of the instability
mode that can be used with this precise initial-
ization. The plots of figure 3 show the evolving
flow at a series of instances in time. The rapid
growth of the instability is apparent, as is the for-
mation of complex flow structures in the vortices
at later stages. The complexity of the flow makes
it difficult to obtain quantitative data from simu-
lations. As with the discussion of the Crow insta-
bility of section 4, the kinetic energy contained
in the computational domain is used as a means
to extract quantitative information about the flow
evolution.

5.1 Kinetic energy decay

To obtain quantitative information on the evolu-
tion of the short-wavelength instability, the ki-
netic energy of the flow contained in the com-
putational domain is computed. A frame of ref-
erence is used that moves downward with the
vortex pair. Then, a Fast Cosine Transform in
the axial direction of the flow is applied to the
computed kinetic energy. The resulting coeffi-
cients give information about the kinetic energy
contained in the finite domain at specific wave-
lengths. Results of this analysis are shown in
figure 4. Results are shown from simulations at
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Fig. 4 Kinetic energy within computational do-
main: evolution of coefficients of Fast Cosine
Transform in axial direction k = 0 (total) and
k = 4 (wave number of instability).

two different Reynolds numbers. As can be ex-
pected, the decay of the total kinetic energy is
stronger for the lower Reynolds number simula-
tion (which has a kinematic viscosity that is 10
times higher than that for the higher Reynolds
number simulation). Both plots show an initial
growth of the energy at the wave number of the
elliptic instability, indicating a rapid growth of
the instability in the vortex pair. However, this in-
crease in kinetic energy stops at later stages of the
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evolution, indicating a saturation of the growth
of the elliptic instability mode. The phenomenon
was previously discussed by [7] and has serious
implications for the relevance of this instability
in aircraft wakes.

5.2 Elliptic instability in aircraft wakes

The numerical results presented in this section
show the saturation of the amplitude growth. Fur-
ther numerical study, including test cases with
a different ratio rc/b, shows that the saturation
amplitude is a function of r2

c/b2. For a typical
aircraft (cruise) configuration, this ratio is very
small (rc/b ≤ 0.05), so the elliptic instability can
be expected to saturate at a very small amplitude.
In a high-lift configuration, with multiple vortex
pairs, this elliptic instability can become more
important if one of the flap vortices is placed at a
location with a strong straining field induced by
the main wing-tip vortices. This will enhance the
destruction of the flap vortex. However, this of-
fers only a partial solution to the problem, since
the effect on the decay of the main wing-tip vor-
tex will be far smaller. Thus, forcing the ellip-
tic instability could become a useful mechanism
in the enhanced destruction of the trailing vortex
wake. As discussed earlier, the presence of of
multiple vortices (see [2], [6]) and active forcing
(for example [5]) are typical features of devices
to enhance wake decay.

6 Conclusion

The dynamics of both long-wavelength and
short-wavelength instabilities in a counter-
rotating vortex pair is studied numerically. The
emphasis in on the evolution of the kinetic energy
contained in the computational domain. The sig-
nificant effect of the Crow instability on this de-
cay is shown. Furthermore, the saturation of the
amplitude growth of the short-wavelength insta-
bility is shown using this kinetic energy analysis,
followed by a discussion of these features for the
dynamics of aircraft wake vortices.
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