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Abstract 
Three decomposition MDO algorithms,
Collaborative Optimization (CO), Concurrent
Subspace Optimization (CSSO) and Bi-Level
Integrated System Synthesis (BLISS) have been
evaluated based on two typical applications. It
shows that the BLISS is efficient for both
applications. The CO is suggested to be more
suitable for systems with little coupling between
disciplines. The efficiency of the CSSO mainly
depends on the construction of the simulation
models.  

1  Introduction
Multidisciplinary Design Optimization (MDO)
has developed through the following three
stages: 1.) direct integration of multiple
disciplinary analyses and optimizations, 2.)
integrated system design with distributed
analysis, and 3.) MDO Strategies for distributed
design optimization. 

The first stage is usually efficient and suitable
for small design systems, but it does require
fairly stringent feasible constraints. As
computational capabilities have grown rapidly
in the past several years, the system design may
involve many disciplines, which in most cases
are coupled to each other. Distributed analysis
systems could utilize multiple computers and
increase the practical scale of MDO problems.
But the reliance on a central optimizer as a
decision-maker on all matters is not a practical
approach to large-scale system design. This
leads to the development of the strategy study
for distributed design optimization, which is to

decompose the entire system into individual
disciplines, with appropriate coupling routines.
The next step is to determine the `best' design
through specific optimization procedures and
system strategy design. In aerospace
applications, for example, it is easy to visualize
how such disciplines as aerodynamics,
structures, and dynamic and control can be
suitably optimized to provide the best design
configuration.

In the field of the MDO strategy development,
the concurrent operation for disciplines is also
an important issue. The conventional approach,
based on sequential processing of the
disciplines, becomes inefficient, as large
numbers of iterative loops might be required for
the analysis to incorporate the couplings. The
entire process of collecting all the feedback
from different groups can also result in a long
design cycle. As different from sequential
processing, concurrent operation allows the
expertise in each discipline to perform its design
autonomously, and then in turn, collects updates
from all disciplines and executes system level
optimization with appropriate feedback to
individual disciplines. This type of concurrent
operation renders the MDO process more
efficient and relatively easy to manage.

In this paper, three decomposition and
concurrent MDO methods are evaluated. These
include Collaborative Optimization (CO) [1],
Concurrent Subspace Optimization (CSSO) [2],
and Bi-Level Integrated System Synthesis
(BLISS) [3]. The evaluations are performed
based on two system designs.  One is an explicit
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analytical function with two fully coupled
disciplines.  The other is the optimization of a
conceptual supersonic business jet design,
which involves four disciplines: structure,
aerodynamics, propulsion and range
performance.

2 Algorithms 
The CO, CSSO and BLISS are all
decomposition MDO algorithms and can be
operated concurrently. For these three
approaches, a complex problem can be
hierarchically decomposed along disciplinary
boundaries into a number of sub-problems. With
the use of local subspace optimizers, each
discipline is given control over its own design
variables and is charged with satisfying its own
disciplinary constraints. 

In the CO approach, the goal of each local
optimizer is to conform to other groups on
specific values of the multidisciplinary variables
by introducing a new defined objective function
in the subsystem level, while a system-level
optimizer provides coordination and minimizes
the overall objective. For example, the objective
function in the subsystem level in Ref. [1] is
postulated as:
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where z  represents a set of design variables, y
refers to the coupling variables and f  stands
for the objective function. The asterisk denotes
the variable values assigned from the system. At
the beginning of the optimization process, these
variables should be guessed as the estimated
optimal values. The optimization of each
subsystem is to find its own subsystem variables
to match these values by minimizing the
discrepancy function ir . The system
optimization is then executed upon the system
variables, as well as the coupling variables,
treated as design variables to converge towards
its optimal objective function. The discrepancy
function between the variables, optimized by

subsystems and the system design variables, is
now served as the system constraints. 

For the CSSO method in each subsystem
operation, the system objective function is
minimized, subject to the local constraints. The
design variables include the ones from the
system and those unique to the subsystem. The
information needed from other subsystems is
calculated by simulation models. The system
design, which provides the full coupling of the
subsystems, is then performed with all design
variables defined for both system and
subsystems. All the disciplinary analyses in the
system level use simulation models. 

In the BLISS method, the system objective
function is strongly related to the subsystem
objective functions. The system objective
function may be a single output from one of the
subsystems. The postulates of the subsystem
objective functions are connected to the system
through a solution of the Global Sensitivity
Equations [4]. 

Each iteration cycle in BLISS mainly involves
two important steps. The first deals with the
subsystem optimization with the design
variables X , where the system variables Z are
held constant. The second step proceeds toward
the system level optimization with the design
variables Z .  The system design is improved
after each iteration cycle with the updated
design variables X  and Z .   

The sensitivity analyses are performed, based on
the algorithm described by Barthelemy and
Sobieszczanski-Sobieski [4], in which the
Lagrange multipliers may be interpreted as the
prices for constraint changes by incrementing
the design variables Z . In this report, these
derivatives are given by:
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where L  is the vector of Lagrange multipliers. 

For the detailed descriptions of these three
methods, please refer to the references [1], [2]
and [3].

3 Applications and Discussions 

3.1 Application 1
The first application involves the optimization
of analytical formulae, which were chosen from
Chan's report [5]. It is stated as:
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The problem is simple in form, but has two fully
coupled subsystems, 1 2 and y y .

The optimizer used for Application 1 for the
three algorithms is the Sequential Quadratic
Programming (SQP) method in MATLAB
Version 6.

3.1.1 Collaborative Optimization

In this approach, the system is decomposed into
two subsystems ( 1 2 and y y ).  Coordination of
various procedures is a very important step in
solving a MDO problem. The design variables

1 2 3, ,x x x  are all included in the system design
variables, as they are needed for evaluating the
objective function f  in the system and
subsystem levels. The objective functions in the
subsystems measure the discrepancy between

the design parameters and the corresponding
variables assigned from the system level. The
minimal values of the functions indicate the best
possible matches to the system values. The
same philosophy is expressed in the system
level constraints imposed by the assigned values
from the subsystems. Reference 6 describes the
detailed coordination for this application.

Fig. 1 shows the convergence histories for the
design variables: 1 2 3,  and x x x , and Fig. 2 is for
the system objective function f .  When the
convergence criteria is set to 310�  for

opt All in One

opt

f f
f

� �

�

, the computation takes 1936

iteration cycles. The optimized results are listed
in Table 1. Note that the optimal results of the
system and the subsystems are slightly different
for all variables.   This is one of the weaknesses
of the CO method, but it represents the reality in
practical system designs. 

3.1.2 Concurrent Subspace Optimization

In the CSSO method, simulation models have to
be used to create a data bank. There are two
popular methods to create simulation models in
MDO. One is the neural network technology,
and the other is the response surface. For this
application, the quadratic response surface is
used,

� � 0
1

n n

l i ij i j
i i j n

f z C C z C z z
� � �

� � �� � (4)

The training histories of the design variables,
2x , for the two subsystems and the main system

are displayed in Fig. 3.  At the beginning of the
process, the 2x  values are quite distanced from
each other. With the improvement of the
accuracy of the simulation models, the
difference becomes smaller. Similar
observations can be seen for the objective
function (Fig. 4). 

From the methodology description of the CSSO,
it can be seen that the CSSO is essentially an
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ALL-in-One method in the system-level
optimization. The difference is that the All-in-
One method uses the analysis models from the
subsystems directly, while the CSSO uses
simulation models to perform these analyses.
The subsystem-level optimizations are actually
utilized as the training tools to improve the
accuracy of the simulation models. The CSSO is
designed to guide the training process to follow
the optimal domains close to the system optimal
results. Therefore, the CSSO performs more
analyses than the All-in-One method (Table 1).
However, this doesn't mean that the All-in-One
can replace the CSSO. For this simple MDO
problem, it is possible to carry out the All-in-
One process. But for most practical designs,
there is no explicit formula to conduct the
analyses. Performing all the subsystem analyses
directly in the system-level might be impossible.
Even if it was possible, it could still be a big
task to put all complex subsystem analyses in
one platform. Therefore, the efficiency and
accuracy of the CSSO method depends on the
efficiency and accuracy of the construction of
the simulation models.  

Note that in Table 1, for the CSSO method the
optimal results of the system and subsystems are
not the same. One simulation model was used in
the other subsystem analysis, but in its own
discipline, it used direct formula analyses. The
discrepancies of the optimal results are caused
by the errors of the simulation models. As long
as these errors meet the accuracy requirement,
the results are acceptable.

3.1.3 Bi-Level Integrated System Synthesis   

In order to apply the BLISS algorithm to the
above system design, besides the two explicit
subsystems in Eq. (3), the objective function f
is taken as the third subsystem:

    22
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The system objective function is now chosen as
the state variable 3y  of Subsystem 3, 

3f y� (6) 

Since all the design variables, 1 2,x x and 3x , are
shared by two or three subsystems in this
optimization problem, they should all be
catalogued to the system design variables,  

1 2 3[ ]Z x x x� .         (7)
For this particular case, there is no single design
variable specified to the subsystem, therefore,
no subsystem optimization is involved. 
Since the state equations for the three
subsystems are explicit and simple, the
derivative calculation in the sensitivity analyses
can be expressed by the following analytical
formulae:
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Figures 5 and 6 display the convergence
histories of the objective function, the design
variables and various coupling variables. With
the prescribed accuracy of 310�  for the objective
function f , and based on the initial guess for
the design variables listed in Table 1, the
optimal solutions for the main system are
obtained after 40 iteration cycles, 

From Table 1, it can be seen that all three
methods produced very close results to the All-
in-One solutions. The CSSO method used the
least iteration cycles. But the BLISS method
performed fewer analyses than the other two
methods. Therefore, the BLISS method is the
most efficient of the three for Application 1. 

3.2  Application 2

Application 2 is a conceptual system design for
a supersonic business jet. The system involves
four subsystems. Except for the range



113.5

EVALUATION OF THREE DECOMPOSITION MDO ALGORITHMS

performance (Subsystem 4), the other three
subsystems, Structures (Subsystem 1),
Aerodynamics (Subsystem 2) and Propulsion
(Subsystem 3) are coupled to each other. The
system has 10 design variables and there are 9
coupling variables between the subsystems. The
design variables are defined as:

Subsystem design variables:
1
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System design variables: 
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The state variable Range was chosen as the
system objective function:

Range� �            (12)
The calculations of all the state variables are
cited from Ref. [3] with some corrections. There
exist complex coupling relationships between
the four subsystems for this aircraft system
design. Many empirical formulae are used to
simplify the calculations. For example, the
range is calculated by the Breguet range
equation:
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In real design, the state variable analyses might
involve large-scale computations performed by
experts from the individual disciplines. 

3.2.1 Collaborative Optimization

For Application 2, there are a number of design
variables commonly shared among the four
disciplines. For this kind of complex system,
proper coordination is just as critical as the

means of handling the information exchanges
between the disciplines. In Table 2, it is shown
that there are 16 design variables in the system
level. Compared with the design variables
defined in Eq. (9), the CO added 10 more design
variables. Reference 6 lists the detailed
coordination for this system design. 

Based on the initial guess in Table 3, the
optimized results using the CO method were
obtained at iteration cycle 1176. Note that the
solutions are again not identical between the
individual subsystem and the system designs.
This is the inherent nature of the CO method.
Compared with the results of Application 1, the
discrepancies are bigger. The objective in the
subsystem designs is to reduce these
discrepancies to a minimum in a Euclidean
measure. Thus the design variables have a
limited freedom to adjust themselves.  This
freedom is system dependent. For Application
1, the system definition is quite precise, thus
high accuracy can be reached. For Application
2, the system definition is quite complex. One
subsystem optimization may be limited severely
from other subsystems.  To minimize this
limitation, the Genetic Algorithm (GA) was
used as an optimizer for this application in order
to reach the global optimal values in each
subsystem optimization and system
optimization.  But some discrepancies (for
example, FW ) are not acceptable. So the CO is
not suitable for this particular application.

The above two evaluations for applications 1
and 2 are related to highly coupled systems.
Owning to certain drawbacks in
communications between subsystems, the CO
method was found to be the slowest of the three
approaches. The CO may be more efficient to
system designs with little boundary interactions
between subsystems.

3.2.2 Concurrent Subspace Optimization 

When the CSSO method is applied to this
aircraft design, the range calculation is taken as
the objective function for all subsystems and the
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system. The subsystems are structure,
aerodynamics and propulsion. The quadratic
response surface (Eq. (4)) is also used in this
application for the construction of the
simulation models. 

For this application, the CSSO method is not
efficient. By monitoring the training procedure,
it is found that the search for feasible solutions
in the subsystem optimizations is very difficult.
This is a common situation when the system
design is complex and involves many design
variables. In this case, the optimized values
from one discipline may not fall into the
feasible domain of the other discipline analysis.
This results in a large number of analyses for
each discipline. 

Also, because the system has a large number of
variables, the time used for the construction of
the simulation models is quite large. It negates
the initial purpose of using simulation models in
the optimization, which is to save system design
time. Therefore, CSSO is not suitable for the
large-scale system design, or it is too restrictive
for feasible solutions.

3.2.3 Bi-Level Integrated System Synthesis 

For this complex application case, it is
impossible to perform the direct analytical
calculations for the sensitivity information used
in the BLISS. The first order finite difference
method was used for the derivative calculations
of the BLISS algorithm. The optimizer used for
the system and all the subsystems is the SQP
method. 

The BLISS algorithm is efficient for this aircraft
application. It took only 9 iteration cycles to
reach a converged solution (Fig. 7).  Fig. 8
displays the contributions of the individual
subsystems and the main system for the range
optimization. It is observed that Subsystem 1
(Structures) and the main system are the main
contributing parts. Subsystem 3 (Propulsion)
contributes moderately in the early process and
Subsystem 2 (Aerodynamics) plays a very small
role in this particular optimization case. 

The optimal results for the range, the design
variables and the state variables are shown in
Table 4. For the BLISS method, the optimal
results of the subsystems and system are always
consistent. 

Note that Application 1 took more iteration
cycles to get close to its optimal value than the
more complex system Application 2. Since there
was no subsystem optimization involved in
Application 1, the optimization objective was
only upgraded by the main system contribution.
For Application 2, the three subsystems and the
main system contributed to the objective
function in every iteration cycle. It speeded up
the optimization process in a more economic
way.

For Application 2, BLISS is the only method
that produced consistent and feasible solutions.

4. Summary and future work

Three MDO methods have been applied to two
system-design applications. Considering the
complexity, the CO method is the simplest
among these three in programming. And it is
also so far the most direct and autonomous
MDO method. However, owing to lack of
communication between the subsystems, the CO
convergence is slow. This method is not suitable
for systems with many coupled disciplines.
Also, because the coordination problem
combines the system optimization with the
system analysis, one may have to be confronted
with a large number of design variables. Table 2
lists the number of design variables for the three
methods. At both the system and the subsystem
levels, the CO and the CSSO methods involved
catering for a lot more design variables than the
BLISS method.   

For the CSSO approach, the process is fully
explicit. The simulation models, which pass
information among system and subsystems,
have to be constructed. The efficiency of
constructing the simulation models is directly
related to the efficiency of this method. For the
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larger systems, the construction of the
simulation models added extra workloads for
the optimization process. For some cases, it may
not be possible to find feasible solutions to
construct the simulation models. 

The BLISS performs an explicit system
behaviour and sensitivity analysis using global
sensitivity equations. The coordination problem
engages only a relatively small number of
design variables. However, it does involve
derivation calculations. For Application 1, these
derivatives can be easily expressed by formulae
(Eq. (8)), but for Application 2, the process is
very tedious. 

In summary, the CO is recommended for
systems with little interaction between
disciplines. For highly coupled system, the
BLISS method is more suitable. The CSSO
method is only efficient for small-scale systems.
For large-scale systems, the CSSO method is
not efficient.

The evaluation has been performed for two
system designs. As noted in this report, the two
systems contain highly coupled subsystem
disciplines. For the CO method, the present case
studies may not be the most appropriate, as the
method would be directly suitable for systems
with weak couplings. 

The aircraft design is more realistic, but it
involves too many empirical formulae. While
comparing the performance of the CSSO and
CO methods, it is difficult to assess their
efficiency, as the use of curve-fitting
polynomials or other empirical formulae are not
the best tests for optimization studies. 
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Fig. 1 CO: Convergent histories for the design variables
(Appl.1)

Fig. 2  CO: Convergent history for the objective function (Appl.1)
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Fig. 5 BLISS: Convergent histories for the design variables
(Appl.1)

Fig. 6 BLISS: Convergent history for the objective function
(Appl .1)

Fig. 7  BLISS: Convergent history for the objective
(Appl.2)

Fig. 8  Contributions of subsystems and system to 
range optimization (Appl. 2)

Fig. 4  CSSO: Convergent histories for the objective function
(Appl.1)

Fig. 3 CSSO: Convergent histories for the design variable 2x
(Appl.1)
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Table 1 Optimization Results for Application 1

opt All in One

opt

f f
f

� �

�

= 310�

1x 2x 3x 1y 2y f Call No. Iteration
Cycles

Initial value 1 5 2 10 4 10
All-in-One 1.978 0 0 3.16    3.7553 3.1834 62

CO (1) 1.9771 0.0020 0 3.1600 3.7538 3.1834 30812

CO (2) 1.9775 0.0020 0.0001 3.1600 3.7541 3.1835 18733

CO (S) 1.9754 0.0012 0 3.1531 3.7518 3.1850
1936

CSSO-RS (1) 1.9786 -0.0012 3.1602 3.7675 3.1831 528

CSSO-RS (2) 0 3.1184 3.7445 3.1864 234

CSSO-RS (S) 1.9894 0 0 3.1184 3.7675 3.1828
20

BLISS 1.9770 0.0007 0.0003 3.1583 3.7544 3.1804 95 40

Table 2.  Comparison of the Number of Design Variables for the Three Methods

CO CSSO BLISS

System 5 3 3

Subsystem 1 4 2Application 1
Subsystem 2 4 1

System 16 10 6

Subsystem 1 8 8 2

Subsystem 2 10 7 1

Subsystem 3 4 7 1

Application 2

Subsystem 4 6
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Table 3 Optimization Results of the CO Method for Application 2

Design Variables R
(nm)

� x Cf T t/c h
 (ft)

M AR �

 (deg.)
Sref
(ft2)

Initial Value 3378 0.25 1.0 1.0 0.5 0.05 45000 1.6 5.5 55 1000

Optimal Value
(Structure)

0.119 0.99 0.089 5.031 49.087 1066.3

Optimal Value
(Aerodynamics)

1.176 0.0726 58521 1.457 5.668 55.998 1027.7

Optimal Value
(Propulsion)

0.127 57656 1.400

Optimal Value
(Performance.)

3901.4 51036 1.471

Optimal Value
(System.)

3990.0 0.0837 55442 1.512 5.534 56.333 1047.8

Coupling Variable WT
(lb)

WF
(lb)

� L
(lb)

D
(lb)

L/D SFC. WE
(lb)

ESF

Initial Value 41195 11254 1.0285 46231 5264 9.5 0.8818 6550 0.536

Optimal Value
(Structure)

47912 12867 1.0000 40000 7251

Optimal Value
(Aerodynamics)

40641 1.9726 40641 5627 7.223 0.983

Optimal Value
(Propulsion)

4371 1.622 1343 0.114

Optimal Value
(Performance)

51319 27733 5.634 0.947

Optimal Value
(System)

45207 37708 1.9927 38839 4313 5.813 0.954 7882 0.949

Table 4 Optimization Results of the Three Method for Application 2

Design Variables R
(nm)

� x Cf T t/c h
 (ft)

M AR �

(deg.)

Sref
(ft2)

Initial  Value 3378 0.25 1.0 1.0 0.5 0.05 45000 1.6 5.5 55 1000

CO 3990 0.12 0.99 1.18 0.127 0.08 55442 1.5 5.5 56 1047
CSSO-RS 3435 0.4 0.84 0.99 0.208 0.081 59154 1.7 3.6 44.7 1208

O
pt

im
al

V
al

ue

BLISS 3235 0.4 0.75 0.75 0.156 0.06 60000 1.4 2.5 70 1500

Coupling
Variable

WT
(lb)

WF
(lb)

� L
(lb)

D
(lb)

L/D SFC. WE
(lb)

ESF

Initial Value 41195 11254 1.0285 46231 5264 9.5 0.8818 6550 0.536

CO 45207 37708 1.9927 38839 4313 5.8 0.954 7882 0.949

CSSO-RS 46828 16241 1.0641 46828 5332 8.783 1.1451 6739 0.530

O
pt

im
al

V
al

ue

BLISS 51411 7306 1.0002 51411 13478 3.814 1.1075 7058 0.556


