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ABSTRACT 

 
With recent advancements of computers and the 
advent of a search and optimization tool such as 
the genetic algorithm (GA), the ability to 
manipulate numerous aircraft design parameters 
in reasonable amount of time becomes feasible. 
It is from this standpoint that when one 
examines the aircraft design process, that is, the 
lengthy time and effort spent creating and 
integrating aerodynamics codes, sizing routines 
and performance modules, that the GA becomes 
beneficial. Consequently, a GA was created and 
employed as a tool to explore possible aircraft 
geometries that are more efficient and less 
costly than an existing design. The adaptive 
penalty method is employed in the GA to 
handle all constraints imposed on the design. In 
addition, the effects of the adjustments for 
varying degree of selection and crossover 
intensities and types on the aircraft evolutionary 
process are studied. A design study is also 
conducted to compare the GA optimized 
aircraft shape and configuration with that of the 
existing aircraft. Results indicated that the GA 
is a powerful multi-disciplinary optimization 
and search tool, that is capable of managing and 
reforming numerous aircraft design parameters, 
to arrive at aircraft conceptual designs that are 
both efficient and cost effective. 
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NOMENCLATURE 
 

0W       =  gross weight (lbs.) 

rC  =  wing root chord (ft) 

tC        =  wing tip chord  (ft) 
 b  =  wing span (ft) 
S  =  gross wing area ( 2ft ) 

htS        =  horizontal tail area ( 2ft ) 

fusl  =  length of the fuselage (ft) 

tS  =  gross tail area ( 2ft ) 

hV  =  horizontal tail volume coefficient 

vV  =  vertical tail volume coefficient  
F =  stick force (lb.) 

αmC      =  change of pitching moment 
coefficient with angle of attack 

moC       = coefficient of moment at zero angle of 
attack  

 
INTRODUCTION 
 
A word that often comes to mind in aircraft 
design is compromise. In fact, it can be argued 
that the entire aircraft design process entails 
finding the correct balance or compromise 
between numerous design variables and design 
constraints. Moreover, the traditional design 
techniques usually require the expertise of 
designers and engineers to arrive at an efficient 
design. The pitfall of such an approach is that it 
relies entirely on designer’s and engineer’s 
knowledge and creativity. Hence the problem of 
human error cannot be ruled out. Unfortunately, 
each design discipline is limited to a subset of 
configuration parameters, goals, and constraints 
due to the highly interdisciplinary process, 
which involves a high number of variable 
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couplings [8].  Hence, due to the processes 
entailed in the traditional design approach, the 
designer may not fully grasp how the design 
objectives from a particular design discipline 
conflicts with another.     
Finally, the traditional design approach entails 
lengthy meeting time and large sums of money 
to create and integrate the various disciplines of 
aircraft design. 
 
On the other hand, the GA was developed to 
eliminate or at best minimize the problems, 
time and cost encountered in the traditional 
design approach.  
 
It can be argued that the genetic algorithm is 
one of the most robust evolutionary algorithms 
in use today. Furthermore, GAs has found 
extensive application in the field of research 
and development, especially in areas where 
optimization is the key objective. This paper 
brings a focus on the application aspect of GAs 
in aircraft conceptual design.  
For small spaces, classical exhaustive methods 
usually suffice; however, for larger spaces 
special artificial intelligence techniques must be 
employed. Genetic algorithms are among such 
techniques; they are stochastic algorithms  

Figure 1: Comparison of the robustness of genetic 
algorithm- based and more traditional methods (adapted 
from Ref. 3) 
whose search methods model some natural 
phenomena: genetic inheritance and Darwinian 

strife for survival [1]. The range of application 
and robustness of the GA compared to other 
methods is presented in figure 1. As figure 1 
indicates, even though highly problem specific 
questions can outperform the GA, their range of 
application is very small. On the other hand, 
GA's are quite robust, and through random 
operators can be made efficient. 
 
Despite its efficiency some have argued that 
there are some pitfalls and challenges in 
assuming that the GA is a true optimization 
tool.  Moreover, since no gradient is used in the 
GA search approach there is no proof of 
convergence. Hence the GA lacks a reliable 
means of asserting optimality. Genetic 
algorithms usually get close to an optimum 
point but can occupy long computing time to 
locate it exactly.  Consequently, researchers 
taking realizing this problem have created 
hybrid GAs that employs the traditional 
gradient optimization approach at the end of the 
GA search to quickly find the optimum. 
Nonetheless, often it is more effective to run the 
GA for several cases to near optimality rather 
than run a single case to exact optimality [5]. 
Even though the GA may be less effective as a 
true optimization method it can be quite 
efficient as a technique to narrow the vast 
design space to the most interesting areas, 
which is a major goal of conceptual design [6].  
  
PREVIOUS WORK 

 
Numerous attempts have been made to explore 
the capabilities of the GA to find plausible and 
better combinations of design variables in 
aircraft conceptual design.  Crispin [7] was 
among those that first employed GA in aircraft 
design process and found it a usable tool in 
obtaining reasonable and feasible aircraft 
designs. Later the work of Crossley and et. al. 
[8], studied and documented the effects of 
incorporating a more through conceptual design 
process and thereby was able to show the 
effectiveness of the GA in obtaining feasible 
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aircraft and helicopter designs. In these work 
the author stressed the importance and 
effectiveness of the GA in saving time and 
money in the initial design process. In addition 
Perez and et. al. [2,18] conducted some 
research employing GA in aircraft conceptual 
design. This work brought a focus of GAs as an 
optimization tool and presented a comparison 
between the GAs design and the existing 
design. From the results obtained it was showed 
that the GA generated designs led to a total 
weight saving of 5%. These works are among 
few that have been conducted in the aerospace 
industry. Others research investigating and 
applying the GA to transonic design of airfoils, 
wing design for minimum drag, geometry 
optimization of aircraft, stability and control in 
aircraft conceptual design etc. ca n also be 
found in the literature.  
 
FUNCTIONALITY of GA as an 
OPTIMISATION TOOL  
 
Genetic algorithms are a class of general- 
purpose (domain independent) search methods, 
which strike a remarkable balance between 
exploration and exploitation of the search space 
[1].  The GA has proven to outperform the 
more traditional gradient methods of 
optimization. These methods are limited in 
application since they require finding the 
derivative, they are constrained to small 
domains whose first derivative must be 
continuous and they can handle only a small 
number of variables. As figure 1 suggest, given 
enough information about the search space it 
will always be possible to construct a search 
method that will outperform the GA. However, 
obtaining such information is for many 
problems almost as difficult as solving the 
problem itself [3]. Thus, the robustness of GAs 
makes them an ideal candidate for an 
optimization tool.  
 

The Basic GA 
Genetic algorithm is designed to mimic 
evolutionary process of nature. The idea is that, 
given a certain problem representation, the GA 
is able through repeated use of genetic 
operators, that is, selection, crossover and 
mutation, to combine those parts of a solution 
that are necessary to form a globally optimal 
solution [5]. A GA searches and optimizes by 
means of multiple searching points or solution 
candidates (POPULATION BASED 
SEARCH). Each individual in the population is 
represented by a string (chromosome), which 
carries the variables of design (genes). In 
genetic algorithms each individuals represents a 
certain solution to a given problem. The quality 
of this solution is expressed by a so-called 
fitness value. An individual with a higher 
fitness has a higher chance of surviving and 
reproducing.  
Consequently, a MATLAB [20] coded binary 
genetic algorithm was created to explore its 
capabilities as an aircraft conceptual design 
tool.  
 
PENALIZING STRATEGIES 
 
The central problem in applying a GA to the 
aircraft design is how to handle the constraints. 
It is very common for the constraint-handling 
scheme to influence performance [5]. As a 
result, the common and efficient penalty 
strategy will be employed in this study. Before 
the fitness of the individual can be evaluated 
the population of strings must first be decoded 
into real numbers since the objective function 
can only read such values.  The fitness function 
is the product of the objective function times 
the penalty value. The main role of the penalty 
strategy in the GA is that it unconstraint our 
problem by multiplying a certain penalty value 
(indicative of the degree of constraint violation) 
to the objective function for any violation of the 
constraints. This multiplication will have the 
effect of adding ‘weight’ to our fitness value 
thereby decreasing its goodness if we are 
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minimizing. Hence ‘weight’ plays the role of 
penalties if a potential solution does not satisfy 
them [9]. One major advantage of the penalty 
strategy compared to other methods is that it 
does not disregard the infeasible solutions; 
instead it uses these solutions in such a way to 
aid the search to better solution. In addition, 
other advantage that this method has over the 
traditional approaches is that it is non-
parameterized and most importantly it is 
problem independent [9, 10].  
 
For minimization: 
Fitness = objective value * penalty value 
Fitness = f(x)*p(x)    (1) 
Where f(x) is the objective value and p(x) is the 
penalty value. 

p(x)=1 if feasible  
p(x)>1 otherwise 

The penalty value is computed using the 
method outlined below: 
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)(

)((11)(
1 max
∑

= ∆
∆+=

m

i bi
xbi

m
xp                           (2) 

where: ))(,0max()( xgxb ii =∆  
 ))()(,max()( max xpxxbbi i ∈∆=∆ ε  
where: 

ig = the degree of violation of the constraints 
and is dynamically scaled according to the best 
solution found in the population set; ε = small 
positive value that is used to avoid division by 
zero when calculating p(x); m= number of 
constraints. )(xbi∆ = degree of violation of the 
constraint i for the chromosome x; max)( bi∆ = 
maximum violation in constraint i among the 
current population; α = value used to adjust the 
severity of the penalty function. Traditionally, 
α  varies between 1 and 3.  

 
REPRODUCTION STRAGEGIES 
The GA under study employs two different 
reproduction schemes i.e. roulette selection and 
tournament selection, which assigns 
probabilities of selection depending on fitness 
values and the inverse scheme to scale fitness 

and maintain a differential between fitness 
values. The type of selection scheme influences 
the convergence quality of GA's, since the 
selection scheme is the part of the GA making 
the decisions. The goal of any selection model 
is to favor the proliferation of good individuals 
in the population [11, 22]. The effects of these 
schemes on the aircraft evolutionary process 
will be studied.  
 
Inverse Scheme 
Since GA's by nature optimizes via 
maximization, the problem of changing the GA 
process to a minimization arises. For 
minimization the fitter individual has the lower 
fitness or cost. Thus, in the selection process 
one must be able to transform the large number 
to a small number. To achieve this the inverse 
scheme will be employ. The basic concept of 
the inverse scheme comes form a simple logical 
deduction of – the result of inverting a large 
number is a small number [6]. The fitness 
values are scaled as follows: 
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min
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where ′
iF  is the scaled fitness values; maxF  and 

minF are the maximum and minimum fitness 
values respectively; a is a value slightly greater 
than one and iF  is the fitness values.  
 
Roulette Selection 
Roulette Selection or fitness proportional 
selection assigns reproduction opportunities to 
an individual based on their relative fitness. 
Thus it is a stochastic process of selection, 
which will choose individuals on the basis of 
performance with respect to other individuals in 
the population. Individuals are selected and 
placed into a mating pool based on the relative 
fitness.  
 
Tournament Selection 
Apart from the population size and control 
parameters (i.e. probability of crossover and 
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probability of mutation), the selection type – as 
will be evident- strongly influences the quality 
of convergence. There are many selection 
schemes that have been created all of which 
attempts to make the selection process more 
random, and to a larger extent, do what nature 
does. Tournament selection is quite random and 
closely mimics mating competition in nature. 
From the population, a fixed number of 
competitors (tournament size) are randomly 
selected. The individual with the highest fitness 
wins the tournament and is then placed in a 
mating pool. As the tournament size gets larger 
the selection intensity increases [21].  
 
CROSSOVER STRATGIES 

 
Without crossover, the average fitness of the 
population would climb until the fitness is equal 
to the fitness of the fittest member. Crossover 
provides a way whereby information from 
differing solutions can be melded together to 
allow for exploration of different parts of the 
search space.  The impact of one-point, two- 
point and uniform crossover schemes will be 
studied to assess the effects of these schemes on 
the GA evolutionary process.  
 
Uniform Crossover 
Uniform crossover generalizes single and multi-
point crossover schemes to make every locus a 
potential cross point. It is a more aggressive 
crossover operator that increases the chances 
that building blocks mix correctly, but also 
more building blocks are disrupted [21]. A 
crossover mask, the same length as the 
individual structure is created at random and the 
parity of the bits in the mask indicates which 
parent will supply the offspring with which bits 
[6]. Uniform crossover, like multi-point 
crossover, has been claimed to reduce the bias 
associated with the length of the binary 
representation used and the particular coding 
for a given parameter set [4,11].  

 
 

MUTATION 
 

Mutation serves the crucial role of forcing the 
population out of a static condition by 
introducing new genetic information to it. In 
some ways mutation provides for exploration of 
the search surface, because it strays away from 
the convergence path into new territory. 
Mutation becomes essential in later stages of 
the run when the population is converged and 
some the string highly resembles each other. 
Mutation is achieved by the random alteration 
of a bit; this simply means changing a 1 to a 0 
and visa versa whenever the random number 
generated is less that the probability of 
mutation. In the program a dynamic probability 
of mutation is used to enhance mutation rates at 
the end of the population.  
 
PROBLEM STATEMENT 

 
This paper brings a focus on the application of 
the GA to the conceptual design of an aircraft 
with constraints in sizing, performance, and 
stability and control. In addition, a study will be 
conducted to analyze the evolution of the 
aircraft as the GA search progresses. The 
design variables chosen for optimization are 
given in table 1. The range of these variables is 
determined from historical and statistical data. 
The length of the bit string is determined from 
the range of these variables and the degree of 
accuracy required. The twenty one design 
variables along with the design process and 
constraints is utilized by the GA to find the 
correct balance or combinations of variables 
that will lead to better designs. Weight will be 
employed as the main parameter of study in the 
aircraft fitness function to optimize. A 
reduction of weight and the computing time 
required to arrive at efficient conceptual aircraft 
designs are the main goals of this research.   
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Table 1: Critical Design Variables 
 
Design 
Variable 

Variable 
Type 

Variable Description Variable 
Domain 

String 
Length 
(# of 
bits) 

W/S        (c) Wing loading 
)/( 2ftlb  

70-140 8 

T/W        (c) Thrust Weight Ratio 0.3-0.5 5 

maxlC       (c) Maximum Airfoil Lift 1-1.5 3 

wAR        (c) Wing Aspect Ratio 6-12 7 

wλ          (c) Wing Taper Angle 0.1-0.9 6 

wΛ         (c) Wing sweep angle 
(deg) 

0-50 9 

ct /      (c) Wing thickness 0.1-0.15 3 

htAR     (c) Horizontal tail 
Aspect Ratio 

3-5 5 

htλ      (c) Horizontal tail 
Taper Ratio 

0.2-0.6 4 

htΛ      (c) Horizontal tail  
Sweep angle (deg) 

5-45 7 

TypeT  (d) Tail Type 
T Tail–0 
Conventional-1 

0-1 2 

vtAR  (c) Vertical tail 
Aspect Ratio 

0.7-1.2 1 

vtλ  (c) Vertical tail  
Taper angle 

0.3-0.9 5 

vtΛ  (c) Vertical tail  
Sweep angle (deg) 

35-55 4 

engN  (i) Number of  Engines 2-4 7 

Material (i) Material Type 
0-conventional      
1-Composite 

0-1 1 

Nseats
 

(d) Seating arrangement 
(1-11) 

2-11 4 

tl  (c) Horizontal tail arm 
(ft) 

40-100 8 

tS  (c) Horizontal tail area 

( 2ft ) 

200-700 10 

ehC
δ

 (c) Hinge moment due 
to Elevator  
deflection 

-0.1 -  -1 4 

vl  (c) Vertical tail arm (ft) 40-100 8 

Note: c-continuous, i-integer, d-discrete 
 

DESIGN OBJECTIVES 
 

The objective of this paper is to find the right 
combination of design variables that will 
provide the initial design layout to speed up the 
aircraft conceptual design process. This 

objective must be achieved with minimal 
constraint violation and combination of 
variables that leads to a practical and feasible 
conceptual aircraft designs.  
 
The main optimization goal is to minimize the 
aircraft weight. The aircraft weight is directly 
related to the total cost of the aircraft. 
Furthermore it can be argued that an aerospace 
structure is a structure whose usefulness 
diminishes significantly with increasing weight 
[12].  

 
FITNESS EVALUATION 
 
The fitness function is geared towards weight 
minimization with adaptative penalty strategy 
employed to handle the constraints. In effect a 
multidisciplinary design optimization approach 
is taken whereby geometry, sizing, 
aerodynamics, performance and stability and 
control are analyzed and integrated.  
 
Briefly the sizing routine is based on the 
‘rubber engine sizing methodology’. The 
aerodynamic characteristics are calculated 
using detail component buildup method adapted 
from reference 12. Performance characteristics 
for the aircraft brings a focus on satisfying 
federal aviation requirements during takeoff, 
climb, descent and landing as adapted from 
reference 12-17. Stability and control analysis 
is conducted assuming a minimum value for the 
static margin. This design discipline strongly 
correlates the aircraft geometry and layout. In 
all of the above aircraft design disciplines a 
total of fifteen design constraints are 
implemented. 
The total weight of the aircraft can be 
subdivided in three main areas i.e. fuel weight, 
payload and empty weight of the aircraft.  
The fuel weight is determined from the mission 
objectives and the intended use of the aircraft. 
Fuel fractions are then estimated using the 
mission profile and fuel consumption based on 
performance analysis. The weight of the 
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payload is constant and is directly related to the 
number of passengers, crew and cargo. The 
empty weight is estimated using the component 
buildup method, with estimation techniques 
adapted from reference 12,13 and 14.  

 
DESIGN CONSTRAINTS 

 
The adaptive penalty method is used to handle 
all constraints imposed on the conceptual 
aircraft design process. This method multiplies 
the objective fitness value by a value greater 
than 1 if there is any constraints violation or 1 
otherwise. A few constraints that are 
implemented in the aircraft design process are 
that related to the takeoff distance, the 
coefficient of moment with respect to the angle 
of attack and the stick force required by the 
pilot to trim the aircraft. So for example, the 
constraints that are necessary and sufficient in 
enduring that the aircraft is statically stable in 
pitch are as follows: 
 

0>moC  
 

0<=
αα d

dCC m
m  

 
If for instance moC is greater than 0 and αmC is 
less than 0 there is no constraint violation and 
the penalty term becomes 1, i.e. there is no 
constraint violation. On the other hand, if αmC is 
less than zero but moC is less that zero then there 
is some constraint violation the penalty term is 
greater than 1, and in engineering terms means 
the aircraft cannot be trimmed. This implies 
that the aircraft is not flyable even though it is 
statically stable. If however the αmC is greater 
than zero and moC  is less than zero the aircraft 
is flyable, but it is statically unstable.  In this 
case there is some degree of violation of the 
constraints and hence the penalty term is also 
greater than 1.  
 

MISSION PROFILE 
 

The mission profile is based on the type of 
aircraft used for study and comparisons, in this 
case the Boeing 717. The Boeing 717 is a 
medium size transport aircraft [19] and a typical 
mission profile is illustrated in figure2 below. 
For this study the number of passengers and 
crew is fixed and 110 and 6 respectively. In 
addition the average weight of crew and 
passenger is implemented into the program.  
 
 
       Cruise (35000ft) & M=0.76 
          Loiter  
             (45min. & 5000ft) 
Climb (ROC>2100fpm) 
 
 
       Take off within 6200ft 
          Taxi                              Descend & Land 
Engine start and warm up             (within 4800ft) 
 
Payload 26950lbs. & 5.3. =ultn g’s 
 
Figure 2: Transport aircraft mission profile  
 
RESULTS 

 
The convergence history of the GA subjected to 
various selection and crossover strategies is 
shown in figure 3 while table 2 illustrates the 
design parameters obtained at each run.  
Note it takes longer with weaker strategies such 
as one point crossover to locate reasonable 
design variables in the search space. Moreover, 
after 120 generation most of the runs has meet 
steady state and further changes in the design 
were not occurring. However, this is no 
indication that an optimal design has been 
reached, but it does prove that the GA is 
converging. 
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Figure 3: Convergence history for genetic algorithm 
conceptual aircraft designs for run 1 to 5 
 
The results indicated in table 2 are based on a 
fixed probability of crossover and dynamically 
changing probability of mutation at every 
generation. A fixed population size of 80 is 
implemented with 200 generations used as the 
stopping criteria. There are a number of 
tradeoffs between population size and the 
number of generation needed to converge. What 
is really needed is a balance between population 
size, so that the GA is able to explore and, the 
number of generations, so that the GA is given 
enough time to converge to the most interesting 
areas of the search space. A small population 
size causes the GA to quickly converge on a 
local minimum because it insufficiently 
samples the parameter space. 
 
On the other hand, a large population size takes 
too long to find and assemble the building 
blocks to the optimum solution [5]. Moreover, 
elitism strategy is employed to prevent the loss 
of a potentially good design by ensuring that its 
presence is maintained in the population at 
every generation until an even better design is 
located. 
 
 
 
 
 
 

Table 2: GA Optimization results and 
Comparison 
 

 Run 1 Run 2 Run 3 Run 4 Run 5 
Crossover 
Type 1 point 2 point Uniform Uniform 2 point 

Selection 
Type Tourn. Tourn. Tourn. Roul. Roul. 

Design  Variables    

W/S        105.41 95.26 99.37 97.17 96.08 

T/W        0.31 0.3 0.3 0.3 0.3 

maxlC      1.5 1.5 1.5 1.5 1.5 

wAR       6.15 6 6.05 6.05 6.0 

wλ          0.3 0.33 0.33 0.3 0.32 

wΛ         30.53 24.66 23.09 24.56 26.23 

ct /      0.12 0.10 0.1 0.1 0.11 

htAR     4.03 4.68 4.94 4.62 3.12 

htλ      0.6 0.36 0.33 0.47 0.55 

htΛ      26.10 18.54 30.19 27.2 27.60 

TypeT  1 1 0 1 1 

vtAR  2 2 1.8 2 2 

vtλ  0.73 0.494 0.32 0.32 0.53 

vtΛ  35 43 41.67 36.33 39 

engN  2 2 2 2 2 

Material 1 1 1 1 1 

seatsN  5 5 5 5 5 

tl  74.45 74.31 70.05 68.96 71.57 

tS  226.49 200.98 205.38 220 254.4 

ehC
δ

 -0.22 -0.22 -0.34 -0.22 -0.22 

vl  63.90 74.04 70.88 74.73 73.22 

Wo 103781 103560 103431 103970 104698 
Constraint 
Violation % 

10.65% 9.83% 10% 8.78% 9.18% 

Note: Tourn. – Tournament Selection 
          Roul.   – Roulette Selection  
 
This scheme is used mainly to save on 
computing time required for the evolution of a 
reasonable aircraft conceptual design.  

 
 
 

0 20 40 60 80 100 120 140 160 180 200
1.1

1.15

1.2

1.25

1.3

1.35

1.4
x 10

5

Generation number

fit
ne

ss

Run 1 

Run 2 
Run 3 
Run 4 
Run 5 



CONCEPTUAL AIRCRAFT DESIGN – A GENETIC SEARCH  AND OPTIMIZATION APPROACH 
 

 114.9

EVOLUTION OF THE AIRCRAFT 
DESIGN 
 
Figures 4 through 7 below show how the top 
view of aircraft configuration evolves as the 
GA search progresses. Since the GA is a 
population based search the best design based 
on the fitness value will be selected out of the 
population and plotted. The design at 
generation’s number 5, 20, 60 and 120 are 
presented for run 4 to illustrate the GA 
evolutionary design process. Note that after 
generation number 120 all the runs reached a 
steady state condition exhibiting little change in 
the aircraft design, since the GA has converged 
onto a near optimum design and is proceeding 
slowly to the optimum.  
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Best design at generation 5 
 
 
 
 
 
 
 
 
 
Figure 5: Best design at generation 20 
 
Figure 5: Best design at generation 20 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
   Figure 6: Best design at generation 60 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 7: Best design at generation 120 
 
Figures 4 through 7 above suggest that the GA 
advance from an impractical design to a 
conceptual aircraft design that is reasonable.  In 
other words, the GA capability of learning is 
dependent on time. This fact transcends to our 
every day life in which our learning abilities are 
influence by a time factor.  In addition, the 
evolved design coupled with reductions in 
constraints violation somewhat reinforces the 
fact that convergence towards optimal or slight 
optimal solutions is taking place and perhaps 
can be reached. 
Note that even though the genetic operators 
used for run number 4 are not the most 
efficient, the GA is capable of finding a 
reasonable conceptual aircraft design in a small 
amount of time.  The design in run 4 is not too 
efficient partly due to the selection scheme 
employed. Roulette selection has some 
undesirable properties, this is mainly because 
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there is a tendency for a few super 
chromosomes to dominate the selection 
process; in later generations, when the 
population is largely converged competition 
between chromosomes is less strong and a 
random search behavior will emerge [9].  
 
It can be argued that the design found in run 
number 3 is the best of the five runs since this 
run offers the best combination of design 
variables with a low weight and small 
constraint violation.  Uniform crossover and 
tournament selection therefore were the most 
effective schemes in exploring the search space 
and locating the most interesting areas of this 
complex design space, which is the major goal 
of conceptual design. The reason being uniform 
crossover encourages the greatest amount of 
information exchange when compared to 1-
point or 2-point crossover, while tournament 
selection serves a vital role of imitating mating 
competition in nature more closely than roulette 
selection. 
 
One point and two point crossover schemes 
though proving useful in the aircraft conceptual 
design process leads to sub-optimal design due 
to lack of information exchange, the short 
generation time and to a lesser extent the small 
population size.  
The best aircraft design layout at the end of run 
4 (at generation 200) is also plotted and a 
graphical comparison with the existing design 
is indicated in figure 8. Take note of the 
variations in dimensions and layout of the GA 
evolved aircraft with the existing design.  
 
 
 
 
DISCUSSION AND CONCLUSIONS 
 
Clearly, the GA can provide a reasonable 
aircraft design in a short amount of time 
compared with the traditional design 
techniques. Moreover, the GA have the ability 

of simultaneously learning the task from all 
design disciplines as well as integrating the 
design parameters from these disciplines to 
arrive at efficient aircraft designs. In addition 
the GA was capable of handling numerous 
design variables, design formulations and 
design constraints.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Top view and side view comparison of 
optimized aircraft found by the GA with existing design. 

 
Hence in some ways the GA can replicate the 
task assign to a design team and in some cases 
underscore some crucial design areas that may 
be overlooked by a traditional design approach. 
On the other hand, the convergence history of 
the GA is slow. As a result, solutions obtained 
may be indicative of a simplified version of the 
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true optimum. This is as a result of problems 
arising out of questions such as how large the 
population should be or what crossover or 
mutation rate to use? Or perhaps what can be 
done to better the GA selection process? These 
questions are vital since they determine the 
convergence quality of the GA and can play a 
major role in the GA decision-making.  
Moreover, there is no proof of optimality with 
the GA generated designs since there is no 
gradient information available. Hence, one 
general limitation to the GA is the lack of 
simple and reliable convergence criteria. As 
indicated in the GA convergence history, the 
GA seem to get close to the optimum but takes 
a long time to locate this point in the search 
space. Thus it may be more fruitful to run 
several near optimum design and later combine 
different aspects of these various designs to 
achieve an optimal conceptual design.   
Finally this study indicated that GAs are a 
flexible and efficient means of generating 
conceptual aircraft designs that can increase the 
scope and decrease the time and cost entailed in 
the traditional design approach.  
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