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Abstract

An CFD tool capable to simulate accurately vis-
cous flows around complex aerodynamic config-
urations is described.
The method combines a Multiblock technique
with a low dissipation numerical method in-
corporated into Multigrid framework. Struc-
tured subdomains (blocks) are united in multi-
grid/multiblock structures, and the blocks are
treated independently at each stage of the numer-
ical procedure, maintaining a regular information
exchange between the neighboring blocks.
In the numerical procedure, the convection part
of the equations is approximated by a low-order
upwind biased scheme employed for multigrid
relaxation in combination with a higher-order es-
sentially non-oscillatory (ENO) scheme used to
supply a defect correction to the right-hand side
of the discrete equations on the finest multigrid
level in a way ensuring the overall high accuracy
of the scheme.
Computational examples demonstrate the abil-
ity of the resulting method to perform accurate
large-scale computations of complex 3-D turbu-
lent flows around realistic aerodynamic configu-
rations.

1 Introduction

This work is motivated by the need of an indus-
trial CFD tool capable of providing accurate solu-
tions of the Navier-Stokes equations for complex
high-Reynolds turbulent flows around complex
industrial configurations, including complete air-
craft.
An engineering environment requires geometri-
cal flexibility, high accuracy, reasonable turn-
around times and high robustness.
Robust numerical schemes may possess rela-
tively low accuracy as their robustness is usu-
ally achieved by inclusion of artificial dissipa-
tion into the scheme, either explicitly or implic-
itly. Higher-order accurate numerical schemes
are usually far less robust and their incorpora-
tion into multigrid/multiblock framework is usu-
ally inefficient. As a result the practical use of
high-accuracy schemes is restricted to relatively
simple - from the geometrical viewpoint - config-
urations.
In this work an attempt is made to challenge the
goal of combining together a Multiblock tech-
nique with a low dissipation numerical method
incorporated into Multigrid framework.
In [1] a finite-volume numerical method based on
the ENO approach [4, 5] was introduced and ac-
curate results were achieved on relatively coarse
grids without the need for any additional dissi-
pation. The method and the appropriate com-
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puter code did not employ any numerical param-
eters (coefficients of artificial viscosity or like-
wise) and thus, at a given numerical mesh, tuning
of the code parameters is irrelevant.
In order to perform large-scale computations em-
ploying millions of grid points, it was crucial to
improve the efficiency of the method. A straight-
forward implementation of the Multigrid strategy
employing FAS (Full Approximation Scheme
[6]) in conjunction with ENO discretization was
not satisfactory [3] and the solver of [1, 2] was
changed to be based on a defect correction multi-
grid approach, where the target discretization is
different from that used in the relaxation pro-
cess of the multigrid cycle A first-order-accurate
driver is employed for relaxation, and a high-
order ENO operator supplies a defect correction
to the right-hand side of the discrete equations.
The resulting single-block multigrid method [3]
retained the high accuracy of the ENO method
of [1, 2] with a comparatively small number of
multigrid cycles needed to reduce the error below
the level of truncation errors.
The present work focuses on the transformation
of the single-block method of [1, 2, 3] to a struc-
tured multiblock code [7] capable of treating
complex aerodynamic configurations efficiently.
The data exchange among the neighboring blocks
allows the treatment of convection terms of the
Navier-Stokes equations in a “transparent" way.
For viscous terms, minor changes to the numer-
ical approximation were allowed. This leads to
only insignificant loss of accuracy in the neigh-
borhood of block interfaces, and has almost no
effect on the overall aerodynamic results.
The communication overhead caused by the data
exchange among neighboring blocks is negligi-
ble as it uses no complicated data management
such as connectivity lists. As a result, the code is
highly suitable for efficient parallelization on an
almost “plug-in" basis.
The results include two benchmarks:

1. A popular ARA M100 wing-body turbulent
transonic test-case with both surface data
and aerodynamic forces data comparisons
included over a wide range of conditions.

2. A transport-type fuselage drag rise vs Mach
study which was employed as a base-line
calculation for a practical aerodynamic de-
sign case.

The above tests are compared with wind-tunnel
experiment and available results by other authors.

2 Mathematical Background

For the sake of completeness a brief description
of the numerical algorithm is given below. More
details may be found in [1, 2, 3].
The choice of discretization for the convective
part of the Navier-Stokes spatial operator is
driven by the following requirements:

1. Applicability to 3-D reasonably smooth
grids not necessarily defined by mapping
function(s), but rather by a set of vertices.

2. Applicability to high aspect ratio grids typi-
cal of the Navier-Stokes computations.

3. Ability “to coexist" with viscous terms with-
out damping them due to artificial viscosity
effect.

4. High accuracy on aerodynamic level includ-
ing computation of sensitive flow character-
istics such as drag.

5. Use of minimal number of numerical param-
eters.

6. Robustness.

7. Relatively low amount of computational
work at given accuracy.

Theoretical considerations together with exten-
sive numerical experiment showed that the ENO-
based scheme first introduced in [1, 2] and incor-
porated in a Multigrid framework by means of
the Defect Correction approach in [3] possesses
the above properties.
We assume that all the block meshes are struc-
tured. By integrating over each cell separately
we get a system of ODE’s which can be solved
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by a time-stepping procedure. Fluxes are approx-
imated by a one-dimensional interpolation from
nearby cell centers.
The ENO approach is implemented by choosing
a template (typically consisting of 3 points in this
work) which may change with iterations and de-
termined separately in each field, primarily ac-
cording to the sign of the corresponding eigen-
value and then according to the smoothness of the
projected fluxes [5, 3]. The interpolated charac-
teristic fluxes are projected back to get the Carte-
sian ones.
In the framework of the present method the above
ENO procedure is applied only for the defect
correction calculation, a very limited number of
times (roughly equal to a number of multigrid cy-
cles), and most of the computational work is per-
formed using a relatively cheap upwind biased
relaxation. For subsonic and transonic flows, a
linearly stable template is applied in practice ev-
erywhere, except on “sensitive" faces where the
variable ENO template is used. The face is called
sensitive if it belongs to the one-dimensional
neighborhood of a sonic cell face. Natural fi-
nite differences are used to approximate the first
derivatives along the local grid coordinates.
A 3-stage Runge-Kutta scheme is applied in
a TVD preserving form [5] with theoretical
CFL=1. To accelerate the convergence to steady-
state, explicit residual smoothing is applied.

2.1 Multigrid Defect Correction Approach

For a given problem Lu�F, the defect correction
approach is defined by an iterative process

L1u�n�1� � F� �L2u�n�
�L1u�n��� (1)

Here, u and F are the solution and the given forc-
ing fields, respectively, n is the iteration number,
L is a (possibly nonlinear) operator, L2 is typi-
cally a high order operator approximation (ENO
in our application) to L, and L1 is an approx-
imation to L that can be inverted efficiently by
multigrid techniques. Thus, a defect correction is
added as a forcing term to the RHS of the equa-
tions, and the actual relaxation process is per-
formed using a stable and easy-to-invert opera-

tor L1. In this work, operators L1 and L2 only
approximate the convection part of the equations
differently, and the viscous terms approximated
as described above are added to the left-hand
side of Eq. (1). L1 is chosen as a low-order
upwind-biased one-point stencil operator. L2 is
the ENO operator described above. The defect
correction is applied only on the finest multigrid
level ; on other levels the relaxation process is
simply driven by the low-order operator L1.

3 Multiblock Approach

In a multiblock approach, the global domain is di-
vided into smaller subdomains (blocks) for which
computational meshes are easier to generate. It is
presumed that an iteration process is applied sep-
arately to each block, with data exchange among
the blocks responsible for the validity of bound-
ary conditions on the block interfaces and their
immediate vicinity. A number of numerical prob-
lems arise associated with the correct implemen-
tation of the above boundary conditions, con-
servativity of numerical fluxes in the vicinity of
block interfaces and multigrid interpolation. It is
also vital to diminish the overhead due to the data
exchange among neighboring blocks in order to
achieve computational efficiency on serial com-
puters on one hand, and to make the code suitable
for parallelization, on the other.

3.1 Basic features

The present multiblock method possesses the fol-
lowing basic features:

1. Similar to the single-block method of [1, 2,
3], the multiblock algorithm is based on an
ENO numerical scheme which is incorpo-
rated into multigrid defect-correction frame-
work.

2. The method employs no connectivity lists
or similar data structures which may slow
down the data transfer. This simplifies data
organization and data management, and thus
reduces the communication overhead.
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3. The convection fluxes are approximated in
the way identical to that of the single-block
method. Slight changes are introduced to the
approximation of viscous fluxes and to the
multigrid interpolation in order to comply
with the previous requirement of a simple
data management. The computational im-
pact of these changes is negligible.

3.2 Multiblock/Multigrid structure

The global domain decomposition is subject to
the following requirements:

1. For each block, i� j�k mesh structures are
generated by means of standard grid gener-
ators.

2. In the present version of the algorithm, there
is a point-to-point matching of grid lines
across the blocks interface.

3. A block face may abut several neighbor-
ing blocks each of which may also adjoin
a number of different block faces, this fea-
ture is further referred to as the “multiface"
property.

The set of blocks thus constructed forms the
finest multigrid level. Coarser multigrid levels
are recursively built by comprising the blocks
which are formed by merging neighboring com-
putational volumes of the previous finer level.
The numerical algorithm is embedded in the
framework of the multigrid method by means of
the full-approximation scheme (FAS, [6]). On
the finest level, the defect-correction technique is
employed as explained in 2.1.

3.3 Treatment of block interfaces: data
structures

In the single-block code, the concept of boundary
arrays consisting of ghost cells was used in or-
der to treat all kinds of boundary conditions (sur-
face boundary conditions, far-field and symmetry
boundary conditions). Note that the boundary ar-
rays might be regarded as an extension, in each
of six directions, of an actual grid which con-
sists of the internal cells. The extensions do not

include "corner cells" (that is cells whose three-
dimensional index includes more than one exter-
nal one-dimensional subindex).
The same idea was used in order to imple-
ment data exchange between neighboring blocks
through a block connectivity boundary condition,
further referred to as the “merge" boundary con-
dition. On each face corresponding to this con-
dition, an “extension block" is built. The number
of cells in such a block in the direction of ex-
tension is equal to the order of the currently ap-
plied ENO scheme. (This means that for all the
multigrid levels but the finest one, the extension
blocks have a width of one, as is also the case for
boundary conditions other than the “merge" con-
dition). Each extension block is regularly filled
by overlapping information from the neighboring
block (or blocks, in the multiface case) (see Fig.
1). Due to changeability of stencils, it is prefer-

Fig. 1 Multiblock data management at merged
faces

able (especially for a higher-order ENO) to trans-
fer the values of basic variables (density, veloc-
ity and energy), rather than the values of numer-
ical fluxes. The above strategy of data transfer
also enables the conservativity of the numerical
scheme.
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3.4 Spatial approximation on block inter-
faces

As mentioned above in Section 3.2, block exten-
sions represent “thin" blocks with a number of
cells in the direction of extension equal to the cur-
rent ENO order. In the remaining two directions,
a number of cells is equal to the number of in-
ternal cells in the corresponding directions of the
basic blocks.
A slight change in the approximation formulae
was introduced in order to ensure the conserva-
tivity of the overall numerical scheme without
need for a complicated treatment of topologically
complex block interfaces, and thus to comply
with the requirement of simple data management.
Convection fluxes are approximated one-
dimensionally, so that the regular data refilling
of the extension blocks ensures the full trans-
parency of the flux interpolation. As a result,
for Euler computations, the multiblock one-level
results are identical to those of the original
single-block code (where the comparison makes
sense, for example when dividing a single block
into smaller subblocks).
On the other hand, viscous fluxes require two-
dimensional interpolation stencils. Thus, in order
to retain the flux approximation formulae of the
single-block scheme near a block interface, it is
necessary to use the velocity values at the "corner
cells" of the block. Extension blocks defined in
the previous section do not contain "corner cells"
as the extension is performed one-dimensionally
across the face. Moreover, a correct determina-
tion of corner cells is not straightforward as they
may come from a block which does not possess
a face common with the block under considera-
tion (and consequently is not normally identified
as its neighbor). The situation is especially un-
determined in the neighborhood of irregularities
such as trailing edges of lifting surfaces, etc.
From the viewpoint of data organization, em-
ployment of corner cells requires the construc-
tion of connectivity lists. Even less desirable is
the fact that it also involves the information ex-
change with "distant" blocks (i.e. blocks other
than the immediate neighbors of the block).

The solution adopted was to use a lower order
approximation of the relevant viscous derivatives
near the block corners, while keeping the viscous
fluxes conservative. With the same end in view,
turbulent viscosity coefficients are primarily de-
termined at the cell centers in each block, and
then the adjacent blocks exchange boundary vis-
cosity values together with values of basic vari-
ables.
The same line of reasoning may be applied to
the fine-to-coarse multigrid interpolation of ba-
sic variables. Similarly, no corner cells are used
which slightly affects the overall accuracy of the
interpolations.
In both cases, only insignificant loss of accuracy
has been observed - almost invisible in terms of
pressure distribution.

3.5 User interface

Manual specification of boundary conditions on
the block faces can become a tedious task as the
number of blocks increases. Hence the code in-
cludes a capability for automatic attribution of
boundary conditions to the faces of blocks. All
boundary conditions are fully determined by a
single quick preprocessor run for a given config-
uration. This also includes the automatic iden-
tification of "wake" faces which is essential e.g.
for the standard Baldwin-Lomax [9] turbulence
modeling on wakes. The preprocessor to the code
automatically identifies the sharp edges which
may produce a wake, labels the block faces which
are geometrically induced by the above edges,
and then recursively propagates the wake bound-
ary condition to the neighboring blocks.
The approach removes all topology dependent
operations from the flow solver and thus en-
hances the versatility of the code.

4 Computational Results

The major objective of the study was to check the
ability of the modified method to allow (due to
its multiblock structure) large scale calculations
for realistic aerodynamic configurations while re-
taining its robustness and high accuracy. Solu-
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tions for subsonic and transonic turbulent flow
over different configurations in flight conditions
where viscous effects are significant, were ob-
tained.
In these computations the effects of turbulence
are modeled through an eddy-viscosity hypoth-
esis with the Baldwin-Lomax turbulence model
used for turbulence closure which, according to
prior experience, may produce reasonably accu-
rate representation of the flow in the conditions
where the separations effects are not of primary
importance. The results which include surface
pressure, lift/drag and drag rise vs Mach data,
were compared with wind-tunnel experiment and
available results by other authors.
The code uses no parameters associated with arti-
ficial viscosity treatment, explicitly or implicitly
so, at a given computational grid, the only com-
putational parameter subject to variation, is the
CFL number. In all the runs mentioned in this
section, the value of the CFL number was kept
equal to 1�5. Thus all the runs presented below
are "first shot" runs.

4.1 Test-case ARA M100

4.1.1 Choice of a benchmark

The test-case selected is that of flow over ARA
M100 wing at subsonic and transonic condi-
tions. The flight conditions were mostly typical
of cruise and the wing has transonic/transport de-
sign. The test-case was chosen due to the require-
ment for extensive and reliable experimental data
on one hand, and due to the availability of avail-
able computations by other authors, on the other.
The present case has been the subject of detailed
studies in the past (see, e.g.[10, 11]).

4.1.2 Geometry and experiment

The configuration matched the geometry of
a wind tunnel model tested in United King-
dom’s Aircraft Research Association wind tunnel
([12]). The wing is mounted approximately cen-
trally on the fuselage axis and has a 5Æ dihedral.
The computational geometry used in grid genera-
tion was created by enriching the original airfoils

of [12]. A small cap was added to the wing tip
(details of which were not available from [12]).

4.1.3 Grid Generation

The computational grid used here was generated
using GRIDGEN V8 ([8]). To allow a fair com-
parison, an effort was made to generate a grid
close to that constructed in [10, 11]. Similar to
[10, 11], the grid topology is of C-O type, and it
is stretched 16 mean chords upstream, 24 mean
chords normal to the surface and the wing tip.
The multigrid set contains three levels. The fine
multiblock grid consists of 325 points around the
configuration, 57 points normal to the surface,
and 49 points in the spanwise direction. The
computational grid comprises 24 blocks, each of
them of i� j�k structure. The total number of
cells is about 900000. Two coarser multigrid lev-
els were derived viz "medium", and "coarse", by
deleting every other coordinate line in each of the
three directions. The first 15 points in the normal
to surface direction were clustered to lie within
the boundary layer in the way ensuring normal
spacing of about 10�7 body length at the sur-
face. As suggested in [10, 11], an aeroelastic ef-
fect which caused a tip down twist was included
into the geometry and computational grids, but
the wing tip deflection mentioned in [10] was not
applied. The fine level grid dimensions are very
close to those of the grid designated in [10, 11]
as a medium grid.

4.1.4 Computational runs

The total of 28 computational runs were per-
formed based on the experimental data available
in [12]. They were aimed at achieving the fol-
lowing comparisons:

1. Surface pressure coefficients at the fixed
free-stream Mach number of M∞ � �80, at
different angles of attack.

2. Lift vs angle of attack curve and drag polar
CL vs CD, at the same Mach number.

3. The drag rise curve CD vs Mach at a lift co-
efficient of about 0�40.
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The solutions presented here possess the normal
spacings at the wing surface, keeping y� of about
1.5-2.5 on the finest meshes employed in order to
allow reliable representation of viscous effects.
In all the computations,Re � 13�1� 106 and the
flow was treated as fully turbulent.

4.1.5 Surface pressure comparisons

Wing surface pressure comparisons were per-
formed at the angle of attack varied between
�3�017Æ and 2�873Æ, and at the free-stream Mach
number M∞ � �80, Re � 13�1� 106, conditions
which vary from low subsonic to transonic. The
most challenging aspect of the computations was
the shock-boundary layer interaction at transonic
flight conditions.
The wing surface pressure comparisons are
shown in Fig. 2 to Fig. 3 and in Fig. 4 to Fig. 5 at
the angles of attack α ��3�017Æ, and α � 2�873Æ

respectively.

Fig. 2 ARA Cp profiles Station 1 - α ��3�017Æ

M∞ � �80, Re � 13�1�106

The surface pressure coefficients are predicted
reasonably well throughout the whole range of
angles of attack. In general the pressure distri-
butions are close to those presented in [10, 11].
The computation seems to predict both the shock

Fig. 3 ARA Cp profiles Station 3 - α ��3�017Æ

M∞ � �80, Re � 13�1�106

Fig. 4 ARA Cp profiles Station 1 - α � 2�873Æ

M∞ � �80, Re � 13�1�106

on the lower surface at α � �3�017Æ and at the
higher positive angles of attack. Somewhat sur-
prisingly, the computation at α � 2�873Æ pre-
dicts the shock location apparently better than
the computation in [11, 12], performed with the
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Fig. 5 ARA Cp profiles Station 3 - α � 2�873Æ

M∞ � �80, Re � 13�1�106

same turbulence model. This may be possibly at-
tributed to a low-dissipation numerical scheme
of the current method which allows a reason-
able prediction of shock waves/boundary layer
interaction in the absence of strong separation by
means of an algebraic turbulence modeling.
Additionally a coarser, two-level multigrid com-
putation was also carried out. In this case, the
finest grid (which is the medium grid of the three-
level computations) contains slightly more than
115000 computational cells. The effect of refine-
ment is most significant at the highest computed
angle of attack α � 2�873Æ (see Fig. 6) where
the two pressure distributions are compared at
the section 2y�b � �33. Still the discrepancy is
mostly confined to the shock region where the
finer computation exhibits a sharper shock pat-
tern. On the whole, the two computations pro-
duce rather close results which indicates a good
grid convergence in terms of pressure distribu-
tions. The grid convergence in terms of lift and
drag will be discussed in the next sections.

4.1.6 Aerodynamic coefficients

Fig. 7 shows the lift coefficient curve as function
of angle of attack at M∞ � �80. The medium and

Fig. 6 medium versus fine grid result
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Fig. 7 ARA lift curve

fine grid results by the current method are com-
pared to experiment and to the results of [10, 11].
The agreement with the lift curve slope is good
but the computation overpredicts a lift. Note that
the fine grid computation is nearer to the exper-
iment than the medium grid curve. Results of
[10, 11] (at approximately the same grid resolu-
tion) are closer to the experimental curve than the
current results but a computation on a doubly fine
grid([11] yielded a much higher lift, which is at-
tributed in [11] to the over sensitivity of a spe-
cific turbulence modeling of the computation and
to a need in additional aeroelastic corrections.
A three-level computation drag polar CL vs CD

(Fig. 8 ) matches the experimental curve rather
closely, up to the highest computed angle of at-
tack. The zero lift drag predicted by the com-
putation is only slightly (about 7� 8 counts or
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Fig. 8 ARA drag polar

�0007� �0008) lower than the experimental one.
The drag values are clearly much nearer to the
experiment than those reported in [10] for the
same grid resolution. On a doubly fine grid of
[11], a much better matching is reported than in
[10] especially when Menter’s turbulence model
is employed, with the best zero lift drag estimate
of about 12 counts higher than the experimental
value. It can be noted that the zero lift drag values
predicted on the medium (about 115000 cells)
and fine (about 900000 cells) grids of the present
computation differ significantly less than the es-
timates achieved in [10, 11] on the grids which
comprise about 900000 and close to 2000000
points, respectively.

4.1.7 Drag rise vs Mach at a given lift coeffi-
cient

The drag rise curve CD vs Mach number at a lift
coefficient of about 0�40 (Fig. 9) illustrates the
increase in drag due to increasing shock strength
with increasing Mach number. The three-level
computation which slightly underpredicts the ex-
perimental drag values is also compared with the
corresponding curve in [10, 11] (which employs
a grid of similar resolution), and with the present
two-level computation. The coarser grid com-
putation is also rather close to the experimental
curve and the discrepancy between the two com-
putational curves by the current method is rela-
tively low, once more indicating a good grid con-
vergence.
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Fig. 9 ARA drag divergence rise

4.2 Drag rise for a transport-type fuselage

This case was designed to investigate the ability
of the code to predict the transonic drag rise char-
acteristics of a realistic fuselage, and the com-
putational results served as a baseline compu-
tation for a further aerodynamic design. The
body is typical of a transport-type aircraft. Re-
liable experimental data are available for the case
including the experimental drag values correc-
tion caused by the wind-tunnel installation con-
ditions.
Fig. 10 shows a plot of drag coefficient vs Mach
number at an angle of attack of 0Æ. The com-

Fig. 10 Fuselage drag rise

putational data set is compared to the raw experi-
mental data of [13] and to a corrected experimen-
tal curve where an estimated correction of about
6 counts was applied. The computational and
experimental drag values compare both qualita-
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tively and quantitively thus indicating the ability
of the code to predict sensitive characteristics for
complex aerodynamic shapes.

5 Conclusions

A multigrid solver has been developed and ap-
plied to a 3D model of turbulent compressible
flow at high Reynolds number.
The code extends the capabilities of its predeces-
sors by the introduction of the multiblock frame-
work, incorporated into the multigrid/defect cor-
rection method, and, consequently, by its applica-
bility to large-scale Navier-Stokes computations.
The computational tests show the ability of the
modified method to achieve accurate results on
relatively coarse meshes thus retaining the low-
dissipation property of the single-block method.
Sensitive aerodynamic characteristics, such as
transonic drag rise or zero lift drag, were cor-
rectly predicted for reasonably complex aerody-
namic configurations. Comparison of computa-
tions performed on grids with different space res-
olution indicates a good grid convergence.
The interblock data exchange treats convection
terms of the Navier-Stokes equation in a trans-
parent way, thus ensuring the stability of the
multiblock method. No artificial parameters have
been introduced to the numerical scheme, and
the changes caused by a multiblock implementa-
tion resulted in only insignificant loss of accuracy
compared to the single-block method.
The exchange of information between the blocks
is constructed in a modular way which allows an
almost "plug-in" implementation of the code on
parallel multiprocessors.
High accuracy and robustness of the method, lack
of artificial numerical parameters and a simple
user interface allows the code to be used for prac-
tical large-scale aerodynamic analysis and design
in the engineering environment.
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