
ICAS 2002 CONGRESS

WITH PUBLIC DOMAIN SOFTWARE TO INTEGRATED
DESIGN AND ANALYSIS TOOLS

M.C.Haupt, W.Heinze, P.Horst
Institut of Aircraft Design and Lightweight Structures, TU Braunschweig,

Hermann-Blenk-Str. 35, 38108 Braunschweig, m.haupt@tu-bs.de

Keywords: software tools, multidisciplinary analysis, airplane design

Abstract

This papers describes a tool integration approach
for the airplane design, using public domain soft-
ware. The developed architecture, the applied
tools and applications are shown to demonstrate
the power of this approach for engineering appli-
cations.

1 Introduction

Through the increasing use of the internet, the
source codes of software projects are more often
made available and can be used (almost) free of
charge. This way is interesting from view of the
licensing (costs) and the extendability. The high
quality of such software was proofed by the de-
velopment of the operating system Linux, which
is accepted as a professional software system.
How to achieve flexible and challenging software
tools for complex design tasks, is shown with ex-
amples from the airplane design.

2 Motivation

2.1 Requirements of the Airplane Design

The goal of the airplane design is the determina-
tion of the best airplane layout for a defined trans-
port task by a multidisciplinary analysis. The
classic kind of the assessment often happens by
means of the DOC, other criteria particularly in
case of part tasks are conceivable.

In the context of these objectives, there are
therefore different design scenarios, which are to

be accomplished depending on:

• Examination of the feasibility of a config-
uration (basis solution)

• Optimization of the basis solution

• Assessment of changes in the transport task

• Rate the employment of new technologies

• Comparison with alternative configura-
tions at equal analysis precision

Further tasks arise through new challenges:

• Recognizing and analysing problem fields
already in the concept phase, e.g. by us-
ing more precise analysis models during
the concept analysis that are based on au-
tomated model generation.

• Early simulation of technical problem
fields of the current aircraft design with vi-
sualization possibilities such as

– emergency evacuation
– dynamic behaviour of the structure
– kinematics of the landing gear
– shower water impact on the engines
– flight dynamic of critical manouvers

• Consideration of further, nonclassic as-
pects of the market success

– design and variability of the cabin
– ground service of the airplane (opera-

tion of standard ground vehicles, op-
timization of ground times)

143.1



M.C.HAUPT, W.HEINZE, P.HORST

– compatibility of the airplane with
the airport infrastructure (simulating
these problems with the customer)

2.2 Problem

The total task the computer-aided aircraft design
is of high complexity, both on the part of the sin-
gle models with their extensive description data
and on the part of the model interactions. In
general, different self developed and commercial
modeling and analysis tools are used, which have
an intensive data transfer with various interfaces
between them.

Essential aspect of the computer-aided de-
sign also is the possibility of the easy transition
of simple to higher-order modeling and analysis
tools in order to increase the precision or validate
the results of simple procedures if required.

For new design tasks, the diverse modeling
and analysis tools must be connected newly to-
gether. A manual execution of such new work-
flows is error-prone and must be avoided.

2.3 Objectives

A software environment, which is able to imple-
ment such design processes, must fulfill some el-
ementary requirements, so that the design pro-
cesses can be performed efficiently and reliable.

The possibility of the integration of individ-
ual tools is important for the automation of the
work flow of the design tasks in a single environ-
ment. For that purpose, a flexible data transfer
between the tools is necessary and the ability to
embed arbitrary tools that are available as differ-
ent source codes inC, C++ or Fortran or as
complete executables.

Important aspects for the applicability are the
simplicity and the clearness as well as the flex-
ibility and the robustness the integration proce-
dure. It therefore also guarantees an efficient
rapid prototyping for new part tasks.

For such a software environment, which was
intented here, available and powerfull technolo-
gies and tools are used. In order to put the de-
velopment from the beginning on a broad basis,

the approach depends on suitable public domain
software.

3 Public Domain Software

The name public domain software refers here on
open source software and not on Freeware, share-
ware etc. An exact definition the open source is
(still) not available and therefore different license
models of the open source model (GNU Public
License, retain the copyrights, free only for re-
search,...) exist under it may be used.

Essential aspect the open source idea is, that
the source code is free for interested people at
no charge for the use and to the understanding,
the extension and the error search and last but not
least for the documentation and portation to other
hardware platforms or operation systems.

Due to a very diverse and great number of
users, one hopes for functionality and stability
that remains secured over the complete life cycle.
In spite of the openness of the sources, and there-
fore the free use, exist the possibilities of com-
mercialization. They arise through additional ser-
vices, e.g. during the support and training as well
as during special portations and extensions.

Problems have proven to be: the discover of
suitable software in the internet as well as the
judgment of the capacity and the documentation,
to facilitate the selection of available tools.

The success of this software development
model is demonstrated by the operating system
Linux (Unix on Intel-, Alpha-hardware .. ) or
by the widely-used webserver softwareApache .

4 Integration Environment

The integration environment presented here is to
be understood as a collection of suitably arranged
tools. The basis is formed by the core parts,
which provide the needed software technologies.
They do not contain any engineering-specific as-
pects, therefore this environment can be also used
for arbitrary other tasks.

Extension packages are added, which were
developed for the pursued design and analysis
work or which were adapted as independent tools

143.2



With Public Domain Software to Integrated Design and Analysis Tools

at the kernel of the environment.
The environment is completed through a uni-

versal, graphic users interface. Through an inter-
active working and the integrated possibility for
visualization the user-friendlyness increases.

4.1 Core Parts

The four central core parts that form the software-
technical platform of the integration environment
are:

• Python , a script language,

• the standard packages ofPython
(tkinter, Numerical Python, ...),

• the Visualization Tool Kitvtk ,

• Interface generators:pyfort andswig .

These general parts are all open source soft-
ware and are used unchanged. In the following,
they are characterized by some keywords.

4.2 Python

Python is an object-oriented script language
that mixes features of the software technology of
traditional languages with the usability of script
languages [1].

• Features:
Python has an extensive set of diverse
data types and supports namespaces, ex-
ceptions, dynamic loading and object-
oriented programming. A huge number of
modules exists that make all modern infor-
mation technologies availably.

• Syntax:
Python has a simple syntax that does not
make it necessary to use cryptic symbols
($, %, etc.) or a completely different syn-
tax than that ofC.

• Small core:
Python has a modular structure that
makes it easy to load or delete modules as
required or to reload newly after a change.
By this means, it can be used only with the
needed modules; monolithic systems are
therefore avoided.

• Documentation:
is available in the book shops in form of
many books. Tutorials, language and li-
brary references and many further docu-
ments are availably in the internet.

• Support and stability:
Python has proven to be very stable.
A fast support is given through the news
groups and special interest groups (SIG).

• Free available and portable:
The available source’s code (AnsiC) is
modifiable as required and runs on every
common platform (Unix, Windows, ...).

• Increasing acceptance:
For multitude of program libraries
Python -bindings were carried out. Many
new scientific computing projects use
Python as script language.

• Integration:
Python can be integrated into a number
of further languages and vice versa. Thus
the power of other languages can be uti-
lized and their weaknesses can be circum-
vented.

4.3 Visualization Tool Kit

The Visualization tool Kitvtk is an object-
oriented, portable software for 3D computational
graphics, visualization and image processing,
which is comparable withAVS or OpenDX in
their graphic functionalities [2].

• Architecture:
vtk consists of two major parts: A com-
piled core (C++) and wrapper that were
produced automatically forTcl , Java
and python . Learning and use in con-
nection with script languages is very sim-
ply and efficient.

• Graphical model:
vtk has render-windows, renderers,
2D/3D actors, properties, lights, cameras
and mapper for geometric or volumetric
data.

143.3



M.C.HAUPT, W.HEINZE, P.HORST

• Visualization pipeline:
It transforms information into graphic data
with the help of data objects (general data,
structured and unstructured grid data) and
Process objects (source, filter, mapper) that
convert according to a variety of methods
input into output data (Fig. 1).

• Documentation:
An extensive online documentation is
available. Two reference books explain
the functions, techniques and backgrounds
very well. In order to understand the nu-
merical techniques implemented in filters
the look in the source texts very is helpful.

• Support und stability:
vtk has proven to be stable. A fast support
is available through news groups, special
interest groups (SIG) or commercially.

• Free available and portable:
The available C++ source code uses
OpenGLand runs on every common Win-
Tel or Unix platform.

• Increasing distribution and extendability:
vtk is used in many projects and can be
extended simply due to the object-oriented
C++ implementation.

The combination of the different objects to a
network and/or a pipeline can be done without
deeper knowledge of object-oriented program-
ming. The implicit execution mechanisms of
vtk , when a process object must transform in-
put data into new output data, are adopted for the
self developed,vtk independent extension pack-
ages.vtk defines therefore decisively the design
of the integration environment.

4.4 Standard Packages ofPython

• tkinter
provides the widgets ofTk underPython
[3]. It is contained in thePython dis-
tribution, so that powerful, platform-wide
graphic users interfaces (GUI) can be made
without further packages.

Fig. 1 vtk Visualization examples:
flow visualization / geometry of Hawaii

• Numerical Python
provides vector- and matrix-objects and a
multitude of methods to their manipulation
[4]. These methods are implemented in
C and use numerically efficient techniques
e.g. from numeric libraries likeLapack .

• Scientific Python
is a collection at scientific tools [5].
Emphasized are the bindings of the
netCDF -library, so that writing and read-
ing netCDF -formated files is very simple.
Bindings forMPI, ArrayIO , Fortran-
Format , mathematical, statistical and
physics functions, which are efficient im-
plemented inC or even useNumerical
Python , are inScientific Python
contained as well.

143.4



With Public Domain Software to Integrated Design and Analysis Tools

4.5 pyfort and swig

The programspyfort andswig are essential
tools in order to directly integrate existing source
codes inPython . They produce from simple
declaration filesC-code for extension modules
that were integrated completely.

• pyfort
is a tool for theFortran-Python inte-
gration [6].

– Simple and robust automatic con-
struction of Python extension
moduls.

– Fortran declarations are trans-
formed intoPython / Numerical
Python equivalents.

– Declaration defines the in-/in-out-
/output variables in Fortran90 syntax.

– The used Fortran libraries can be
linked statically or dynamically.

• swig
With swig it is possible to integrate
C/C++ -codes inPython or as well in
Perl andTcl/Tk [7].

– Automatic construction ofPython
extension modules.

– C declarations are transformed into
Python equivalents.

– C data-types are mapped in suitable
Python representations.

– ComplexC/C++ objects are handled
with references.

– C++ classes are transformed into
shadow classes.

– Static and dynamic linking is possi-
ble.

4.6 Extension Packages

The special extension modules of the integration
environment may be divided up roughly into two
categories. One category contains modules based
only on the core parts without any engineering-
specific functions. These are e.g.utk andusr .

• utk
These modules serve for connectingvtk
and purePython objects easily. For
this purpose some essential base classes
were copied fromvtk to Python , so
that classes that were derived from these
have the same base methods like the cor-
respondingvtk -classes. This is important
to garantee the pipeline functionalities, if
necessary also without the use ofvtk .

• usr
Among them are modules that increase the
functionality of the core parts and which
are derived only from them. E.g. filters
for special visualization techniques can be
found here.

The packages of the second category contain
modules, which provide modeling- and analysis
specific classes.

• dtn
Modules of this class make the functions
of the spline libraryDTNURBSof the US
Navy available [8]. For this purpose ge-
ometric data objects were implemented
which hide theDTNURBSrepresentations
of curves, areas etc. The special process
objects execute geometric operations using
the DTNURBSlibrary such as the genera-
tion or editing of geometric objects. Ex-
tensions with the help of theGridLib
(NASA) allow a grid generation on the
DTNURBSgeometries.

• pdo
Different simulation- and analyses tech-
niques become availably through this pack-
age. Corresponding data- and process
objects allow analyses with flow- and
structure-analysis programs, as well with
tools for the movement simulation of dy-
namic systems.

4.7 Graphical User Interface

The graphic user interface (GUI) fulfills two im-
portant tasks within the integration environment.

143.5



M.C.HAUPT, W.HEINZE, P.HORST

Fig. 2 Graphical User Interface with a pipeline of a geometry und grid generation
(right top: object editor, right bottom: documentation based on the class implementation)

On one hand, it makes the visual programming
possible, i.e. the objects can be created, deleted
and interrelated interactively. On the other hand,
the properties of the individual objects are pre-
sented in an uniform environment. By their meth-
ods the objects can be interactively manipulated
Fig. 2. If an existingPython -script is executed
within the GUI, the interface analyzes the exist-
ing object-relationships and presents these inter-
actions as a graph or as a tree.

Because the GUI handles all objects in a
generic way, some coding guidelines should be
observed, so that new classes can be treated
easily in the GUI without any integration ex-
pense. Similar holds for the automated creation
of the documentation of the modules and their

classes in different formats (html, latex,
postscript, pdf. )

The GUI is not even a necessary compo-
nent of the extension packages and therefore
Python -scripts run also without the GUI in the
batch mode.

5 Applications

The following examples demonstrate how the in-
tegration environment can be used and which po-
tential lays in the open source’s software. In the
context of several projects, these examples and
the newly required extension modules were de-
veloped specifically. They indicate how flexible
the integration environment is. Arbitrary expan-

143.6



With Public Domain Software to Integrated Design and Analysis Tools

sions are conceivable in all directions. Whether
existing open source can be used, should be in-
vestigated case-by-case.

In this example the main aspect is the connec-
tivity between the integration environment and
the preliminary aircraft design and optimization
programPrADO of the IFL [9]. The aim is the
specific examination of partial problems or the
development of new methods.

5.1 Aerodynamic Analysis of an Oblique
Flying Wing

Subject of this example is the aircraft configu-
ration of the Oblique Flying Wing (OFW) type
[10]. A data base in thePrADO-format describes
the geometry with all control-surfaces parametri-
cally. From these data the surface geometry of
the configuration is produced with the help of
the DTNURBS- package. By means of an al-
gebraic grid generation on these geometries, at
which functions from theGridLib were used, a
surface discretization is produced (Fig. 3).

Fig. 3 Aerodynamic analysis of an OFW, pres-
sure distribution and velocity-arrows

Since a panel method is used for the aerody-
namic analysis, a wake surface between trailing
edge and the Trefftz-plane is generated and also
discretized. The analysis is carried out by the
programHISSS from EADS (Munich) and de-
livers the velocity and pressure distribution on the

surface. The simulation modules of the integra-
tion environment produce the input files of the
HISSS-programms, start it locally or remotely
on an other computer, postprocess the result files
for the required data and make these available in
the integration environment e.g. for visualiza-
tion.

The parametric description of the geometry
makes it possible to change it interactively so
that variations of e.g. the profile distribution of
the wing, the floor plan etc. are feasible easily
and the aerodynamic results immediately. In the
batch mode, the complete set of derivativa of the
configuration for flight-mechanical examinations
is determined this way for different flight states
and flap angles. By the way, theDTNURBSli-
brary has the export possibility in theIGES for-
mat. Therefore the geometry in thePrADO for-
mat can be converted into this one.

5.2 Static Aeroelasticity of a Wing

A half wing is the subject of this application, for
which the static deformation should be calculated
under cruise conditions. Raw data are existing
independent discretizations on the common sur-
face for the structural and aerodynamic analysis.
Optionally, the aerodynamic grid can be gener-
ated as described above by aPrADO data base
and theDTNURBSextensions modules. For the
analysis independent solvers for fluid and struc-
ture are applied - on the structure side FEM code
NASTRAN, on the fluid side panel codeHISSS
-. For the coupling of these codes a control of
the iterative solution and numeric methods for the
mapping of the deflections and loads between the
two surface grids are necessary.

For the mapping of the deflections and
loads two existing filters ofvtk are used:
vtkThinPlateSplineTransform and
vtkProbeFilter . The first filter masters
- unlike the name says - the Volume-Spline
method, which presents a classic technology the
aeroelasticity (Fig. 4). The second performs an
interpolation of the state variables at a given
point with the help of the shapefunctions of
the grid, for which the state is known. This

143.7



M.C.HAUPT, W.HEINZE, P.HORST

corresponds to the technology, implemented in
coupling libraries (e.g. MpCCI [11]) The non
trivial projection of a point on a surface grid is
also contained in this filter in order to determine
the weight factors. Furthermore, self developed
conservative mapping techniques were integrated
into the environment, which are described in
[12].

Fig. 4 Deflection transfer with the volume-spline
method; bottom: undeformed (offset), top: de-
formed Grid (overlayed)

Fig. 5 Visualization of the coupled fluid structure
analysis of a wing

Fig. 5 shows the visualization of the simula-
tion results after the first coupling step. Grey in

the background are the surface grids (blue: struc-
ture, red: fluid). In the middle thecp pressure
distribution can be recognized on the undeformed
geometry of the symmetrized wing. The nodal
forces, which result from the integration of the
pressure over the surface elements and the trans-
fer by thevtkProbeFilter from the aerody-
namic grid to the structural grid, can be seen in
the foreground as vectors, which deform the wing
structure.

5.3 Airport environment

At new configurations, special aspects often must
be examined specifically. This could be only
the visualization of the calculated data and the
simulation models, that were developed, with re-
spect to feasiblity and correctness. For example
in application of Fig. 6, based on the results by
PrADO, the geometry model of a A380 config-
uration is combined and displayed with the re-
sults of the flight dynamic simulation, at which
the airplane is considered as a mass point. The
relationships in between the runway and the con-
figuration (runway length, undesirable collisions
with undercarriage or stern etc.) can be examined
visually.

Fig. 6 Visualization of a A380 geometry in a dy-
namic landing simulation

A further topic that is demonstrated here in an
application is the compatibility proof of new con-
figurations with an existing airport infrastructure.

143.8



With Public Domain Software to Integrated Design and Analysis Tools

Fig. 7 shows a sonic cruiser configuration dur-
ing the service at the airport terminal. Questions
how fingers of the terminals dock or how the air-
craft can be served by standard ground vehicles
are studyable. For this purpose, every object has
its own geometry and dynamics model which can
be visualized in real time.

Fig. 7 Service simulation of a new airplane con-
figuration in an airport environment

For complex service scenarios an applica-
tion is under development in which the vehicles
have to fulfill individual missions, having their
own intelligence. The mission tasks are defined
prior to the simulation and the vehicles are pro-
grammed accordingly. The paths of the vehi-
cles are planned in the airport environment with
rigid and moveable objects automatically so that
one can optimize the time schedule of the service
with this model. During the simulation distur-
bances can be introduced (e.g. further objects)
and the vehicles with their own intelligence react
on these. For this application the packageMis-
sionLab is applied.

5.4 Flight Simulation

The class library of theJSBSim project whose
aim is it, to carry out a flight dynamic sim-
ulation in object-oriented programming [13]
also is found among the integrated simulation
codes. The classes include the complete three-
dimensional equations of motion of the rigid air-

plane with ground reactions and a wind model
as well as a flight control system (Fig. 8). Due
to the object-oriented programming, arbitrary ex-
tensions of single classes can be integrated in
order to use e.g. alternative jet engine models.
The physics of theJSBSim-classes base on the
flight dynamic model of theLaRCSim code of
the NASA whose theory is described in detail.
The flight simulation can be steered interactively
for real-time applications or can be scriptbased.
The complete parameters of the aircraft are pro-
vided in files in thexml format and can be taken
e.g. in large parts fromPrADO investigations.

Fig. 8 Class diagramm of theJSBSim library

For the essential classes that describe the
flight dynamic behavior,Python bindings were
generated withswig so that this dynamic model
can also be combined to the geometry object of
the aircraft as described above. Therefore, a

143.9



M.C.HAUPT, W.HEINZE, P.HORST

flight simulator is available in the integration en-
vironment by which investigations and visualiza-
tions can be carried out, that are not possible with
other simple flight simulators. Furthermore, the
classes of the aircraft parts can be used, to study
flight dynamic properties like the trim, the start
and landing behaviour (Fig. 9).

Fig. 9 Simulation of a landing withJSBSim
moduls connected to a PrADO geometry

6 Concluding Remarks

At the current time, at which the presented inte-
gration environment is still under development,
the conclusion can be drawn, that an efficient in-
tegration environement with public domain soft-
ware is possible. The core parts that were out-
lined above just proved to be a good choice dur-
ing the diverse applications due to the flexibility
and the integration behavior. They are well de-
veloped and represent the state of the art of the
software technology, because of the large devel-
oper and user community.

The situation is more difficult at the available
open source analysis codes. Although, they are
often very efficient but limited to specific prob-
lem classes. Here it necessary, to make a careful
selection and not to be afraid, to create required
extensions. It appears to be important, that with
open source software the engineering problems
are not solved automatically at no expense. The
application of the scientific software requires the

technical understanding of the user.
The shown integration environment will be

used during research projects in the future. These
come from the areas of the fluid structure cou-
pling at spacecrafts and from the detailed exam-
ination of OFW configurations. The benchmark-
ing, the embedding and the extension of analysis
codes are also scheduled in this context. Synergy
effects with a view to the architecture of simi-
lar environments are expected. The projectsSa-
lome/OpenCascade [14] andActionFac-
tory must be mentioned here, too [15].

References

[1] http://www.python.org

[2] http://www.kitware.com/vtk/

[3] http://www.python.org/topics/tkinter/

[4] http://sourceforge.net/projects/numpy

[5] http://starship.python.net/crew/hinsen/scientific

[6] http://sourceforge.net/projects/pyfortran

[7] http://www.swig.org

[8] http://ocean.dt.navy.mil/dtnurbs/dtnurbs.htm

[9] W.Heinze, C.M.Österheld, P.Horst: Multidiszi-
plinäres Flugzeugentwurfsverfahren PrADO -
Programmentwurf und Anwendungen im Rah-
men von Flugzeug-Konzeptstudien, DGLR-
Jahrbuch 2001, Band III, DGLR 2002

[10] A.J.M. Van der Velden: Aerodynamic Design
and Synthesis of the Oblique Flying Wing Su-
personic Transport; PhD Thesis, Stanford, USA,
Juni 1992

[11] http://www.mpcci.org

[12] M.Haupt, P.Horst: Coupling of fluid and struc-
ture analysis codes for air- and spacecraft appli-
cations; First MIT Conference on Computational
Fluid and Solid Mechanics 2001, pp.1226-1231,
Elsevier Science, 2001

[13] http://jsbsim.sourceforge.net/main.html

[14] http://www.opencascade.org

[15] http://sourceforge.net/projects/actionfactory/

143.10


