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Abstract 

Hopf-bifurcation analysis method is employed 
to predict the transonic aileron buzz boundary 
for a delta-wing model with a full-span aileron. 
The unsteady aerodynamic loads acting on the 
surface of the aileron are evaluated by solving 
the three dimensional, unsteady, compressible, 
full Navier-Stokes equations. The eigenvalues of 
the Jacobian matrix of the equation of motion of 
the aileron are evaluated and the critical Mach 
numbers corresponding to the Hopf-Bifurcation 
points are obtained. The results of the 
Hopf-bifurcation analysis are consistent with 
the results of the time integration calculations 
and both the calculated results are in good 
agreement with experimental data. 
 

1 Introduction 

In transonic flight, the trailing edge control 
surfaces of the aircraft may fall into an 
everlasting “self-excited oscillation”, which is 
known as control surface buzz in aeroelasticity. 
Early studies of aileron buzz indicate that the 
occurrence of buzz is closely related with the 
oscillating shock on the surface of the aileron, 

and the shock oscillations are not in phase with 
the motion of the aileron.[2] 

Steger and Bailey [1] first calculated the 
transonic aileron buzz by modern numerical 
method, and got some good results. But in their 
simulations, they neglected the spring constant 
and damping coefficient in the equation of 
motion of the aileron. And in the aerodynamic 
calculations, at each time step, they used a 
simple shearing transformation to form the new 
grid when the aileron was deflected. Although 
the computer time was reduced due to these 
simplifications, the numerical errors were 
increased. Some experimental investigations on 
transonic aileron buzz were given by Parker, 
Spain and Soistmann [2][3]. Other numerical 
calculations of control surface buzz were 
presented in ref. [5][6] etc. 

In all the above simulations, the method of 
time integration was used to determine the buzz 
points. However, in the present paper,we take an 
alternate approach of determining the buzz 
points by using the Hofp-bifurcation analysis 
method. Using this method, not only we can 
compute the buzz points more efficiently, but 
also get a clear idea of the influence of the 
structural parameters on the control surface 

Transonic Aileron Buzz Boundary Prediction Using Transonic Aileron Buzz Boundary Prediction Using Transonic Aileron Buzz Boundary Prediction Using Transonic Aileron Buzz Boundary Prediction Using 

HopfHopfHopfHopf----Bifurcation Analysis MethodBifurcation Analysis MethodBifurcation Analysis MethodBifurcation Analysis Method 
 

Liu Qiangang and Bai Junqiang 
Department of Aircraft Engineering, Northwestern Polytechnical University, Xi’an 

710072, P. R. China 
 
 

Keywords: Hopf-bifurcation, Aileron Buzz, Unsteady Navier-Stokes Equations 



Liu Qiangang and Bai Junqiang 

274.2 
 

buzz characteristics. 

2 Governing Equations and Numerical 
Method 

    In order to calculate the unsteady 
aerodynamic loads acting on the control surface, 
the conservative, dimensionless, unsteady, 
compressible, full Navier-Stokes equations are 
solved. 
    In terms of time dependent 
body-conformed coordinates 1ξ , 2ξ  and 3ξ , 

these equations may be written as 
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iE  is the inviscid flux in iξ  direction and 

sEv)( is the viscous and heat-conduction flux in 

sξ direction. τ , ix , iu , ρ , p and E  are 
the time, Cartesian coordinates, Cartesian 
components of the velocity, density, pressure 
and the total internal energy per unit mass, 
respectively. T , κ , tκ  and J  are the 
temperature, heat conductivity, eddy heat 
diffusivity and the Jacobian, respectively. The 
elements of the stress tensor ijτ  are given by 













∂
∂

−














∂
∂

+
∂
∂

+=
k

k
ij

i

j

j

i
tij x

u
x
u

x
u

δµµτ
3
2)(  

where µ  and tµ  are molecular viscosity and 
eddy viscosity, respectively, ijδ  is the 
Kronecker delta. µ  is calculated from the 
Sutherland law.  tµ   is calculated from the 
Baldwin-Lomax turbulence model[14]. 
    When the initial and boundary conditions 
are given, equation (1) can be solved by 
numerical method. In this paper, in time 
discretion, we use an implicit finite difference 
scheme, and adopt Yoon & Jameson’s LU 
decomposition method [12]. In space discretion, 
Harden & Yee’s second order TVD scheme [13] 
is used for the convective terms. The viscous 
terms are approximated by a second order 
central difference scheme. A “C-H” type grid of 
121×41×26 in the ξ , η  and ζ  directions 
respectively is used. 

    The grid is generated by the 
conformal mapping method and algebraic 
method. 
    The equation of motion of the aileron is 

)(12 2
...

tH
Inn =++ δωδςωδ          (2) 

where nω  is the natural frequency of the 
aileron system, ζ  is the damping coefficient, 
I  is the moment of inertia of the aileron, δ  is 
the angle of deflection of the aileron, H  is the 
hinge moment of the aileron, which can be 
calculated from the pressure distributions 
obtained by solving the Navier-Stokes 
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equations. 
    Equation (2) is discretized to second-order 
accuracy in time as: 
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    In numerical calculations, the 
Navier-Stokes equations and the equation of 
motion of the aileron are solved simultaneously. 
On the surface of the wing, we have the 
following boundary conditions: 

��•−=
∂
∂===

∂
∂ ρ

n
Pyvxu

n
T ,,,0

..
    (4) 

(on the aileron surface)        

0,0,0,0 =
∂
∂===

∂
∂

n
Pvu

n
T           (5) 

   (on the other part of the wing)    

where ���� is the acceleration of a point on the 

aileron surface, � is the unit normal to the 

surface. 
    The initial condition is  

  0δδ ∆=                      (6) 

where 0δ∆  is a small deflection angle of the 
aileron from the equilibrium state. 

In order to obtain the time history of the 
motion of the aileron, two steps of computations 
are required. In the first step, we calculate the 
steady flowfield around the wing with a fixed 
aileron deflection angle 0δ∆ . This solution 
represents the initial conditions for the second 
step. In the second step, set the aileron free to 
move. And the unsteady Navier-stokes 
equations and the equation of motion of the 
aileron are solved simultaneously. At the time 
step n, the Navier-Stokes equations are solved to 

get the hinge-moment )(tH n , then the aileron 
deflection angle 1+nδ  can be obtained from 
equation (3), and a new grid is generated, new 
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new grid point. An implicit finite difference 
algorithm described above for Equation (1) is 
used to advance the flow variables to the next 
time step. The process is repeated for each 
subsequent time step. 

3 Hopf-bifurcation Analysis 

   Consider the following nonlinear dynamic 
system: 

),(
.

µXfX =                    (7) 

nRUX ⊆∈   mRV ⊆∈µ     

where X  is the vector of the state variables, 

µ  is a parameter of the system. 

Let parameter µ  vary continuously, when 
µ  equals the critical value *µ , system (7) 
becomes unstable, i.e. the topology of the 
system changes suddenly, then we say a 
bifurcation of the system takes place.  

Let 
.

X  be equal to zero, we get. 
0),( =µXf                    (8) 

Using the Newton’s iteration formula, equation 
(8) is solved to obtain the equilibrium solutions 
of system (7). The Newton's iteration formula is 
given by 

),())(,( 1 µµ XfXXXfD kkkk
X =−+   (9) 

where ),( µXfD k
X  is the Jacobian matrix, and 

the symbol k and k+1 represent the values at the 
kth and (k+1)th iterations respectively. The 
iteration process will be continued until the 
errors are less than a given small value. 
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The Jacobian matrix ),( µXfD k
X  has a 

set of eigenvalues )1( Nii ≤≤λ . If the real 
parts of all the iλ  are less than zero, then the 
dynamic system is stable at this equilibrium 
point.  

If at the equilibrium point where *µµ =  

and *XX = , the Jacobian matrix has a pair of 

purely imaginary eigenvalues θλ i±=± , and all 

the other eigenvalues have negative real parts, 

and ±λ  satisfy the following “transversality 

condition” 

( ) 0)]([Re ≠=± mal
d
d

µµµλ
µ

        (10) 

then this equilibrium point is called a 

Hopf-bifurcation point. When µ  varies across 

through *µ , the system will change from stable 

to unstable, and a limit cycle oscillation will 
occur. 

The above principle can be used to analyze 
the problem of transonic control surface buzz 

directly. In equation (2), set δ=1x ,
.

2 δ=x ,we 

get the equivalent equations of (2) as follows  
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When the altitude is kept constant, the 
Mach number ∞M may be considered as a 
parameter of the system. 

Let 0
.

1 =x , 0
.

2 =x , we get  
02 =x                  (12a) 
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Equation (12) is solved using the Newton’s 
iteration method (formula (9)), and the 
equilibrium point of the system (11) is obtained. 
Let 
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At the equilibrium point, the Jacobian matrix is  
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Substitutingδ ,
.

δ  back for 1x , 2x  in equation 

(14), and evaluating its eigenvalues, we get  
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Numerical simulations indicate that for 

some aircraft when the Mach number increases 
from subsonic to supersonic, the real part 

)( ∞Mα  of the eigenvalues 2,1λ  varies from 
negative to positive, which means that the 
system changes from stable to unstable. 
Hopf-bifurcation occurs at the Mach number 
when 0)( =∞Mα , which is also the buzz point 
of the system.. 

In formula (16), 
.

δ∂

∂H  can be written as 
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where q  is the dynamical pressure, .
δh

C  is 

the aileron damping coefficient. 
In order to evaluate the value of .

δh
C , the 

aileron is specified to oscillate in harmonic 
motion with the instantaneous deflection angle 

tt a ωδδδ sin)( 0 +=         (19) 

where 0δ  is the aileron deflection angle in the 
initial state, aδ  is the amplitude, ω is the 
frequency. 

Computations are carried out with the 
aileron motion specified by equation (19) to 
obtain the corresponding instantaneous 
surface-pressure distributions. After spatial 
integration of the pressure distributions on the 
aileron surface, the corresponding instantaneous 

hinge-moment coefficient )(tCh  is obtained. 

This coefficient )(tCh  is expanded into 
the following series  

mm+++−+=
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where 
...

,, δδδ  are obtained from equation  
(19). 

At a given time t, from equation (20) we 
obtain an algebraic equation with unknowns 

δhC , .
δh

C , ..
δh

C , ……,  at the next time step, 

we obtain another algebraic equation etc., thus 
we get a set of algebraic equations. The 
unknowns δhC , .

δh
C , ..

δh
C , …… , in these 

equations are estimated by using the parameter 
identification method (in our calculations, we 
used least square method). In numerical 
calculations, aδ  is small. And ω  is chosen to 
be close to the value of frequency of the aileron 

oscillations generated from the aileron  inertia 
equation (equation  (2)  in our paper). 

If we neglect the structural damping 
coefficient ς , then from formula (16), we find 

)( ∞Mα  is direct proportional to .
δh

C . Thus 

Hopf-bifurcation occurs at the critical Mach 
number ∗

∞M  where .
δh

C = 0. 

4 Results and discussion 

A baseline model described in reference [3] 
is used for aileron buzz investigation. This is a 
delta-wing model with a full-span aileron. Its 
planform is sketched in Fig. 1. The natural 
frequency of the aileron system is 16.5 Hz. 
Detail descriptions of the model are given in 
reference [3]. Fig. 2 shows the computational 
grid at the initial state. The variations of .

δh
C  

with   ∞M  at dynamic pressure q = 61.8 psf 
is given in Fig.3. The bifurcation points at 
which .

δh
C = 0, ∗

∞∞ = MM , is obtained by 

interpolation. Similarly we can get the 
bifurcation points at q = 49.5psf and q = 
42.8psf respectively. The critical Mach 
numbers corresponding to these bifurcation 
points are all nearly equal to 0.995. The buzz 
boundary of the aileron system is shown in 
Fig.4. The experimental results[3] are also 
provided in this Figure. The time histories of the 
aileron oscillations are given in Fig. 5. This 
figure shows that when 92.0=∞M , the 
variation of δ with time is convergent, and the 
aileron system is stable; When 1.1=∞M , it 
becomes divergent, resulted in a limit cycle 
oscillation, the aileron system is unstable. When 

0.1=∞M , the Mach number is close to the 
critical Mach number ∗

∞M . The amplitude of 
the aileron oscillations begins to increase, which 
means an aileron buzz oscillation occurs. 

5  Concluding Remarks 
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  Hopf-bifurcation analysis method is used to 
predict the transonic aileron buzz boundary for a 
delta-wing model with a full span aileron. The 
unsteady, three dimensional Navier-Stokes 
equations are solved to evaluate the 
instantaneous aerodynamic loads acting on the 
surface of the aileron. And the aileron 
oscillation time histories calculations are also 
presented for comparison. The results indicate 
that the present method is in good agreement 
with experimental data and time histories 
calculations. 
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Fig.1 Planform of the baseline model 

 

 
            (a) Portion of the 3-D grid                          (b) Cross section at the wing root 

Fig.2 Computational grid at initial state 
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 Fig.3 variation of δ�hC  with M∞                               Fig.4 Aileron Buzz boundary for baseline model 
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                    (a)  M∞=0.92                                     (b)  M∞=1.0 

τ

δo
C

m

0 20 40 60 80 100 120 140 160

-3

-2

-1

0

1

2

3

4 aileron deflection angle
hinge moment coefficient

 

(c )  M∞=1.1 
Fig.5 Time integration of baseline buzz model at different Mach number

 


