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Abstract  

This work is inserted in the effort to develop a 
Chimera flow simulation code capable of 
handling general launch vehicle configurations. 
The work presents aerodynamic results 
referring to laminar and turbulent viscous 
simulations over the first Brazilian satellite 
launch vehicle, VLS, during its first-stage flight. 
The finite difference method is applied to the 
governing equations written in conservation-
law form for general body conforming 
curvilinear coordinates. The spatial 
discretization is accomplished with a central 
difference scheme in which artificial dissipation 
terms, based on a scalar, non-isotropic model, 
are added to the numerical scheme to maintain 
stability. The time march process is 
accomplished with a 5-stage, 2nd-order 
accurate, Runge-Kutta scheme. Studies of mesh 
refinement are also presented as a part of the 
validation effort, which has the objective of 
providing a certified flow simulation capability 
for actual engineering work. 

1  Introduction 

In the present work, laminar and turbulent 
viscous simulations are accomplished with the 
objective of reproducing the aerodynamic 
phenomena that are present during the first stage 
flight of the first Brazilian satellite launch 
vehicle, VLS. The basic motivation for this 
work is to provide a continuation in the 
development effort that has been going on in the 
institutions here represented, which aims at 
creating the simulation capability to handle truly 

complex aerospace configurations. In particular, 
there is strong interest in performing 
simulations over the VLS first-stage flight 
configuration, since this is a fairly complex 
vehicle with several bodies in close proximity. 
Three-dimensional results for this complete 
configuration were already obtained with the 
Euler formulation using the previous version of 
the Chimera flow simulation code under 
consideration here. These results are described 
in detail in Ref. [1], together with a historical 
perspective of the development of CFD tools for 
flow simulation over general launch vehicle 
configurations at these institutions. The inviscid 
calculations were not able to obtain good 
correlation with the experimental data over 
some portions of the vehicle, regardless of the 
level of mesh refinement. Furthermore, at the 
time, there was some evidence that viscous 
effects could dominate the flow in these regions. 
In particular, over the region in which there is 
close proximity between the VLS central body 
and its strap-on boosters, it was not possible to 
obtain good comparisons between 
computational and experimental results with the 
inviscid solutions. 

The flight configuration of the first stage of 
the VLS is composed by a central body and four 
strap-on boosters arranged symmetrically 
around this central body, as it can be observed 
in Fig. 1. This is, therefore, a quite complex 
geometry over which to generate a structured 
mesh. Hence, there has been an effort to 
develop tools based on the overset, multiblock 
grid technique, or Chimera [2, 3], in order to 
simulate flows over the complete VLS vehicle. 
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This technique provides the capability to use 
structured meshes for the discretization of the 
calculation domain over truly complex 
configurations. Moreover, it allows adaptive 
grid refinement characteristics, which are 
similar to those, achieved with unstructured 
meshes, although such capability will not be 
exploited in the context of the present paper. 
The governing equations are assumed written in 
conservative form and these equations are 
discretized by a finite difference method. Spatial 
discretization uses second-order accurate, 
central difference operators. The time march 
method is based on a 5-stage, Runge-Kutta 
algorithm [4], which also has second-order 
accuracy in time. The artificial dissipation terms 
added are based on the non-isotropic, Turkel 
and Vatsa model [5]. 

Figure 1: Schematic representation of the VLS 
system during its first-stage flight. 

 
The effort here described implemented 

viscous terms in the context of the Chimera 
code already available [1] in order to perform 
the present studies. Moreover, since actual flight 
conditions over the VLS and similar vehicles 
consider Reynolds numbers, which typically are 
in the order of tens of millions, or higher, the 
present work also provided an initial 
implementation of an algebraic eddy viscosity 
model. So far, only the Baldwin and Lomax 
model [6] has been implemented and tested in 
the code. However, there are plans to extend the 
tests with this and other models in the future. 
Furthermore, in order to perform viscous 
numerical simulations, it is necessary to 
generate grids, which are fine enough to provide 
support for capturing viscous effects throughout 
the flowfield. In the  present case, since the 
afterbody body portion of the vehicles is not 
included in the simulations, it is correct to state 
that viscous effects will be restricted to fairly 
thin boundary layers. Hence, in the interest of 

computational efficiency, grid refinement is 
particularly emphasized in the wall-normal 
direction and the simulations here presented 
should be considered as solutions of the thin- 
layer Navier-Stokes equations, despite the fact 
that more viscous terms are included in the 
equations actually implemented in the code. 

The forthcoming sections will present the 
governing equations together with some details 
of the numerical method used for their solution. 
A brief discussion of the boundary conditions 
implemented is also presented, as well as an 
overview of the Chimera grid procedure used in 
the present code. Viscous laminar and turbulent 
solutions for the complete VLS vehicle are 
presented and discussed. The paper concludes 
with a critical evaluation of the flow simulation 
capability implemented and a discussion of 
perspectives for future work. 

2  Governing Equation 

It is assumed that the flows of interest in the 
present work can be represented by the Navier-
Stokes equations in three dimensions. These 
equations can be written in conservation-law 
form for a curvilinear coordinate system as 
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where Q  is the vector of conserved variables, 
defined as 
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In these equations, ρ  is the density, u, v and w 
are the Cartesian velocity components and e is 
the total energy per unit of volume. The 

,,FE and G  are the inviscid flux vectors, and 

,, vv FE  and vG  are the viscous flux vectors. The 
complete expressions for the inviscid flux 
vectors can be found Ref. [7], and expressions 
for the viscous flux vectors, as implemented 
here, can be found, for instance, in Ref. [8]. It is 
important to emphasized that, consistent with 
previous comments, the cross derivative terms 
were eliminated in the definition of the viscous 
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flux vectors actually implemented in the code. 
Expressions for the Jacobian of the 
transformation, J , as well as for the various 
metric terms can be found in Refs. [7] and [9], 
among other references. The pressure can be 
obtained from the equation of state for a perfect 
gas. 

A suitable nondimensionalization of the 
governing equations has been assumed in order 
to write Eq. (1). In particular, the values of flow 
properties are made dimensionless with respect 
to freestream quantities, as described in Ref. [9]. 

The governing equations are discretized in 
a finite difference context on structured 
hexahedral meshes, which would conform to the 
bodies in the computational domain. Since a 
central difference spatial discretization method 
is being used, artificial dissipation terms must 
be added to the formulation in order to control 
nonlinear instabilities. The artificial dissipation 
terms used here are based on Turkel and Vatsa’s 
scalar model [5]. This model is nonlinear and 
non-isotropic, with the scaling of the artificial 
dissipation operator in each coordinate direction 
weighted by its own spectral radius of the 
corresponding flux Jacobian matrix. The residue 
operator is defined as being the evaluation of 
the discretized partial differential equation (or 
system of partial differential equations) and, in 
this way, it represents how well the evaluation 
of the discretized form of the equations is being 
satisfied by the current solution, in the present 
iteration level n. The artificial dissipation terms 
are added to the residue operator to maintain 
nonlinear stability. In the present 
implementation, the residue operator is defined 
as 
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Here, the ηξ δδ ,  and ςδ  terms represent 

standard 3-point central difference operators in 
the ηξ ,  and ς  directions, respectively. 

Similarly, ηξ δδ ,  and ςδ  are the mid-point 

central difference operators. The artificial 
dissipations operators, 
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d , which would appear from the 

application of the difference operators are 
defined precisely as described in Turkel and 
Vatsa’s model [5]. 

Since steady state solutions are the major 
interest of the present study, a variable time step 
convergence acceleration procedure has been 
implemented. 

The time march is performed based on a 5-
stage, 2nd-order accurate, hybrid Runge-Kutta 
time-stepping scheme, 
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Here, the lα constants are defined as 
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should be emphasized that only the convective 
operator inside the RHS term is actually 
evaluated at every time step. The viscous flux 
vectors are only evaluated at the first stage of 
the Runge-Kutta time-stepping scheme. 
Moreover, the artificial dissipation terms are 
evaluated at alternate stages, i.e., at the odd 
stages in the present case, of the time-march 
procedure. It can be shown that this provides 
enough damping to maintain nonlinear stability 
[4, 10], whereas it yields a more efficient 
numerical scheme. 

Finally, turbulent simulations have used 
the Baldwin and Lomax [6] algebraic eddy 
viscosity model in order to provide turbulence 
closure. The turbulence model was implemented 
in this work in its standard form as described in 
the original paper by Baldwin and Lomax [6]. 
Since this model is very well known and its 
expressions are widely available, they will not 
be included here. 
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3  Results and Discussion 

3.1  Laminar Viscous Simulations 

The meshes used for the first viscous 
simulations of the flow over the complete VLS 
had 120 x 36 x 33 points in the ηξ ,  and 
ς directions, respectively, for each of the 
booster grids and 120 x 65 x 33 points for the 
central body. This grid is referred to here as the 
coarse grid. The actual complete configuration 
is used in the simulations, namely, the central 
body and four boosters are included in the 
definition of the computational domain. In these 
simulations, the freestream Mach number is 
assumed to be M∞ = 2.0 and the angle of attack 
is zero. The Prandtl number is set to Pr = 0.72, 
and the Reynolds number is 10 million, based 
on the diameter of the central body of the 
vehicle. Figure 3 is a visualization of the Mach 
number contours in the longitudinal plane 
denominated “plane 1”  in Fig. 2. 

 
Figure 2: Top view of complete VLS 
configuration indicating some of the planes in 
which vehicle results are presented. 
 
The boundary layer thickening along the central 
body surface, in the region immediately 
upstream of the lateral boosters, can be clearly 
seen in Fig. 3. The thickening of the boundary 
layer is initially a result of the detached bow 
shock, ahead of the boosters, impingement on 
the central body surface. The information on the 
pressure rise due to shock impingement 

propagates upstream through the boundary layer 
and, eventually, it causes flow separation 
upstream of the impingement point due to the 
weakening of the boundary layer momentum. 
Boundary layer separation, on the other hand, 
causes the creation of an oblique shock wave, 
which, unfortunately, is not clearly seen in Fig. 
3. This oblique shock wave is more readily seen  
 

 
Figure 3: Mach number contours on plane 1 
(Fig. 2) for laminar flow simulations with the 
coarse grid (M∞ = 2, α = 0 deg., Re = 10 
million). 
 
on pressure contour plots. It is important to 
point out that these flow features ahead of the 
booster nose caps are not present in the Euler 
simulations reported in Ref. [1]. This indicates 
that, even with coarse grids, the viscous 
solutions are providing flow structures, which 
are different from the ones seen in the Euler 
cases. 

Figure 4 presents the velocity vectors on a 
flow plane, which contains the central body axis 
and the axes of two boosters (plane 1 in Fig. 2). 
In particular, Fig. 4 is showing the details of the 
flowfield just upstream of the booster forward 
aerodynamic fairing. It should be emphasized 
that only velocity vectors corresponding to grid 
points in the central body mesh, in the cited 
plane, are represented in this figure. Velocity 
vectors associated with points in the booster 
grid were suppressed from the figure in order to 
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allow for a better visualization of the flowfield 
in the region. Flow deviation due to the booster 
is clearly seen in this figure. Furthermore, one 
can also clearly see in the figure the  
 

 
Figure 4: Detail of the velocity vector plot 
around the booster nose cap for laminar 
simulations with the coarse grid(M∞ = 2, α = 0 
deg., Re = 10 million). 
 
recirculation region, which extends from 
approximately 2.5 booster diameters upstream 
of the booster nose until well within the conical 
booster section. The velocity profiles along a 
portion of this separation region seem to also 
indicate that there is even a secondary 
separation within the recirculation region. This 
last observation is corroborated by the 
streamline plot shown in Fig. 5. It must be 
emphasized, though, that Fig. 5 only shows a 
portion of the region depicted in Fig. 4 and, 
hence, it does not include the complete 
separation region. 

 
Figure 5: Streamlines near the booster nose for 
coarse grid laminar simulations (M∞ = 2, α = 0 
deg., Re = 10 million). 
 

Pressure coefficient distributions on plane 
1, along the vehicle central body wall, are 
shown in Fig. 6. Besides the comparison of the 
current laminar Navier-Stokes results and the 
experimental data, Fig. 6 also presents the 
pressure coefficient distribution obtained from 
the inviscid calculations reported in Ref. [1] for 
a similar grid. One can observe that, in the 
forward portion of the vehicle, the agreement 
between computational and experimental data is 
good. 

Figure 6: Pressure coefficient distributions for 
plane 1 along central body wall for coarse grid 
laminar simulations (M∞ = 2, α = 0 deg., Re = 
10 million). 
 

There are discrepancies, however, in the 
boattail region. At the present time, the authors 
are not very much concerned about these 
differences in the boattail region because 
previous experience with axisymmetric 
calculations [11] has indicated that a very fine 
mesh is required to correctly capture the flow 
topology in this region. Essentially, at 
supersonic freestream conditions, there is an 
oblique shock impinging on the boattail-
afterbody cylinder intersection. This shock 
interacts with the body boundary layer, creating 
a region in which fairly complex flow 
phenomena are present and, hence, a very fine 
grid in the longitudinal direction is required for 
accurately capturing the flow physics. Such a 
fine grid in the boattail region was not used in 
the present case because the computational 
resources available would not allow for the 
needed refinement in this region, and there was 
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an understanding that it would be more relevant, 
in the present case, to try to provide a better 
description of the region with strong interaction 
between central body and boosters. Therefore, 
the discrepancies observed in the boattail region 
could be resolved by the use of meshes as fine, 
in this region, as the ones described in Ref. [11]. 
Hence, it is a simple mesh refinement problem, 
which can be fixed in the future after the other 
problems are sorted out. 

A sudden increase in the pressure 
coefficient distribution is observed at x/L ≅ 0.35 
for the computational solution. The increase in 
Cp is due to the oblique shock wave create by 
the separation region along the central body. 
The experimental data do not have such 
pressure coefficient increase, clearly indicating 
that the experimental measurements do not see 
an oblique shock wave at this region in the flow. 
This could be explained by the fact that, at Re = 
10 million, the flow is turbulent. A turbulent 
boundary layer does not have separate as easily 
due to an adverse pressure gradient as a laminar 
boundary layer. Hence, the flow separation 
upstream of the booster nose, which eventually 
is the originator of the oblique shock, can be 
simply a result of the treatment of the flow as 
laminar under conditions in which it is actually 
turbulent. 

Further downstream, at x/L ≅ 0.50, the 
experimental measurements indicate a kink in 
the pressure coefficient distribution. This 
corresponds to the booster detached bow shock 
impingement on the central body. Clearly, the 
computational results do not display such effect 
due to the presence of the oblique shock wave 
upstream of the boosters. The position of the 
pressure peak at x/L ≅ 0.57 is correctly captured 
by the computation, although the magnitude of 
the pressure peak has a fairly significant error. 
There is a second pressure peak at x/L ≅ 0.61, 
which the computational results simply ignore. 
Downstream of this second pressure peak, there 
is a region with reasonably good agreement 
between experimental and computational data 
but, downstream of x/L ≅ 0.70, the 
discrepancies between computational and 
experimental results again become significant. 

One should observe, however, that the 
computational mesh used in these simulations 
corresponds to the coarse mesh used for the 
inviscid calculations reported in Ref. [1]. Hence, 
it is to be expected that mesh refinement should 
contribute to improvements in the correlation 
between computation and experiments. 

A refined mesh was generated with 220 x 
50 x 67 grid points for the central body mesh 
and 200 x 40 x 33 points for each of the booster 
meshes. As before, these numbers refer to grid 
points in the ηξ ,  and ς  directions, 
respectively. This grid is referred to here as the 
fine grid. Moreover, this grid only contains half 
of the central body and two boosters, yielding a 
total of approximately 1.3 million grid points, 
which is pretty much in the upper limit for the 
computational resources available to the authors 
at the time. This grid implies in a factor of four 
increase in the azimuthal direction resolution of 
the central body grid and almost a factor of two 
increase in the longitudinal resolution of both 
central body and booster grids. Furthermore, 
since these launchers only fly at very low angles 
of attack, the consideration that the flow is 
symmetric about the pitching plane is not a 
severe restriction in the usefulness of the 
computations for design work. The same flight 
condition was considered for the simulations 
with the fine grid. Therefore, M∞ = 2.0, the 
angle of attack is zero, Pr = 0.72, and the 
Reynolds number is 10 million, based on the 
diameter of the central body of the vehicle. 

Figure 7 presents pressure contours on 
plane 1 (see Fig. 2) and along the surface of one 
of the boosters obtained with the fine grid. This 
figure only shows the flowfield around the nose 
cap of the boosters. In this case, the oblique 
shock wave upstream of the boosters, due to the 
flow separation previously described, is clearly 
evident in the figure. Moreover, the detached 
shock in front of the boosters and its interaction 
with the oblique shock are also clearly seen in 
the pressure contours. The impingement of the 
detached shock, from the booster that is out of 
the plane with regard to this visualization, on 
the booster on the upper part of the figure is also 
seen along the conical section of the latter 
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booster. Finally, the rapid flow expansion as it 
passes over the booster cone-cylinder 
intersection is also evident in Fig. 7. Hence, it is 
clear that the flow in this interaction region 
around the nose of the boosters is quite 
complex. 

Pressure coefficient distributions along the 
central body, and on plane 1 (see Fig. 2), are 
shown in Fig. 8. As before, this figure compares 
experimental and viscous computational results, 
and it also includes the inviscid results reported 
in Ref. [1], for the same grid. It is clear that 
mesh refinement has improved the correlation 
between the results along the boattail region in 
the forward portion of the vehicle.  
 

 
Figure 7: Dimensionless pressure contours 
along plane 1 and over the surface of one 
booster for fine grid laminar simulations (M∞ = 
2, α = 0 deg., Re = 10 million). 
 
However, the agreement is still not perfect in 
this region but, as already discussed, the authors 
are not concerned about these discrepancies in 
the boattail region at the present time. The 
oblique shock wave due to flow separation 
ahead of the boosters is even more pronounced 
in this case, with a much better defined and 
stronger pressure jump at x/L ≅ 0.42. The 
position of the pressure peak at x/L ≅ 0.57 is 
again adequately captured by the calculation 
but, as before, the magnitude of the peak is still 
smaller than the experimental value. The 
difference in Cp peak magnitude is, however, 

smaller in this case than it was for the coarse 
grid results. Moreover, as one can clearly see in 
Fig. 8, the simulation starts to capture the 
second pressure peak at x/L ≅ 0.61. 
Furthermore, the agreement between 
experimental and computational Cp  
 

Figure 8: Pressure coefficient distributions for 
plane 1 along central body wall for fine grid 
laminar simulations (M∞ = 2, α = 0 deg., Re = 
10 million). 
 
distributions downstream of this second 
pressure peak are remarkably good throughout 
the remaining of the vehicle. It must be 
emphasized that the present computations do 
not represent the vehicle nozzle region and, 
hence, it is not possible to match the results 
downstream of the x/L ≅ 0.92 station. A 
comparison of the Euler calculations discussed 
in Ref. [1] and the results in Fig. 8 indicate that 
the flow in the downstream sections of the 
vehicle include important viscous effects and 
there would be no way to obtain good 
agreement between experiments and 
computation without the inclusion of the 
viscous terms in the formulation. 

3.2  Turbulents Viscous Simulations 

For the flight conditions here considered, which 
essentially involve VLS flows with Reynolds 
numbers in the order to of 107 based on the 
body diameter, flowfields are clearly turbulent. 
Therefore, the implementation of turbulence 
models in the code is a necessary step in order 
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to provide an adequate representation of the 
flows of interest. The long term objective of this 
development work is to have a suite of models 
available in the code and let the user select the 
model that better suits his application. It is 
envisaged that, for the relevant flow conditions 
for the VLS, especially at angle of attack, a one-
equation or a two-equation eddy viscosity 
model will be necessary for a correct 
representation of the flowfields. As an initial 
step towards this goal, a simple algebraic model 
has been implemented in the code so far. In 
particular, the algebraic Baldwin and Lomax [9] 
model is implemented in its standard form. This 
section describes some preliminary results 
obtained with this model. 

The mesh used for the turbulent 
computations has 220 x 50 x 35 points, in the 

ηξ ,  and ς  directions, respectively, for the 
central body grid and 180 x 40 x 33 points for 
each booster grid. As in the previous case, the 
pitch plane is assumed to be a symmetry plane 
in the flowfield and, hence, only half of the 
central body and two boosters are represented in 
the computational domain. The flight condition 
considered for these simulations is identical to 
the one considered in the previous cases. 
Moreover, here the turbulent Prandtl number 
was set to 0.9, which is consistent with other 
results reported in the literature. Figure 9 
presents the Mach number contours for this 
simulation in the plane containing the axes of 
the central body and two boosters (plane 1 in 
Fig. 2). An observation of Fig. 9 indicates that 
the flowfield solution in this case is not much 
different from that obtained for the laminar 
calculations with the fine grid. In particular, one 
can clearly see the flow separation ahead of the 
boosters, along the central body, and the oblique 
shock wave which is formed upstream of this 
separation region. Actually, the flow separation 
region seems to be even larger in this case and it 
clearly extends further upstream than in the 
laminar calculations. 

Figure 10 presents a comparison of 
pressure coefficient distributions along the 
central body for plane 1 (see Fig. 2). The curves 
shown in this figure include the experimental 

data, the turbulent computational results and the 
laminar computational results obtained with the 
fine mesh. It is evident from the figure that the 
separation occurs further upstream in the 
turbulent simulation when compared to the 
laminar solution. 

 
Figure 9: Mach number contours in the field 
(plane 1) for turbulent simulations (M∞ = 2, α = 
0 deg., Re = 10 million). 
 

 
Figure 10: Comparison of pressure coefficient 
distributions along the central body wall for 
plane 1 (M∞ = 2, α = 0 deg., Re = 10 million). 
 

Furthermore, the agreement between 
computation and experiment, in the region 
downstream of the second pressure peak (x/L ≅ 
0.61), is poorer for the turbulent simulations that 
it was for the laminar calculations on the fine 
grid. The two grids are not identical, but they 
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are sufficiently similar to rule out the possibility 
that the differences could only be credited to the 
grid. Finally, Fig. 11 presents the flow 
streamlines in the region around the booster 
nose cap for the turbulent simulation, and it 
shows details of the separated flow in this 
region. It is clear that the computations are 
indicating a fairly complex separated region, 
certainly including secondary separation within 
the original reversed flow bubble. It is, actually, 
quite questionable whether the Baldwin and 
Lomax model would be able to truly represent 
such a physically complex separated boundary 
layer, if the computational results were an 
accurate representation of the experimentally 
observed flowfield. The experimental pressure 
distributions, however, show no evidence of a 
separation region in this portion of the vehicle at 
this flight condition. 

The initial expectation was that the 
implementation of a turbulence model could 
help improve the correlation between numerical 
and experimental data, in comparison with the 
type of agreement obtained in the previous 
section in which laminar computational results 
were reported. In particular, there was hope that 
the separation region upstream of the boosters 
would disappear and, hence, so would the  
 

 
Figure 11: Detail of streamlines around the 
separation region for turbulent simulations (M∞ 
= 2, α = 0 deg., Re = 10 million). 

 
oblique shock wave, which is formed due to the 
separation. Clearly, this is not what the present 
results have shown. Furthermore, it is well 
known that the Baldwin and Lomax model has a 

tendency to add more eddy viscosity than what 
would actually be the correct amount to 
represent the correct physical behavior of the 
boundary layer. Hence, this means that the 
model has a tendency of stabilizing boundary 
layers that, actually, should separate. This 
compounds even further the questions with 
regard to the present turbulent simulations. The 
authors believe that, at the present time, the best 
that can be said with regard to the turbulent 
simulations is that their validation is still an 
ongoing process. At the time of this writing, 
different meshes are being generated for this 
problem and further analyses of the 
computational results are being performed. 
Fortunately, there are experimental results at 
different Reynolds numbers, for the same 
freestream Mach number, and these are being 
used in order to try to fully understand the 
discrepancies here observed. Furthermore, 
numerical parameters associated with the 
Baldwin and Lomax model are also being 
parametrically evaluated in order to fully 
explain the model behavior in this case. 

4  Concluding Remarks 

The paper describes viscous computations over 
the complete VLS vehicle. These calculations 
use a Chimera grid approach together with a 
finite difference numerical method to simulate 
supersonic flows over the complex VLS 
configuration including the central body and the 
strap-on boosters. Spatial discretization uses a 
central difference scheme plus added artificial 
dissipation terms. These are formed as a blend 
of second and fourth differences with an 
appropriate pressure switch, which detects the 
present of strong pressure gradients. Temporal 
discretization uses an explicit, 5-stage, 2nd-
order accurate Runge-Kutta time stepping 
scheme with a spatially variable time step 
option for convergence acceleration for steady 
state problems. Algebraic grids are generated 
for each body of the complete configuration and 
these are coupled together in a Chimera sense in 
order to generate the complete composite grid 
for the overall configuration. 

Streamlines 
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Despite the fact that Reynolds numbers of 
interest are of the order of 107, laminar 
calculation results are presented for two 
different meshes for the sake of code 
development and validation. The first mesh has 
approximately 830,000 grid points and it 
considers the complete vehicle, whereas the 
other has approximately 1.3 million grid points 
and treats the pitch plane as a symmetry plane. 
Results for the fine grid calculations show very 
good qualitative agreement with the 
experimental data for pressure coefficient 
distributions, except for the appearance of an 
oblique shock upstream of the booster nose cap 
region due to flow separation of the central 
body boundary layer. In particular, the 
quantitative agreement of the pressure 
coefficient distributions, between experiments 
and fine grid computational results, is very good 
and it demonstrates the need to include the 
viscous terms in order to correctly capture the 
phenomena present in the region of strong 
aerodynamic interaction between central body 
and boosters. Finally, some preliminary results 
for turbulent simulations using the Baldwin and 
Lomax algebraic eddy viscosity model are 
presented. 
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