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Abstract
A numerical optimization method of wing design
by solving adjoint equations based on Euler
equations is studied for better considering
performance requirements of wing design in this
paper. The three dimensional adjoint equations
are derived according the given requirements of
aerodynamic performance and the given desired
pressure distribution respectively. Some
improvements have been made, such as far field
conditions using characteristics theory,
smoothing the co-state variable and cost
function by using artificial dissipation method
and using the vector flux boundary conditions
for better convergence performance and using
Hicks-Henne function for smoothing the surface
variation caused by perturbation of design
variables. Some numerical tests have been made.
The test results show that the present method is
very effective for wing design of both subsonic
and transonic case using Euler equations.

1 Introduction
For a long time, aerodynamic design has

had to rely upon a trial-and-error process of
design, analysis, test, and redesign according to
test results in wind tunnel. In the recent years,
CFD(Computational Fluid Dynamics) has
rapidly become a key tool of aircraft design
process as wind tunnel.
    Airfoil and wing design methods can be
categorized as either inverse or direct
procedures. Inverse methods involve the
specification of a desired pressure distribution
and the calculation of the corresponding airfoil.
In direct design methods a numerical

optimization algorithm is coupled with a
suitable aerodynamic analysis method for
specific performance requirements.
    In the inverse design approach, one
problem is hard to find desirable (or target)
pressure distribution for highly three-
dimensional flows. Reference[1] pointed out the
inverse method is not good for the design of
practical wing with nacelles, because the
interference caused by the presence of large
nacelles results in a local highly three
dimensional flow field. If one insists on
imposing the straight isobar pattern the resulting
wing surface geometry will be highly twisted
and will be difficult to manufacture. And in this
case a smooth geometry will give a highly
distorted local flow field. Another problem is
consideration of off design performance,
because the inverse method is inherently a
single point design process. The third problem is
that unless the pressure distribution satisfies
certain constraints a physical realizable shape
may not necessarily exist. So far the existence
of the solutions for general type of flow,
especially for three-dimensional flow has not
been proved.
    These difficulties lead to the desire to
develop an optimization methodology for
aerodynamic design. These methods may help
engineers to achieve quickly a good
compromise between aerodynamic objectives
and the constraints imposed on the geometry by
other design requirements such as
manufacturing and structures. It will also allow
considering off design conditions and even
multi-disciplinary optimization (MDO) design
applications.

NUMERICAL OPTIMIZATION DESIGN OF WINGS BY
SOLVING ADJOINT EQUATIONS†

Z. D. Qiao, X. D. Yang, X. L. Qin, B. Zhu
The Center for Aerodynamic Design and Research

Northwestern Polytechnical University,
Xian, 710072, China

Keywords: Wing Design, Adjoint Equations, Numerical Optimization, Euler Equation

† Copyright ©  2002 by Prof. Zhide Qiao
Published by the International Council of the Aeronautical Sciences, with permission



Z.D.Qiao, X.D.Yang, X.L.Qin, B.Zhu

1104.2

In order to make newly developed CFD
approaches integrate directly into future multi-
disciplinary optimization applications, the direct
design methods are studied by most design
researchers recently due to its ability to use any
new CFD methods, any numerical optimization
algorithms and to avoid the limitations and
difficulties of traditional inverse methods. But
the traditional direct methods have problems for
their inherent computational efficiency, they are
computationally expensive because of the large
number of flow solutions needed to determine
the gradient information for a necessary number
of design variables.

By solving the adjoint equation of Euler
equations the gradient of cost function can be
obtained with roughly the computation costs of
two flow solutions, independent of number of
design variables. The method has been applied
to fluid dynamics problem by Jameson2,
Reuther3, Pironneau10, and Ta’asan8 and applied
to three dimensional wing-design problems by
Jameson2, Reuther3 and Qiao4 recent years. In
Jameson method a wing is a device to produce
lift by controlling the flow, and its design can be
regarded as a problem in the optimal control of
the flow equations by variation of the shape of
the boundary. Using techniques of control
theory, the gradient of cost function can be
determined by solving adjoint equations, and it
is independent of number of design variables.

A numerical optimization method of wing
design by solving adjoint equations based on
Euler equations is studied for better considering
performance requirements of wing design in this
paper. The three dimensional adjoint equations
are derived according the given requirements of
aerodynamic performance and the given desired
pressure distribution respectively. And some
improvements have been made, such as far field
conditions using characteristics theory,
smoothing the co-state variable and cost
function by using artificial dissipation method,
using the vector flux boundary conditions for
better convergence performance and using
Hicks-Henne function for smoothing the surface
variation caused by perturbation of design
variables. Some numerical tests have been made
for airfoil and wing design. The test results

show that the present method is very effective
for wing design of both subsonic and transonic
case using Euler equations.

2 Basic Equations
Euler equations are adopted as the basic

equations for flow analysis
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And ijδ  is Kronecker delta function,
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Where γ  is the ratio of specific heat. After
transformation the equations from the physical
coordinates ),,( 321 xxx  to computational
coordinates, the Euler equations can be written
as
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Now, in the new coordinate system, wing
surface BW is represented by 02 =ξ , and the
boundary condition on the wing surface is

WBonU 02 =                   (9)
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On the far field boundary FB , the free
stream conditions are specified for incoming
waves and the outgoing waves are determined
by the solution.

3 Adjoint Equations
The cost function of the aerodynamic design

problem can be expressed with pressure p  on
the wing surface or aerodynamic performance
such as drag or the ratio of drag to lift.

3.1 Wing design with the given desired
pressure
The cost function is defined as follows,

31
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2
1 )( ξξ ddppI

WB d∫∫ −=            (10)

Where dp is the desired pressure (or target
pressure) on the wing. The design problem can
be studied as a control problem choosing wing
surface as the control function to
minimize I subject to the constraints defined by
the flow equations. The variation of the cost
function caused by the variation of wing
surface,
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Multiplying by a vector co-state variable ψ
and integrating over the domain, equation (12)
becomes
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If ψ  is differentiable, the equation can be
integrated by parts to give
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Where in  are components of a unit vector
normal to the boundary. Thus the variation in
the cost function can be written as
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From the second integral of equation (17), to
eliminate the term, which contains wδ , the
adjoint equation can be obtained
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If the coordinate transformation is such that
)( 1−JKδ  is negligible in far field, from the

boundary integral of equation (17) by letting ψ
satisfy the boundary conditions,
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The gradient can then be defined with respect to
the design variable ib .

i
i b
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3.2 Wing design with the given requirements
of aerodynamic performance

The cost function can be written as:
2
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Where 1w , 2w are weight coefficients, LdC

is requirement value of lift coefficient.
Considered the change of cost function caused
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by the change of shape and angle of attack, from
Euler equations in steady state, Multiplying by a
vector co-state variable ψ  and integrating over
the domain, then the variation of cost function
can be written as
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Where DCw11 =Ω , )(22 LdL CCw −=Ω , DC′δ and
LC ′δ  are caused by the change of wing surface

shape.
From the fifth term of above Iδ  expression, the
adjoint equations can be derived
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or written as unsteady form for numerical
computation
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Boundary conditions can be derived from
the fourth term of Iδ  expression
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From the Iδ expression the gradient with
respect to the design variables ib  can be
obtained as

i
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4 Solution of the Adjoint Equation

4.1 Coordinate transformation
To use finite volume method for solving the

adjoint equations (19) we transform the
equations (19) and boundary conditions (20),
(21) from computational space into physical
space.
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4.2 Far field boundary condition using
characteristics theory
From the adjont equations, introducing

transformation
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Where P  is a transformation matrix that
can be derived with the method like the case of
flow equations. Thus we obtain
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4.3 Vector flux boundary conditions
    Boundary conditions (33) can be
transformed into vector flux boundary
conditions.

The semi-discretized adjoint equation of
equation (32) can be written as

0
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Where ijkΩ  are cell volume, and the vector
flux
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Using the expression of Ai, the vector flux F~

on the wing surface WB  can be derived as
follows,
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Numerical test shows that using the
derived vector flux boundary condition (43)
much better convergence performance can be
obtained than using boundary condition (33)
directly.

4.4 Artificial dissipation
Introducing the artificial dissipation term to

the equation (39) is crucially important to avoid
discontinuities and to keep co-state vector
variable ψ  is differentiable. In present paper,
dissipation term can be written as

( )
( )jkiijkjkijkijki

ijkjkijkijkijkid

112
)4(

1
)2(

33
2
1

2
1

2
1

2
1

−+++

++++

−+−−





 −=

ψψψψε

ψψεα
  (44)

),max( 1
)2()2(

2
1 ijkjkijki k γγε ++ =           (45)

),0(max )2()4()4(
2
1

2
1 jkijki k ++ −= εε          (46)

jkiijkjki

jkiijkjki
ijk lll

lll

11

11

2
2

−+

−+

++

+−
=γ             (47)

After comparing following definitions of the
ijkγ ,

1ψ=l                           (48)
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 nnl ψ=      n=1,2,3,4,5           (50)
pl =                            (51)

Among the above definitions, pl =  is
better than others.

5 Numerical Tests For Wing Design

5.1 Wing Design with Given Desired Pressure
In the test Design case, wing planform was

fixed while the wing sections were free to be
changed arbitrarily in design process. In the
design example the wing has a unit root section
chord, with aspect ratio of 6, with 20-degree
leading edge sweep and 25-degree trailing edge
sweep. The initial wing sections were based on
NACA 0012 airfoil, the target pressure is
obtained from RAE2822 airfoil at Mach number
0.80 with zero angle of attack.

The design results are given in Fig.1 and
Fig.2.

5.2 Wing Design with the given requirements
of aerodynamic performance

Sweep angle of the leading edge is 40
degree for inner wing and 34.4 degree for outer
wing respectively. The aspect ratio is 9.02. A
linear twist distribution was imposed on the
geometry such that the incident angle varies
from +4.0º at the root to –1.0º at the tip. In
initial wing 9 design profiles and 26 design
variables for each profile are used. The wing
planform is fixed, but the angle of attack and
twist angle of each profile can be changed. The
design Mach number is 0.839. Design lift
coefficient is 0.5. The design results show that
the lift to drag ratio is increased from 2.99 to
3.84. The details can be found from Fig.3-
Fig.4.

The above test cases show that the method
is very effective for airfoil and wing design in
subsonic and transonic flow using Euler
equations.
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η=0.175                                      η=0.425

 η=0.675                                        η=0.925

Fig. 1 The example of wing design Ma = 0.8  α = 0.0
Pressure and section comparison of the initial、the target and the designed wing
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Fig. 2 Shape and isobar comparison between the initial and the designed wing
Ma = 0.8    α=0.0
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NUMERICAL OPTIMIZATION DESIGN OF WINGS BY SOLVING ADJOINT EQUATIONS
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Fig. 3 Pressure and section comparison of the initial and designed wing
   initial： 0787.001577.0472.0839.0 ==== αDL CCMa

 design： 0926.001281.0492.0839.0 ==== αDL CCMa
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Fig. 3 Pressure and section comparison of the initial and designed wing (Continued)
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