
                                                                                                       141.1

A New Effective  
Multidisciplinary Design Optimization Algorithm 

 
Li Weiji, Hu Yu 

Department of Aircraft Engineering, Northwestern Polytechnical University, 
Xi’an, 710072, P. R. China 

 
Key Words: Multidisciplinary design optimization [MDO], Subspace Approximation Optimization 

Algorithm [SAO], Linear approximate constraint 
 
 

Abstract:  
 
Multidisciplinary Design Optimization [MDO] 
is an approach that can solve the optimization 
problems of complex and highly coupled 
engineering systems. Many algorithms, such as 
Concurrent Subspace Optimization [CSSO] and 
Collaborative Optimization [CO], are 
developed to solve these problems. Either 
derivative based approximation method or 
response surface approximation method is used 
as primary approximation strategy in these 
algorithms. Because of the inaccuracy of using 
derivatives and the low efficiency of using 
response surface, we developed a new MDO 
algorithm called Subspace Approximation 
Optimization [SAO]. This algorithm is similar 
to CO but use a set of linear constraints in the 
system level optimization to approximate the 
discipline level constraints. It has been proved 
that this method is very suitable for distributed 
computation and can robustly converge to the 
optimum very fast.  
 
 
1  Introduction 
 
Aircraft design is a complicated engineering 
system incorporating many disciplines, such as 
aerodynamics, flight dynamics, structural 
mechanics, computer science, system 
engineering and propulsion theory et al. The 
disciplines in aircraft design often have different 
requirements and couple with each other. So 
trade off and de-coupling analysis for 

multi-disciplines are needed during the process 
of aircraft design. A single-disciplinary 
optimum design is usually not a satisfactory 
design.  

Multidisciplinary Design Optimization is a 
kind of effective integrated aircraft design 
algorithm. It can solve the problem of trade off 
and de-coupling among disciplines, and at the 
same time, an optimum of the whole system can 
be found.  
    There exist several MDO algorithms. But 
most of them, in our opinion, are non-efficient. 
In this paper we devised an algorithm called 
Subspace Approximation Optimization. In this 
SAO algorithm the whole system is 
decomposed into a system-level optimization 
and several discipline-level optimizations. The 
optimums of design variables in discipline level 
correspond to the design point that is the nearest 
to the optimums of design variables in system 
level. The linear constraints as the approximate 
feasible region boundary in discipline levels can 
be constructed using the optimums of design 
variables. The whole system would be improved 
under these linear constraints in system level. 
The coupling and coordination problem among 
disciplines would be solved by the iteratively 
renewed constraints and optimums of design 
variables. The frame of SAO is shown in Fig1. 

The examples show that this algorithm not 
only converges to the optimum very fast, but 
also is fairly robust. The MDO test problem of a 
Micro Air Vehicle[MAV] is presented in this 
paper. The result shows that the SAO algorithm 
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can solve complicated engineering problem and 
is very practical.     

System-level optimization
min  f(x)
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          Fig.1 Frame of SAO 
 
 
2 The description of Subspace 
Approximation Optimization algorithm 
 

begin

System-level Optimization

Transfer the optimums of design variables
in system level to discipline level

discipline-level optimization

construct the linear approximate constraints

system-level optimization

is  termination criterion
satisfied

end
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Fig.2 Flow chart of SAO 

In SAO, the optimization of a complicated 
engineering problem with many constraints is 
also decomposed as a system level optimization 
and several discipline-level optimizations. In 
discipline level only the related constraints and 
the design and analysis models are concerned. 
The objective function is that the design point( a 
set of design variables) would be as close as 
possible to the design point transferred from 

system level. In system level the linear 
constraints, representing approximate feasible 
region boundary of discipline level, are 
constructed by means of the discipline-level 
optimums. It is the tangent plane of the original 
constraint boundary through the discipline-level 
optimums. With these linear approximate 
constraints the optimums of design variables in 
system level are obtained. The optimization 
process is an iterative one from system level to 
discipline levels until the termination criterion is 
satisfied. The whole system design will be 
improved and the coupling and coordination 
problems among disciplines will also be 
resolved with iteration. The termination 
criterion is that the difference of design result 
between the adjacent iterations is small enough 
within the specified tolerance. The flow chart is 
shown in fig2. 
    

2.1 2.1 2.1 2.1 System-level optimization 
 
The mathematical expression is as follows: 
 min f(x) 
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  where 
  f(x): objective function of whole system 
  u: number of disciplines  
  v: number of design variables 
  xbj: upper limit of absolute value of design  
     variable 
  c: approximate constraint equation  
  xj0:optimum transferred to discipline level for  
     last iteration 
  xj

*: discipline level optimum i.e. the design  
     point nearest to xj0 
  xj: design variable 
  ni: number of design variables in discipline i. 
 
2.2 Discipline-level optimization 
 
The mathematical expression is as follows 
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      hj≤0  j=1,l                  (2) 
                                                               
  where  
  xj0: optimum of design variable transferred  
     from system level 
  xj: design variable 
 
 
3. General test problems 
 
3.1 Test problem 1 
  
This test problem is extracted from [1]. The 
optimization problem is as follows: 
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From [1],if β=0.1 the optimum is 3.959604 at 
(0.198, 1.98). The optimum found by CO is 
3.9455 at  (0.1977, 1.9768) and the iteration 
history is shown in Fig3. In this paper the 
optimum found by SAO is 3.9549 at (0.1979, 
1.9788) and the iteration history is shown in 
Fig4. Only two iterations are required. It can be 
seen that SAO is more efficient than CO. 

 
3.2 Test Problem2 
 
This problem is defined as follows: 
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(4) 
This test problem is taken from [5]. The 

optimum of the objective function is 
6300.680)( =�� , the optimum of design 

variables is: 

)1.5942271.0381831,0.6244870,4.365726,-
.4775414,.951372,-02.330499,1(* =�

When using SAO algorithm, the optimization is 
accomplished within 9 iterations, see Fig.5. The 
optimum obtained by SAO is 

)906,1.60680.6290,1.0-
14,4.3885,9446,-0.44(2.3166,1.* =�

 

the optimum of objective function is 
680.6037)( =�� . This result is very close to 

that in [5].   
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3.3 Test Probelm3 
 
This test problem contains two equality 
constraints that simulate the coupling 
relationships between different disciplines. The 
definition of this problem is:         
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 (5)   

                            
When using Sequential Quadratic 
Programming[SQP] without decomposition, the 
optimums of design variables are  

1.0000) , ,1.0000 ,0.0100 ,1.2187 (-0.0100x* = , 
and the optimum of objective function is 1.3780. 
When using SAO algorithm, the optimums of 
design variables are x* =(-0.0066，1.1960，
0.0100，0.9928，1.0060)，and the optimum of 
objective function is 1.3685. The iteration 
history is shown in Fig.6.             
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The difference of the optimums between using 
SAO and SQP(without decomposition) is just 
0.0094, which shows that the accuracy of SAO 
is satisfied. 
 
 
4. Micro Air Vehicle design 

 
This test problem presents the application of 
SAO in integrated aircraft design optimization. 
The objective of optimization is to find the wing 
chord length distribution and wing spar 
thickness distributions that can minimize the 
size of MAV. The constraints involve strength 
constraint and range constraint. This MAV 

design problem is defined as follows: 
Find: }{ iat , }{ iac  

2
1

2min acb +  
s.t.: ][5.1max σσ ≤g               (6)           
    mR 600max ≥  
Where b  is the wing span, 1ac  is the root 

chord length, }{ iac ( 5,...2,1=i ) is the distribution 
of wing chord length. }{ iat ( 5,...2,1=i ) is the 
distribution of wing spar thickness. The size of 
MAV is measured by the square of the radius of 
the smallest sphere that can contain the MAV.  

For SAO algorithm, we decompose the 
MAV design problem into system-level 
optimization and two discipline-level 
optimizations (Aerodynamics and Structure). 
The design variables are the same both in 
system-level and discipline-level optimizations. 
The objective of system-level optimization is 
the size of MAV. Constraints of system-level 
optimization are linear constraints, which are 
the approximation of feasible region boundary 
for discipline levels. Constraints of 
aerodynamics discipline are composed of range 
constraint and the related coordination or limit 
constraints. Constraints of the structure 
discipline are composed of strength constraint 
and the related coordination or limit constraints. 
The objectives of discipline-level optimization 
are to minimize the difference of design 
variables between the value transferred from 
system level and the current one in discipline 
level. 
    The vortex panel method is used to 
calculate lift and moment coefficients[6]. The 
result of optimization makes the MAV fitted 
into a circle with diameter of 28cm. The wing 
span is 19.39cm, wing root chord length 20.36, 
wing tip chord length 19.19cm. The structural 
weight of MAV is 32.95g. see Fig7. 
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a) 

 
b) 

Fig.7 MDO result for MAV 

 
 
5. Conclusions 

 
For the Subspace Approximation Optimization 
the design variables are the same both in system 
level and discipline-level optimization. The 
linear constrains i.e. approximate feasible region 
boundary are used in system-level optimization, 
therefore the coupling and coordination 
problems among disciplines are solved while 
the optimization process is performed. 

  The examples show that this algorithm not 

only converges to the optimum very fast, but 
also is fairly robust. Because of its high 
efficiency and robustness, SAO would be a 
promising algorithm that can be widely used in 
the field of MDO. 
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