
ICAS 2002 CONGRESS

A CONFIGURABLE FRAMEWORK FOR MULTIDISCIPLINARY
ANALYSIS INTEGRATION AND MANAGEMENT

Jean-Yves Trépanier , François Guibault , Benoît Ozell , Djamel Bouhemhem
Centre de Recherche en Calcul Appliqué (CERCA)

Keywords: MDO, framework, datamanagement, integration

Abstract

This paperpresentsthe data model developped
in thecontext of theVADOR applicationframe-
work project.Thepurposeof theVADOR frame-
work is to enable the seamlessintegration of
commercialandin-houseanalysisapplicationsin
a heterogeneous,distributedcomputingenviron-
ment,and to allow the managementandsharing
of the datain order to provide supportto MDO.
A multi-tieredclient-serverarchitecturehasbeen
devised, which comprisesa client GUI for in-
teractive data definition and execution launch-
ing, separatedataand executionservers,and au-
tonomousremotelyexecutableapplicationwrap-
pers.Thedatamodelis at thecoreof thesystem
andits contentsandrelationsconstitutesoneof
themaindeliverablesof theproject.

1 Introduction

Engineers performing design-and-analysis activ-
ities in large aerospace companies are increas-
ingly relying on computational-based approach
to analyze product performance and to guide the
design process. Their toolbox is made up of a
large number of heteregeneous COTS and legacy
applications which all together constitutes the en-
gineering expertise of the design team.

The resulting complexity of this heterege-
neous computational environment build over
decades inhibits seamless application of multi-
disciplinary analysis and optimisation (MDO)
practices [6] and brings significant challenges in
the area of collaboration, data sharing and data

management. In this context, there is a need
for a software infrastructure which will facilitate
collaboration and data sharing, while providing
comprehensive data management capabilities in
line with modern information technologies stan-
dards. This is the subject of the VADOR (Vir-
tual Airplane Design Optimisation framewoRk)
project. The specific objectives of the VADOR
project are:

1. To develop a state-of-the-art software
framework capable of supporting an MDO
paradigm in a collaborative design environ-
ment.

2. To implement, within the framework, data
management capabilities to closely follow
the design data used and shared by the de-
sign team.

At the center of this framework lies the re-
lational data model, which describe the informa-
tion to be managed by the framework and their
relations. The present paper provides a detailed
description of the relational data model which has
been developped for the project and gives exam-
ple of use of this data structure in typical engi-
neering situations. The next section will briefly
describe the overall architecture of the frame-
work and the data model will be presented in sec-
tion 3. Conclusions and future projects will be
given in the last section.

2 Architecture

Figure 1 illustrates the architecture which is com-
posed of the following elements: the Graphi-

1

JEAN-YVES TRÉPANIER , FRANÇOIS GUIBAULT , BENOÎT OZELL , DJAMEL BOUHEMHEM

cal User Interface (GUI), the Librarian Server,
the Executive Server, the Database Management
System (DBMS) and the CPU Servers. Commu-
nication between servers is socket-based, and the
concept of object serialization is used to transfer
components across the system. The various ele-
ments composing the system are described in the
following.

CPU server CPU server

DBMSRMI RMI RMI

Librarian

 GUI Admin. GUI

VADOR

CPU server

File File File File

VADOR
Executive

Fig. 1 VADOR architecture

2.1 Graphical User Interface

The VADOR software has been designed to be
used by a large number of engineers working
in collaboration on a design project and access-
ing the system through a graphical user inter-
face (GUI). The GUI is a Java program run-
ning on the user’s machine which provides an in-
terface between engineers and the VADOR ser-
vices. The first class of services concerns the data
and process definition and the tools registration.
This is performed via four different tools called
BUILDERS. The second class of services include
data management services and data inspection
tools. These two classes of services are described
below. Figure 2) illustrate a typical views of data
and processes proposed to the VADOR users.

2.1.1 Data and Process Definition

The GUI provides the user with tools to con-
truct newDataComponents typeand to define
new StrategyComponents. The tool used to de-
fine Atomic DataComponenttype is called the
DCBuilder while the Composite DCBuilder is
used to describe the composition of data into a
hierarchical tree structure.

The tool used to define AtomicStrategy-
Componentsis called the Atomic StrategyBuilder
while the Composite Strategy Builder is used to
describe processes including loops and if con-
structs.

2.1.2 GUI Data Management and Inspection
Services

The data management services provided through
the GUI includes a data classification layer and
an automatic naming scheme forDataCompo-
nent and data files created by the system. Us-
ing the information contained inDataComponent
attributes, the VADOR software allows users to
trace the upstream history of a given piece of
data including the creator of the data, the pro-
grams used to create the data and the input data
used. Users can also be informed on the down-
stream influence of a given piece of data by ask-
ing which data has been produced using a given
piece of data as input. The result is a data man-
agement system which provides a comprehensive
documentation about data dependencies and data
influences.

2.2 Librarian Server

The Librarian Server is a Java server program
providing services for the handling and archival
of Components. The Librarian stores perma-
nently the components in a relational database us-
ing the JDBC driver. The DBMS currently in use
is the MySQL database system. It is important
to emphasize that the present architectural design
separates the engineering data usually contained
in data files, from descriptive information. Only
the descriptive information, or metadata, will be
stored in the relational database. The users data

2

A Configurable Framework for Multidisciplinary Analysis Integration and Management

Fig. 2 A view of VADOR GUI

files (potentially large files) will usually reside
where they have been created by the application
programs.

2.3 Executive Server

The VADOR Executive is a Java server program
that manages the execution ofStrategyCompo-
nents to createDataComponents. It answers
the needs of process automation in a heteroge-
neous distributed environment. The Executive is
a multi-threaded server capable of handling mul-
tiple tasks. The Executive interacts with the Li-
brarian to retrieveDataComponentsto be created
and to update the database contents after execu-
tion.

2.4 CPU Servers

CPU servers are JAVA programs which wraps
legacy programs on specific machines. The CPU
Servers have the responsability to run analysis
programs with a list of I/O files transmitted by
the Executive Server. The CPU Servers also have

the responsability to get the input files required
for the execution and put the output files to re-
quired locations after execution.

3 Data Model

One of the most important characteristics of
the VADOR framework is that the framework
does not manage detailed engineering data but
rather metadata, i.e. references and information
about the detailed data. In the present version,
the framework manages metadata about datafiles
stored on the network. The metadata model in-
cludes references to these data files added with
a set of attributes for data management and data
dependencies.

3.1 Data types

We believe that an effective framework enabling
seamless MDA should provide users with a flex-
ible and configurable data model. In order to
provide this capability, the VADOR framework

3

JEAN-YVES TRÉPANIER , FRANÇOIS GUIBAULT , BENOÎT OZELL , DJAMEL BOUHEMHEM

is based on user-defined data types. As a first
step towards data standardization, data types are
defined by the user to encapsulate each type of
datafiles that engineers are currently using in
their processes. The objects created to encapsu-
late the data are called in the VADOR framework
DataComponent, or DC. A DataComponentdef-
inition table will be used to store in a relational
database all the user-defined data types supported
by the system (details about the database tables
will be given below). The definition of new data
types in the system is a simple task requiring only
to specify a name for the new type and optionally
a description for the data type. TheDataCom-
ponentobjects, which are encapsulating one and
only one datafile, are called the Atomic DC.

3.1.1 Visualisation tools

As part of the definition of the basic data types,
editing and visualisation tools can be defined
which will then becomes available for data in-
spection through the framework.

3.2 Composite data types

Atomic DC in the VADOR system encapsulate
one data file of a known type. The description of
more complex groups of files is performed by al-
lowing user-defined hierarchical composition of
DataComponents. Hierarchical compositions are
defined and named by the user one level at a time.
The definition of CompositeDataComponent, or
Composite DC or CDC, contains a list of Atomic
DC types or Composite DC types previously de-
fined in the system. Although the users are free
to define Composite DC as they wish, some rules
will need to be followed in relation with process
definition as discussed below in section 3.4.

3.3 DataComponent

In summary,DataComponentsare objects that
encapsulate design-and-analysis data which are
usually contained in data files. They comprise
an appropriate set of attributes required for data
management. ADataComponentcan be atomic,
i.e. only encapsulate one data file, or composite,

i.e. encapsulate other composite or atomicData-
Components).

3.4 Programs and processes

In addition to the encapsulation of the data at
various levels of complexity, the VADOR system
provides a model for the encapsulation of the pro-
grams and processes used to create the data and
provide mechanisms to logically link data and
processes at an abstract level. In the system, a
program can be any piece of software requiring
some data files as input and producing some data
files as output. This can be a single executable
program, a script, an interactive graphical appli-
cation, etc. A process is an assembly of programs
to be executed in a controlled sequence of oper-
ations, based on a known algorithm. Programs
and processes can be defined in the system. They
are fundamentally defined by the type of DC that
they produce and they might require some input
data of one or more specific DC type.

3.4.1 Programs

Programs are usually executable legacy software
to be executed on a specific machine on the net-
work. The execution time required to run these
programs can vary from a few milli-seconds to
some days, depending on the specific engineer-
ing analysis to perform. Individual programs or
script are first defined by the user in the system
and encapsulated in objects called AtomicStrat-
egyComponents, or Atomic SC. They are defined
by giving a name for the Atomic SC, by specify-
ing the Atomic or Composite DC type that they
produce and by listing the Atomic and Composite
DC type required as input. By convention in the
VADOR system, an Atomic SC produce only one
DC, which might however be a Composite DC
which encapsulates many files. It is thus neces-
sary to define Composite DC type to encapsulate
all the output files of every program to be used
in the system. We will illustrate the definition of
an Atomic SC using a simple example illustrated
on fig. 3. In the figure, the program P1 needs
two input files of type A and B and produces two
output files of type C and D. The description of

4

A Configurable Framework for Multidisciplinary Analysis Integration and Management

this process in the VADOR system involves the
following steps:

1. Definition of four Atomic DC type encap-
sulating the data files of type A, B, C and
D.

2. Definition of a Composite DC type encap-
sulating the data created by the program
P1, for example a CDC type C-PLUS-D,
containing respectively one C and one D
type DC.

3. Definition of the Atomic SC encapsulating
the program P1 producing a Composite DC
of type C-PLUS-D and requiring as input
two Atomic DC of types A and B respec-
tively.

A B

C D

P1

Fig. 3 Example of an Atomic Process

These three steps are performed by the user
on the GUI using simple dialog boxes to define
the data and the programs.

3.4.2 Processes

A process in the VADOR framework is a con-
trolled sequence of program execution which is
used to produce complex data. Processes are
encapsulated in CompositeStrategyComponents
objects, or Composite SC, or CSC, which are
defined by the users using standard elements of
structured procedural programming languages:
sequential blocks, parallel blocks, if constructs

and controlled loops. Fig. 4 shows a typical pro-
cess which will be used to illustrate the definition
of a Composite SC.

A B

C D

P1

P2 P3

E F

TEST

P4 P5

G H

False True

Fig. 4 Example of a Composite Process

First, we will give a description of the data
produced by the process. We need to define the
DC types A, B, C, D, E, F, G, H, and C-PLUS-
D. If we consider that the A and B types are not
part of the process but are rather inputs to the pro-
cess (this choice is left to the user), then we need
to define a composite DC type C-TO-H contain-
ing one C-PLUS-D, and one E,F,G and H respec-
tively. So the composite DC type C-TO-H encap-
sulate 6 data files.

5

JEAN-YVES TRÉPANIER , FRANÇOIS GUIBAULT , BENOÎT OZELL , DJAMEL BOUHEMHEM

Now, let’s consider the description of the pro-
cess itself. Globally, the process is modelled as
a sequential process composed of three blocks.
In the first block of the sequence, the process P1
produces a C-PLUS-D type DC using an A type
DC and a B type DC as input. In the second block
of the sequence, the processes P2 and P3 are ex-
ecuted in parallel, the P2 process producing an E
type DC using a C type DC as input and the pro-
cess P3 produces an F type DC using a D type DC
as input. The third and last block of the sequence
contains an if construct with its associated True
and False branches. The test uses data contained
in both the E and F type DC to branch. In the
FALSE branch, the P4 process produces a G type
DC using a E and a F type DC as input while in
the TRUE branch, the P5 process produces a H
type DC using the same input. It is clear that at
the end of the process, either the G or the H type
DC will be pointing to an inexisting data file.

Note that there is clear separation in the sys-
tem between the sequence of execution and the
dependencies. For example, the system allows
one to describe a process which will use as in-
put a file which will be produced later in the pro-
cess. This provides flexibility in the description
of complex process. However, at execution time,
the process may not be able to execute and appro-
priate messages will be generated.

3.5 StrategyComponent

In summary, StrategyComponentsencapsulate
the programs and the analysis methodologies or
processes. They represent the basic methods
and the data flow required to transform data in
a given process.StrategyComponentsare con-
structed using the basic elements of a procedu-
ral language, enabling the description of complex
conditional processes. AStrategyComponenthas
a type, which indicates the type ofDataCompo-
nentthat the strategy can create.

3.6 Relational Database

In the VADOR framework, a Database Manage-
ment System (DBMS) is used to store, maintain
and provide access information for Components.

The DBMS currently used by the framework is
the MySQL DBMS [8] which stores information
using a relational model - the most popular data
model on which DBMSs are built. A view of the
various tables and their relations used by the sys-
tem is reproduced on fig. 5. Divising a schema
for a relational data model is not a simple task.
The tables contents and their relations currently
in used by VADOR are the results of a few iter-
ations and will probably require adjustments in
the future. The final schema will be one of the
main results of the VADOR project since it de-
fines the core of the system on which everything
else is built.

3.6.1 Data and Process definition tables

Referring to fig. 5, the first table, called the
DCDefinition Table stores the definition of
Atomic and Composite DataComponents Types.
When the DC type is Composite, the elements of
the composition are listed in the Table DCEle-
ments.

The DCDefinition table identifies each type
of data in the VADOR system by a unique
typeID, known as the Primary Key (PK) of the ta-
ble and associates with this typeID a typeName,
a typeIcon, an IsAtomic field and a Description
field. The typeName is given by the user and
is required to be unique. The typeIcon refers to
an icon file managed by the system which will
be used by the GUI to provide visual recogni-
tion of theDataComponentsbased on their type.
The IsAtomic field allows to distinguish between
Atomic and Composite DC. The Description field
is a string given by the user at the moment of
the type definition which will be later accessi-
ble through the GUI for information on types.
Composite DC require the table DCElements to
store their contents. Every element appearing in
a composite DC type has a unique dcElemen-
tID, has a dcElementName, has a ChildID, has
a counter and has a typeID.

Table 1 shows the entries required in the
DcDefinition table to describe the type A, B, C,
D and C-PLUS-D discussed above. The descrip-
tion should be somewhat longer to fully describe

6

A Configurable Framework for Multidisciplinary Analysis Integration and Management

the type. Also, the typeName should be choosen
carefully to match engineering practices and an
Icon should be designed for visual support. The
Atomic types A, B, C and D are completely de-
scribed by these four lines in the table. The
Composite type, C-PLUS-D requires a descrip-
tion of its composition in the DCElements table.
The two entries required in the DCElements ta-
ble to describe the C-PLUS-D composition are
shown in table 2. The foreign key (FK) typeID
identifies the relation between these two defini-
tion tables. The two lines having a ParentId=5
in the DCElements table describe the composi-
tion of the typeID=5 in the DCDefinition table.
The counter allows to order the elements of the
composition. The first element has a typeID 3,
i.e. is a C type DC and the second element has a
typeID=4, i.e. is a D type DC.

Programs and processes are defined in the
Table named StrategyDefinition. A relation is
present between the StrategyDefinition Table and
the DcDefinition Table, indicating explicitely the
DC Type that the strategy can create. A Com-
posite StrategyComponent is described by its el-
ements stored in the StrategyElements Table. The
example strategy shown in fig. 4 will be used
to illustrate how programs and processes are de-
scribed using relational tables. The Table 3
shows the entries in the StrategyDefinition table
used to describe the process. First, the Atomic
programs are described and are given a unique
strID. Note the typeID(FK) field, which is indi-
cating the DC type produced by the strategy, for
example the typeID=5 (C-PLUS-D) produced by
the P1 program. The complete process is de-
scribed by the composite strategy named P1toP5.
The Table 4 completes the description of the pro-
cess. First, the Table 4 contains the elements of
the P1toP5 strategy, which is a sequential strat-
egy with strID=6. Then, the strElementId from
2 to 4 describe the contents of the SEQ1 strat-
egy, which are the P1, the PAR1 and the TEST1
strategies respectively. Then, the contents of the
PAR1 and the TEST1 strategies are described re-
spectively.

The above described four table are the core
of the data and process definition in the VADOR

framework. Note that users will not in general
need to deal with the database tables but only
with the GUI presented previously.

3.6.2 MetaData tables

The main table for metadata storage and manage-
ment is the DcInst table which stores instances of
DataComponents. As described in section 3.1,
instances of DC encapsulate single data file or
groups of data files and attach to these files meta-
data information. The table has two fundamental
links with the Definition tables. First, the DcInst
table has a relation with the DcDefinition table
in order to uniquely define the type of data de-
scribed by the instance. Second, the DcInst table
stores the strategy used to create the data through
a relation with the StrategyDefinition table. The
DcInst table also contains the descriptive infor-
mation about the instance required for data man-
agement. When the DC type is composite, the
elements instances of the composition are listed
in the DcElementsInst table.

4 Conclusion and Future Work

A data model and framework architecture for
MDA have been described in the present paper.
The framework has been designed to suits the
needs of a large engineering department where
engineers are working concurrently on an en-
gineering design project. The framework is
highly flexible and configurable and is expected
to be adaptable to the needs of every engineer.
The framework enforces standardization of the
data and methods, which will result in a self-
documenting system. The attributes tagged to the
data and strategies will provide an easy access to
all critical information concerning the data. The
object-oriented methodology has been used in the
development of the framework. The implementa-
tion is done using the JAVA language, a choice
motivated primarily by portability and internet
capabilities, as well as high-level language capa-
bilities and tools.

Since all the data and processes are being de-
fined by the user using an approach similar to
a programming activity, the VADOR software is

7

JEAN-YVES TRÉPANIER , FRANÇOIS GUIBAULT , BENOÎT OZELL , DJAMEL BOUHEMHEM

typeId(PK) typeName typeIcon IsAtomic Description
1 A A.gif Yes This is type A
2 B B.gif Yes This is type B
3 C C.gif Yes This is type C
4 D D.gif Yes This is type D
5 C-PLUS-D C-PLUS-D.gif No This is type C-PLUS-D

Table 1 Examples of entries in the DCDefinition table

dcElementId dcElementName ParentID counter typeID (FK)
1 CinC-PLUS-D 5 1 3
2 DinC-PLUS-D 5 2 4

Table 2 Examples of entries in the DCElements table

strId(PK) strName structure method typeID(FK)
1 P1 Atomic P1.exe 5
2 P2 Atomic P2.exe 6
3 P3 Atomic P3.exe 7
4 P4 Atomic P4.exe 8
5 P5 Atomic P5.exe 9
6 SEQ1 Sequential none none
7 PAR1 Parallel none none
8 TEST1 TEST test.exe boolean
9 P1toP5 Composite none 10

Table 3 Examples of entries in the StrategyDefinition table

strElementId StrElementName strID(FK) strParentID
1 SeqinP1toP5 6 9
2 P1inSeq 1 6
3 ParinSeq 7 6
4 TestinSeq 8 6
5 P2inPAr 2 7
6 P3inPAR 3 7
7 P4inTest 4 8
8 P5inTest 5 8

Table 4 Examples of entries in the StrategyElements table

8

A Configurable Framework for Multidisciplinary Analysis Integration and Management

neutral relative to a specific application domain
and the application of the framework to other do-
mains is straightforward. This genericity is stem-
ming from the configurability of the system.

The formal association between aDataCom-
ponentand aStrategyComponent(which is able
to fill an encapsulated data file) provides a link
between the behaviours and the services they pro-
vide. In addition it provides a tool for document-
ing the methodologies in use and promote stan-
dardization. In addition to data and process de-
scription and management, the framework pro-
vide capabilities for the automation and integra-
tion of various processes used by engineers using
modern distributed computing techniques based
on client-server architecture and web standarts.

The actions required by the users to define
new processes and data in the system are per-
formed during an integration phase, when new
processes are interfaced to the system. In a typ-
ical every day usage, users will simply execute
processes to create data and inspect the data us-
ing the visualisation tools accessed through the
framework. It is important to note the clear
separation between the data and the programs
and processes. This separation allows to use
many different programs and processes to pro-
duce functionnally equivalent data and reinforces
the standardization based on the data. This is be-
lieved to be a crucial point in the support of seam-
less multi-fidelity simulation environments.

5 Acknowledgements

The VADOR team would like to acknowl-
edge Bombardier Aerospace and the NSERC of
Canada for their financial support of this work.
Also, many thanks goes to M. François Pépin and
M. David Leblond from the Advanced Aerody-
namics Group at Bombardier Aerospace for nu-
merous discussions on the engineering practices
in their department.

References

[1] I. Kroo. “Computation-based design – a white
paper”.

http://aero.stanford.edu/ComputationalDesign.html,
1996.

[2] S. Allwright. “Multidisciplinary design, analysis
and optimisation of aerospace vehicles - the MDO
project”. In Royal Aeronautical Society MDO con-
ference, 1998.

[3] A. Ndiaye, J.-Y. Trépanier, F. Guibault, B. Ozell, and
B. Mahdavi. “Database requirements for an mdo
software framework”. InCFD2K, 8e conférence
annuelle de la Société canadienne de CFD, Mon-
tréal(QC), Juin 2000.

[4] A. Alzubbi, A. Ndiaye, B. Mahdavi, F. Guibault,
B. Ozell, and J.-Y. Trépanier. “On the use of JAVA
and RMI in the development of a computer frame-
work for MDO” In 8th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Opti-
mization, Long Beach(CA), September 2000.

[5] 0.A. Salas and J.C. Townsend. “Framework require-
ments for MDO application development”. InAIAA-
98-4740, 1998.

[6] J. Sobieszczansk-Sobieski. “Multidisciplinary de-
sign optimization MDO methods: their synergy with
computer technology in the design process”.The
Aeronautical Journal, 1999.

[7] R.P. Townsend, J.C. Weston and T.M Eidson. “A
programming environment for distributed complex
computing. An overview of the framework for in-
terdisciplinary design optimization (fido) project”.
Technical report, NASA TM 109058, 1993.

[8] P. Du Bois. “MySQL”.New Riders Publishers, 1999.

[9] G. Reese “JDBC & JAVA, Database Programming,
Java 1.1”.O’ Reilly, 1997.

9

JEAN-YVES TRÉPANIER , FRANÇOIS GUIBAULT , BENOÎT OZELL , DJAMEL BOUHEMHEM

Fig. 5 A view of the VADOR relational database model

10

