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ABSTRACT 
 
Extensive work on slender axi-symmetric bodies in 
transonic flow has been carried out and well 
documented in the 1970’s. With the progress of CFD 
that has taken place in the following decades, codes are 
available to look into the detailed characteristics of the 
shock-boundary layer interaction and the resulting wave 
drag, in particular due to the geometry of the afterbody. 
However, to the authors’ knowledge, the optimum drag 
of axi-symmetric bodies need further elaboration. 
Therefore it is the objective of present work look 
carefully into the drag mechanism due to geometry of 
the afterbody, in particular and more significantly, to 
find a way to optimize the total drag. 
Three steps of approaches are be followed. The first 
approach will review selected analytical methods in 
the calculation of the aerodynamic characteristics of 
slender-axisymmetric bodies in transonic flow, in 
particular the classical approach of Ashley and 
Landahl. A more recent work of Biblarz introduced 
variable transformation that allows analytical solution 
of the linearized gas dynamic transonic equation, that 
yields a family of slender axi-symmetric bodies as one 
of the closed form solutions of the equation. These 
aerodynamic bodies can be used as initial references 
in an optimization approach.  The second parts deals 
with the systematic determination of an optimum 
slender axi-symmetric body configuration based on 
aerodynamic characteristics criteria. The simplest one 
is the minimization of the pressure (wave) drag. 
Sequential Quadratic Programming using BFGS 
technique as well as Modified Feasible Direction 
(MFD) method with constraint optimization can be 
applied. The solution will be an intermediate one that 
has to be checked using more accurate solutions of the 
Euler or Navier Stokes equation. To this end numerical 
approaches are carried out, which can also be utilized 
to study slender bodies with various after body 
configurations and to arrive at the optimum drag 
configuration. Two numerical approaches can be 
followed; using the well established computational 

fluid dynamic method in solving the Euler and the 
Navier-Stokes equation around an axi-symmetric 
body in transonic flow. 
 
1. Introduction 
 

The drag minimization of slender axisymmetric 
body, particularly in the transonic flow regime, has 
received much interest. Such situation is 
encountered, for example, in the design for 
minimum drag of projectile geometries. Noting the 
transonic nature of the significant part of the 
prevailing flow field, a computational study is 
performed on the aerodynamic characteristics a 
slender axi-symmetric body in transonic flow. The 
presence of shock wave should be minimized; the 
geometry of the afterbody, which has been the 
subject of many previous investigations, should be 
carefully studied and optimized. In addition to the 
presence of the shock wave, the base pressure 
characteristics contribute significantly to the drag. 

Three steps of approaches then can be followed; 
each is considered to have significant merit and 
contribution to the effort. The first approach will 
review selected analytical methods in the calculation 
of the aerodynamic characteristics of slender-
axisymmetric bodies in transonic flow, in particular 
the classical approach of Ashley and Landahl [1]. 
This method is analytical, elegant and reveals the 
generic contributions of geometrical elements to the 
drag, and will be useful in estimating the 
characteristics of several slender axi-symmetric body 
configurations, such as those described by 
Krasnov[2], and Cuong and Norstrud[3], or other 
generic configurations.  A more recent work 
(Biblarz[4], Biblarz and Prijono[5]) is of interest and 
introduced variable transformation that allows 
analytical solution of the linearized gas dynamic 
transonic equation. This method yields a family of 
slender axi-symmetric bodies as one of the closed 
form solutions of the equation. These aerodynamic 
bodies can be used as initial references in an 



 2

optimization approach to obtain ones with certain 
desired aerodynamic characteristics, which is the main 
objective of the study. 

The second parts deals with the systematic 
determination of an optimum slender axi-symmetric 
body configuration based on aerodynamic characteristics 
criteria. The simplest one is the minimization of the 
pressure (wave) drag. To this end, the minimization 
problem and procedure (Vanderplaats [6][7]) will be 
formulated and resort will be made to commercially 
available solvers, in particulkar MATLAB, in reaching 
the desired solution.   

Since in reaching the desired configuration first 
order analytical approaches have been utilized for 
efficiency, there is a need to evaluate as well as to obtain 
more accurate and detailed aerodynamic characteristics 
of the selected geometries.  

To this end numerical approaches are carried out 
to study slender bodies with various after body 
configurations and to arrive at the optimum drag 
configuration. This can be carried out by inspection or 
by incorporating the numerical evaluation in the 
optimization procedure, such as by following the 
philosophy described by Vanderplaats[7]. In the study, 
two numerical approaches are carried out; the first use 
the well established computational fluid dynamic 
method in solving the Euler equation around a slender 
axi-symmetric body in transonic flow, and the second 
uses theNavier-Stokes flow solvers, both the 
commercially available ones,  

The computational results have been validated by 
comparing the results for known geometric 
configurations and flow conditions with standard ones. 
The characteristics of the flow field can be utilized in 
working for the desired optimum characteristics, in 
particular in obtaining geometries with minimum drag.  

 
In looking for the candidates of geometries with 

minimum drag, three projectiles configurations that are 
considered convenient are utilized, each characterized 
by flat, conical and rounded afterbody. Analysis are 
carried out for projectiles moving without spin. For the 
numerical computation of the flow characteristics (such 
as Mach contour, pressure coefficient (Cp), and Drag 
Coefficient (Cd)), commercially available flow solvers 
are utilized; these are Multi Grid Aerodynamics 
(MGAERO) and RAMPANT Flow Solvers, for solving 
the Euler and Navier-Stokes Equations, respectively.  
 
2. Parametric Study of the afterbody geometry of 
Slender Axi-Symmetrical Body moving in 
Transonic Flow using classical approach as a 
baseline in optimization scheme 
 

For slender bodies moving in transonic flow 
using small perturbation approach, one can start with 
the following gas dynamic equation in cylindrical 
coordinate system: 
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Fig. 1 Polar Coordinate system 
 
 

Next, for axi-symmetrical slender body 
moving in transonic potential flow, and following 
Small Perturbation Theory , higher order terms are 
ignored, equation (1) can be written in the 
following form:  
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Following Ashley and Landahl [1] the drag of 

the axi-symmetrical slender body moving in 
transonic potential flow, can be written as: 
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if the afterbody ends through a smooth curve that 
ends at the axis (without a flat base), where S is the 
area of the cross section of the slender body and the 
prime and double prime indicates its first and 
second derivatives with respect to the x axis, 
respectively. This expression is amenable to 
parametric study of the slender axi-symmetric body 
with various afterbody geometries, at least for the 
preliminary steps. 
 

Some families of generating curves for the 
afterbody geometries will be studied, the simplest 
one being a polynomial of the form: 

 
R(x) = Y 1 (1-xn1 ) + Y2 (1-xn2 ) Y 3 (1-xn3 ) + Y4
(1-xn4 ) 

                                                            (4) 
 
where R is the radius of the slender body as a 
function of x and  Y = { Y 1  , Y 2 , Y 3  , Y 4 }T 
could be used as the solution vector representing 
the afterbody geometry and in minimizing the drag 
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as represented by formula (3) as the objective function 
in the minimization process. More generally, higher 
order polynomials can be utilized, but representation 
(4) is considered to be instructive in developing the 
method. The choice of the powers n1, n2, n3 and n4 is 
at our disposal, and can be decided by inspecting the 
generic geometrical shape given by each, such as by  
(1-x4). For convenience, in the computational 
procedure non-dimensional variables have been used. 
For this purpose, for example, in the study, it is 
required that 
 

Y 1 + Y2 +  Y 3  + Y4 = 1          (5) 
 
Other geometries, such as the tanh function as 
suggested by Nghiem and Norstrud[3], as well as 
geometries formulated by Biblarz [4][5], Priyono [8] 
and Priyono and Djojodihardjo[9], can be 
approximated by using representation (4).  Certainly 
other series approximations can also be utilized, which 
could be chosen from their closeness to the anticipated 
or desired geometry, and ease for analysis. The 
geometry resulted from Biblarz analysis (for 
convenience referred to as Biblarz curve) can also be 
approximated by the polynomial (5). 
 

These geometries are utilized in studying the 
parametric behavior of the flow characteristics, and 
serve as references in numerical solutions obtained by 
solving more exact differential equations, as given by 
the Euler equation for the inviscid approximation and 
the Navier-Stokes equation for the viscous case. The 
flow characteristics, in particular the pressure 
distribution along the surface of the body, can readily 
be calculated [5][8], which then can be used in 
studying the drag of the body. The characteristics of 
the flow field can be utilized in working for desired 
optimum characteristics, in particular in obtaining 
geometries with minimum drag. 

 
          Another search for the candidate geometries with 
minimum drag is carried out by studying the 
aerodynamic characteristics of three projectile 
configurations that are considered convenient; these are 
slender axisymmetrical bodies with flat, conical and 
rounded afterbody. All of our analyses are carried out 
for slender bodies moving without spin. For the 
numerical computation of the flow characteristics (such 
as Mach  contour, pressure coefficient (Cp), and Drag 
Coefficient (Cd)), commercially available flow solvers 
are utilized; these are Multi Grid Aerodynamics 
(MGAERO) and RAMPANT Flow Solvers, for solving 
the Euler and Navier-Stokes Equations, respectively.  

 
 

3. Geometrical Optimization Scheme  
 

To obtain afterbody geometries with minimum 
aerodynamic drag, two approaches can be carried out. 

The most straightforward one is by direct 
computation of a set of geometries selected from 
some physical or analytical configurations, while the 
second is a systematic one following a wellknown 
optimization scheme. The first approach is simple 
and straightforward, which can be carried out 
utilizing physical considerations and intuition, but 
will be time consuming and mathematically speaking, 
does not guarantee a globally optimum configuration. 
It can only serve as an illustration. The second 
approach follows some well known optimization 
scheme, such as by using Sequential Quadratic 
Programming or  Modified Feasible Direction 
method [6][7]. These methods are considered to be 
effective and accurate in reaching a globally 
optimum configuration. 

 
The Modified Feasible Direction method 

requires that an initial set of design variables, Y0  be 
specified.     Beginning from this starting point, the 
design is updated iteratively.    The most common 
form of this iterative procedure is given by : 

 
 

Y q  = Y q-1   +  a*.Sq    (6) 
 

Where : 
   q      =   iteration number 

S  =  vector search direction in the        
design space 

 a*  =   scalar quantity defining the distance 
that we wish to move in the direction S 
 

The iterative relationship  given by Eqs.(6) is applied 
to the optimization process, where Y is the solution 
vector indicative of the geometry of the slender 
axisymmetrical  body.  

 
Let the drag D = F(Y) is the objective function  and  
g(Y) is the constraint function vector. 
Assume we begin at point Y 0 and we wish to reduce 
the objective function by searching in direction S1  . 
 
The choice of S is somewhat arbitrary as long as a 
small move in this direction will reduce the objective 
fungtion without violating any constraints. In this 
case, the S1 vector is approximately the negative of 
the gradient of the objective function, i.e. the 
direction of  steepest descent[6] .   It is now 
necessary to find the scalar a* in Eqs.(6) so that the 
objective function is minimized in this direction 
without violating any constraints. In essence,  the 
optimization of  D = F(Y)  subject to the constraint 
function vector g(Y) can be generally stated as : 
 

Mininize : D = F(Y)                          (7) 
Subject to : 
 g(Y) ≤  0  , g(Y) = { gj (Y)  },       j  = 1,m 
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h(Y) =   0  , h(Y) = { hk (Y)  },     k = 1,l 
 Y i

l  ≤ Y i  ≤ Y i
u    ,               i  = 1,n 

                                                      (8)           
where : 
F(Y)  =  objective function 
g(Y) =   inequality constraints 
h(Y) =   equality constraints 
Y i

l   =  lower bound of  solution vector components 
Y i

u  =  upper bound of  solution vector components 
 
By appropriate forrmulation of the problem, solution 
procedure can readily be followed by resorting to 
standard Qiuadratic Sequential Programming Technique 
of Modified of Feasible Directions that are available in 
commercial software, such as MATLAB. 
It  is noteworthy that in many of these methods, the 
Gradient Vector  ∇∇∇∇F(Y 0)  as well as the Hesian Matrix 
H of the Second Derivatives of the Objective function 
have to be computed. vector which reduces the objective 
function is called usable direction.     
 
In the modified feasible direction method, the usability 
requirement is stated as the dot product of ∇∇∇∇F(Y 0)  and 
S should be negative, i.e. 
 

  ∇∇∇∇F(Y 0) . S   ≤≤≤≤   0 
 

A direction is called feasible if for some small move in 
that direction, the active constraint will not be violated, 
thus the dot product of ∇gj(X0) and  S must be negative: 

  ∇∇∇∇ g(Y0)  ≤≤≤≤  0 
 
In the present study, the systematic optimization scheme 
is carried out by using simple geometries  characterized 
by equation.(4) and approximate drag formula  (3). Then 
the minimum drag configuration obtained by the 
geometry optimization procedure is checked for its 
plausibility using more accurate methods described 
below. If the geometry has not met the requirements 
based on other considerations, the optimization 
procedure described above can be repeated with 
additional modification to the geometrical expression. 
Alternatively, several families of geometries can be 
compared to reach at desired configuration.  
 
4. Parametric Study of the Flow Characteristics 

Of Slender Axi-Symmetric Bodies In Transonic 
Flow for the inviscid and the viscous case. 

 
4.1  Numerical approach by Numerical Solution of 
the Euler Equation  (inviscid case)   
 
The first numerical approach utilized for the parametric 
study of the influence of the afterbody geometry to the 
drag is the numerical computational procedure to solve 
the inviscid Euler Equation. The prevailing governing 
equations which involve the mass, momentum and 
energy conservation equations can be written in the 

conservation form, in the Two-Dimensional 
Cartesian coordinates (to attack the problems at 
hand) as follows: 
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where: 
       a =  0  for planar 2D flow 
       a     =  1  for  axisymetrical 2D flow 
 
and where: 
 
 



















=

te
v
u

Q

ρ
ρ
ρ
ρ

 ; 



















+

+
=

upe
uv

pu
u

E

t )(

2

ρ
ρ

ρ
ρ

   (10) 

 



















+
+

=

vpe
pv

vu
v

F

t )(

2

ρ
ρ

ρ
ρ

  ;   



















+

=

vpe
v
vu
v

y
H

t )(

1
2

ρ
ρ
ρ
ρ

        

 
 

)(
2
1

)1(
22

2

vuaet ++
−

=
γγ

             (11) 

 
To facilitate numerical computation, the above 
equation is written in Finite difference formulation. 
The time derivative is approximated by a first order 
backward difference quotient and the remaining 
terms are evaluated at time level n + 1 . Then 
equation (9) can be written in finite difference 
formulation as: 
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Equation (12) is non-linear. Further simplification 
is afforded by linearized approach, which then 
yields:  
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are Jacobian matrices.  
The numerical computation then is carried out by 
solving the following equation in the computational 
grid.  
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For this purpose, the commercially available flow 
solver Multi Grid Aerodynamics (MGAERO)[10] is 
utilized. 
 

 
4.2  Parametric Study of the flow characteristics 

using MGAERO 
 
          The flow characteristics of projectiles with three 
different afterbody geometries are investigated, these 
are the flat edged, conical and rounded edge aft-bodies. 
The  projectile, which is axi-symmetrical, does not 
rotate about its longitudinal axis, which is the axis of 
symmetry. In the analysis,  Mach number, pressure 
coefficient (Cp), and drag coefficient (Cd) contours are 
obtained characterizing the resulting flow field.  
 
4.2.1 Results 
 
 The calculation is carried out for three 
different values of free-stream Mach numbers, these 
are  0.8, 1.2 and 1.5; the angle of attack a  = 0.     
 
4.2.2 Projectile  with flat afterbody 
 

The Mach contour and pressure distribution of 
the projectile with flat afterbody geometry under study 
are shown in Figs. 2a and 2b, respectively.  

               
    
                Fig. 2a   Mach contour   M = 1.2 
 

       
 

  Fig. 2b   Pressure Distribution Cp 

 

In particular, for free stream Mach number M = 1.2 
, shocks occur at the bow and at the stern of the 
projectile.  At M = 0.8 no shock wave occurs; at M 
= 1.2 and  1.5, the presence of shockwaves is 
accompanied by the presence of mach lines that are 
inclined downstream.  The pressure distribution 
indicates a maximum at the bow of the projectile, 
i.e the stagnation point, as expected, and decays 
towards downstream. At the stern, the pressure 
decreases sharply.  

It should be noted, however, that at the 
afterbody region, the inviscid computational 
approach may not be valid without proper modeling 
of the flow. The results thus far obtained may be 
indicative of the real situation only at the upstream 
part, especially if there are shocks in the vicinity of 
the stern. It is with such notion in mind that the 
inviscid numerical approach is only utilized to 
obtain first hand solutions. It is with such notion in 
mind that further refinement of the results, if 
necessary, will be resorted to by the use of the 
direct numerical approach to the fully viscous flow.    
 
4.2.3 Projectile  with conical afterbody 
 

Next, we will look into the second 
projectile with conical afterbody. The Mach 
contour and pressure distribution of the projectile 
with flat afterbody geometry under study are shown 
in Figs. 3a and 3b, respectively.  
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Fig. 3a   Mach contour, M = 1.2 

 
 

Fig 3b   Pressure distribution 

 
For this configuration, at free-stream Mach number M 
= 0.8 , the local velocity is gradually accelerated 
downstream along the surface until near the stern, it 
reaches a value of M = 1.4. For M = 1.2 and 1.5 , 
shockwaves appear at the front and rear part.  For M 
= 0.8 , compared to the former geometry, the pressure 
drops near the beginning of the conical part of the 
afterbody due to expansion wave. For M = 1.2, 
expansion wave also occurs near the beginning of the 
conical part.    
  

4.2.4 Projectile  with rounded afterbody 
 

Next, we will look into the second projectile 
with conical afterbody. The Mach contour and pressure 
distribution of the projectile with flat afterbody 
geometry under study are shown in Figs. 4a and 4b, 
respectively.  

 
 
 
 
 

 

 

 

 

 

Fig. 4a   Mach contour, M = 1.2  

 

 

Fig. 4b   Pressure Distribution Cp 

For this configuration, at free-stream Mach number 
M = 0.8 , the local velocity is also gradually 
accelerated downstream along the surface until near 
the stern, and it also reaches a value of M = 1.4 
there. For M = 1.2 and 1.5 , shockwaves appear at 
the front and rear part.  For M = 0.8  expansion 
wave occurs near the stern, as indicated also by a 
sharp pressure jump there. The pressure jump 
occurs at the rounded part of the stern. Comparing 
the pressure jump here for this geometry with that 
for the other geometries studied, the pressure jump 
here is relatively larger. The pressure jump here for 
M = 0.8 reaches - 1.5, while for the flat stern  = - 
0.16 and for conical tern  = - 0.60. 
 

4.2.5 Drag components 

The following table summarizes the 
numerical results obtained for the drag components 
of the projectile for three different geometry 
studies. Among the three geometries, rounded stern 
seems to give rise to lower drag components, as 
indicated by Table 1. 
 

 

Table 1 Drag components 
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No  Mach No.   
  0.8 1.2 1.5 

I Induced Drag (Cdi)    
 1.   Flat 0.26145E-02 0.44473E-02 0.40776E-02 
 2.   Conical 0.10025E-02 0.29843E-02 0.28796E-02 
 3.   Rounded 0.52563E-03 0.24420E-02 0.26100E-02 

II Wave Drag    
 1.   Flat 0.69328E-02 -0.42792E-01 0.28855E-02 
 2.   Conical 0.17599E-02 -0.38999E-01 0.10645E-01 
 3.   Rounded 0.12974E-02 -0.33929E-01 0.12927E-02 

 
 
4.3  Numerical approach by Numerical Solution  

by Numerical Solution of the Navier Stokes 
(viscous case) 

The  numerical approach utilized for the 
parametric study of the influence of the afterbody 
geometry to the drag is the numerical 
computational procedure to solve the  viscous 
Navier-Stokes Equation. For this purpose, 
commercially available Rampant Flow Solver[10] 
is utilized, since Rampant Flow Solver provides 
comprehensive modeling capabilities for a wide 
range of incompressible and compressible, laminar 
and turbulent fluid flow problems. Also, since 
Rampant has capabilities to solve flow model by 
using a reference of rotating frame, it can be 
utilized to analyze aerodynamic characteristic of 
axisymmetri slender body.  One can take note that 
Rampant  can solve the EULER equation as well 
NAVIER-STOKES equation for laminar viscous 
flow.     

The prevailing governing equations which 
involve the mass, momentum and energy 
conservation equations can be written, in the 
conservation form and in the two-dimensional 
Cartesian coordinates (to attack the problems at 
hand), as follows: 
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a  =   0      for  planar 2D flow case and 
a  =   1      for  axisymmetric  2D flow case 
      
where : 
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4.3.1 Results for axi-symmetric cases 

investigated using 3D Rampant Flow 
Solver. 

 
 The Mach contour and pressure 
distribution along the surface of the projectile 
investigated are shown for the projectile with flat 
base in Figs. 5a and 5b, respectively, with conical 
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afterbody  in Figs. 6a and 6b, respectively, and with 
rounded afterbody in Figs. 7a and 7b, respectively. 

Similar characteristics obtained by 
utilizing Navier-Stokes solver (RAMPANT) to 
those investigated using Euler solver (MGAERO) 
are indicated there. However, the flow situation 
near the base are better revealed. For the projectile 
with flat base, strong flow separation is clearly 
exhibited at the base. The stagnation pressure at the 
nose for M = 1.2 is stronger than that for M = 0.8 
and M = 1.5 , which may indicate the presence of 
stronger shocks (or shock-boundary layer 
interaction) along the surface of the projectile near 
sonic free stream speed.  

        
 Fig 5a  Mach contour  M = 1.2  Flat base 

 

 

 

Fig  5b  Cp Distribution  M= 1.2  Flat base 

 

 

 

 

 

 

 
Conical Afterbody 

 

 

 

 

Fig 6a    Mach contour 

 

 

Fig  6b  Cp Distribution 

 

Rounded Afterbody 
 

 

Fig 7a    Mach contour  
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Fig  7 b  Cp Distribution 

 

Compared to the other two geometries, the rounded 
base configuration gives rise to stronger shock 
wave close to the base, close to the rounded 
surface.   
  

4.3.2 Variation of Drag due to Mach number 
  

The Navier Stokes flow solver has been 
applied for projectiles with the three different 
afterbody configurations for values of Mach 
number ranging from M = 0.6 to M = 3.0.  The 
variation of drag (Cd) with respect to the Mach 
number is exhibited in Fig. 8. As already well 
known, the maximum drag occurs near the sonic 
free stream velocity. The search for the optimum 
geometry from the view point of drag can be 
focussed to this figure.  Fig. 8 indicates that the 
projectile with rounded afterbody produces the  
best (minimum) drag characteristics among the 
three geometries investigated. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 
 

Fig  8 Cd  vs  M 

 
5. Discussion of Drag Optimization Results 
 
Drag optimization scheme as described in part 3 
has given some feasible afterbody geometrical 
configurations, such as illustrated in Figure 8, 
found using optimization of curve (4) following  
problem formulation (8). 
  
The geometry is comparable with those studied 
using the Euler and Navier-Stokes solvers. Further 
optimization sheme can readily follow.   
 
6.  Conclusion 

 
a. A simple geometrical configuration 

optimization scheme for slender 
axisymmetrical bodies in transonic flow for 
minimum drag due to afterbody contribution 
has been formulated and carried out, following 
transonic small disturbance approach and 
Sequential Quadratic Programming and 
Modified Feasible Direction optimization 
method.  Candidate geometries can be obtained 
for further elaborate studies using Euler and 
Navier Stokes flow solvers, for inviscid and 
viscous cases, respectively. In addition, an 
analytical approach by looking into the 
simplified transonic gas dynamic equation 
following the work of Biblarz has been carried 
out to obtain another candidates of afterbody 
geometries that may be worked out further to 
produce the lowest drag. 

b. Further Computational Study of slender axi-
symmetrical body in transonic flow has also 
been carried out to look into the flow 
characteristics giving rise to the significant 

Grafik  Drag Coef  vs  Mach Number
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contribution to the drag from the afterbody.  
For practical purposes, two commercially 
available computational routines are utilized, 
these are MGAERO flow solver for the invscid 
(Euler) case and the RAMPANT flow solver 
for the viscous (Navier-Stokes) case. Careful 
construction of the computational grids has 
been carried out to insure good accuracy.   

c. Flow characteristic of three projectile 
configurations, i.e one with flat base, conical 
and rounded afterbody, have been investigated 
within the transonic flow regimes.  The flow 
characteristics exhibited the shock wave 
phenomena and pressure distribution along the 
surface that can be studied to arrive at most 
desirable aerodynamic characteristics.  
Certainly one seeks for less complex shock-
wave behavior and consequently the lowest 
drag.         

d. The computational study of the three 
geometries investigated  shows that the 
projectile with rounded afterbody yields the 
lowest (optimum) drag compared to those with 
flat base and conical afterbody.  
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