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Abstract

The design of an automatic flight control system
for a hypersonic transport aircraft (HST) is
presented. It uses a mathematical model of the
longitudinal motion of an HST flying at Mach
8.0 and at a height of 85000 feet. Included in
the model were the non-linear dynamics
associated with the propulsion system. Since the
basic aircraft is dynamically unstable, closed-
loop stabilization was required. Normally, the
required degree of closed-loop stability is
determined from published flying qualities
specifications which are unavailable, however,
for this type of aircraft. Consequently, a set of
dynamic parameters for the closed-loop
stabilization system was proposed which
corresponded with notionally acceptable flying
qualities. Using these parameters it was
possible to use an analytical procedure to
determine a corresponding state weighting
matrix to be used in a quadratic performance
index which, when minimized, provided a
feedback control law that ensured the controlled
HST had the specified flying qualities.

The effectiveness of the system is
demonstrated from results obtained by digital
simulation, including the propulsion system.

1  Introduction

Current subsonic transport aircraft are capable
of flying very long distances at cruise Mach
numbers up to about Mach 0.85. The Boeing
747-400, for example, has a maximum range of
over 7000 nautical miles at Mach 0.84, a range
of about one-third of the Earth's circumference.
Flights of this distance currently require

between 13–15 hours in the air. Longer
distances, such as from New York to Sydney,
Australia, for example, would take over 18
hours. Most passengers often consider these
journeys too long, but with an HST aircraft, this
problem of extended flight times can be solved.
Business travellers are known to be especially
dissatisfied with the lengthy transit times
associated with long haul flights such as those
between Europe and the Far East, or South
America, or the west coast of Canada and the
USA, or from the USA to Japan and the Pacific
rim countries. Since most long haul flights take
place on those routes and the number of
passengers travelling on those routes is reliably
predicted to double from today's figures by the
year 2005 [1], [2], considerable attention is
being given now in the USA, Europe and Japan
to the development of HST aircraft. The big
advantage of future HST aircraft is their
potential for reducing long-range flight times
and, in turn, increasing aircraft productivity,
passenger comfort and convenience.

This paper presents information in relation
to the design of a closed-loop, automatic flight
control system (AFCS) which will provide such
HST aircraft with desirable flying qualities
which they do not possess in the absence of
closed-loop control.

From an initial study of available HST
dynamics, it was found that these aircraft were
highly unstable statically and dynamically.
Since the level of instability possessed by such
aircraft was high, a robust control technique was
required to take into account the many
uncertainties of the mathematical model. Hence,
Linear Quadratic Regulator (LQR) theory was
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chosen to design the stabilising control system.
One of the disadvantages regularly complained
of in the literature when using LQR theory is
that the choice of weighting  matrices, Q and G,
on the state and control variables respectively, is
restricted [3]. A method of systematically
finding the state weighting matrix, Q, such that
the aircraft displays closed-loop modes as
specified by the designer is presented and
discussed in this paper.

The mathematical model of the longitudinal
motion of the HST aircraft uses three controls;
the change in flap angle, ∆δF, the change in the
ratio of the engine duct area, ∆AD, and the
change in the temperature across the engine
combustor, ∆TO. When the aircraft model was
subjected to simulated disturbances, it was
found that the flaps were the most active control
in stabilizing the aircraft. This is a cause for
great concern because at hypersonic speeds, the
flaps become less effective and aerodynamic
heating on the surface of the flaps can cause
structural damage. It was decided that the
engine of the aircraft must be used more
actively and effectively as a means of
controlling the aircraft which required a better
representation of the hypersonic propulsion
system. This mathematical model involved the
use of variables such as the specific impulse,
full-eigenvalue ratio and thrust.

The results obtained from a digital
simulation of the AFCS indicate that the design
of the AFCS was effective.

2  Mathematical Models

2.1 Longitudinal Motion of the HST

The A sketch of the HST, showing approximate
overall dimensions and location of the control
inputs, is shown in Figure 1. The mathematical
model used was developed from an initial model
based on that of Chavez and Schmidt [4].
However, the model of Chavez and Schmidt had
to be modified to account for a number of

errors,1 and to allow the use of more appropriate
physical units for the variables involved. The
data given by Chavez and Schmidt for the
stability and control derivatives were in degrees,
not radians, so that care is needed in using the
published data in any resulting mathematical
model if consistency is to be achieved.

The variables chosen for the aircraft's state
vector were:

[ ]ηηθα !hqux =′ (1)
where

u denotes the change in forward speed
(in ft/s)

α denotes the change in angle of attack (in
radians)

q denotes the change in pitch rate (rad/s)
θ denotes the change in pitch attitude (rad)
h denotes the change in height (ft)
η denotes the change in displacement of the

fundamental bending mode (ft)
η! denotes the rate of change of the

displacement of the fundamental bending
mode (ft/s).

The variables used as elements of the control
vector, u, were
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The state equation governing the longitudinal
motion was, therefore:

uBxAx +=! (3)

The matrices, A, of order [7 x 7], and B, of order
[7 x 3], are shown in Table 1.

The corresponding eigenvalues of the
matrix, A, are presented in Table 2. One of the
eigenvalues (λ6) has a positive real root which
                                                
1 There are errors in eq. (22), the matrix T1, the equation
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means that, without a stability augmentation
system (SAS), the HST is highly unstable.

The response of the HST's angle of attack
and pitch rate to a sudden disturbance is shown
in Figure 2. It is obvious that the HST is
dynamically unstable.

2.2 The Propulsion System

The mathematical model of the engine
dynamics was based on the work of Raney [5]
and is represented in the block diagram of
Figure 3. The command input to the system is
the fuel flow rate command, 

commfuelw , and the

output is net thrust. There are involved, apart
from the limiters, four functional non-
linearities:

(a) Fuel Equivalence Ratio (η)
The commanded fuel flow rate, 

commfw , was

used, in association with aircraft Mach number,
M, and dynamic pressure, q∞ , to compute the
fuel eigenvalue ratio, η.  When η was used, in
the range 0 < η ≤ 1, with an interpolation table,
the specific impulse Isp , could be evaluated.  If
η > 1.0 a penalty is applied by limiting the
upper limit for Isp.  For any air-breathing engine,
Isp is a direct measure of fuel efficiency. The
best efficiency for hypersonic propulsion occurs
at about a fuel eigenvalue ratio of unity. Should
the ratio be adjusted above 1.0, the fuel
efficiency will decline and there will be an
attendant decrease in η. A correction factor is
used to limit Isp to reflect the lower value of η.
The product (Isp x wf) determines the net thrust,
Th. The fuel flow rate, wf, depends upon the fuel
flow rate commanded:

( )sT1
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)s(w
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Ef

f
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= (4)

where the engine time constant, TE , lies in the
range 0.4 – 1.2 sec (TE was taken as 0.5s in this
paper).

The ideal flow rate corresponds to the fuel
flow rate when η = 1.0, i.e.
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However, the functional relationship between f1

and M is non-linear and is shown in Figure 5.
The fuel equivalence ratio, η, can then be found
from:
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At a specified Mach number, say 8.0, the
specific impulse, Isp , corresponding to η = 1.0,
is shown in Figure 5. When η ≠ 1.0 another
non-linear specific impulse function (see Figure
6) had to be used.

(b) Maximum Specific Impulse
The maximum specific impulse was given by

η
)M(fI 2

spmax
= (7)

and the net thrust from the engine was

Th = Isp wf (8)

The mathematical model of the engine
dynamics was tested by digital simulation over a
wide range of conditions. A typical engine
response for a step change in fuel flow
command for a range of Mach numbers is
shown in Figure 7. The effect of Mach number
of the steady-state thrust delivered can easily be
discerned.

3 Automatic Flight Control System (AFCS)

An AFCS was required:

(a) to provide closed-loop stability;
(b) to provide satisfactory flying qualities from

the closed-loop system.

If the feedback control law could also provide
some degree of robustness that would be a



D. McLean, Z.A. Zaludin

4106.4

practical advantage. An obvious control design
method to apply, which provides these
requirements, is the  Linear Quadratic Regulator
(LQR) theory. Bryson [3] has summed up why
LQR theory is deemed to be the most suitable
candidate theory for the design of any system to
control an aircraft. He claimed that LQR
designs produce co-ordinated controls which
yield graceful flight paths comparable to those
produced by expert pilots. They represent the
best performance the control engineer can
expect, given accurate sensors and a low-noise
environment. However, a disadvantage of using
this method is that there is apparently no
systematic way of obtaining the weighting
matrices, Q and G, used in the performance
index, J, which has to be minimized viz:

dt)uGuxQx(J
o

2
1 ′′+′= ∫
α

(9)

What is required is a systematic approach for
obtaining the weighting matrices, which would
result in the dynamics of the HST responding to
disturbances in a manner specified by the flying
quality criteria. The flying qualities parameters
published by all the world's aviation authorities
are based on low level mathematical models
corresponding to particular modes of flight.
These modes can be identified from the
eigenvalues of the coefficient matrix, A, for
open-loop systems and the eigenvalues of
(A+B∗ K) for closed-loop systems.

A method proposed by Luo and Lan [6]
provides a systematic determination of the state
weighting matrix corresponding to a set of
closed-loop eigenvalues specified by the
designer. The control weighting matrix, G, was
designed according to Bryson's rule [7]. The
desired set of closed-loop eigenvalues were
derived from the flying qualities achieved with
the SR-71 aeroplane flying at Mach 3.5 at a
height of 70000 ft. It is possible that the
resulting matrix, Q, obtained using Luo and
Lan's technique, might be negative definite. In
that event the authors recommended that the
negative elements of the matrix be forced to
zero to satisfy the positive semidefinite

requirement stated in most of the literature on
the subject. Should the closed-loop eigenvalues
become too different from the desired
eigenvalues as a result of doing this, the authors
recommended that the designer choose a
different set of eigenvalues for the system. An
example in Luo and Lan demonstrated that by
using a positive semidefinite matrix, Q, after
forcing the negative elements of the matrix, Q,
to be zero, the authors managed to obtain a set
of desired closed-loop eigenvalues which were
not identical, but were close, to those specified.

From the LQR theory, a canonical equation
is obtained viz
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where ψ  is the co-state vector. The 2n

eigenvalues of the canonical matrix ACANON

satisfy the equation

[ ] 0AI CANON =−σ (11)

Assuming that the matrix, Q, is diagonal with
elements
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then, if each specified closed-loop eigenvalue

iii wj+= µσ (13)

eq. (11) will provide one equation which can be
solved for qi.  Thus,

[ ]CANONiin21 AI)wj(det)q,q,q(f −+= µ"
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0
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=

(14)

These n algebraic equations can be solved for
the unknown elements, qi. How the technique
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was used in the design of the AFCS for the HST
is discussed next.

It was shown earlier that the uncontrolled
HST was dynamically unstable. Here, a
specified set of stable closed-loop eigenvalues
with corresponding damping ratios and natural
frequencies are shown in Table 3.

These eigenvalues are arbitrary, but all are
stable. Note that the damping ratio of the short
period motion has been set very low for
demonstration purposes.  If this specific short
period damping does not satisfy the flying
quality criteria, then a new damping ratio can be
easily specified. To solve the corresponding eq.
(14) required the use of Newton's method. The
symbolic, numerical software package Maple
was used. The resulting matrix, Q,
corresponding to a choice of identity-matrix, G,
was found to be:









−×

−−
= − 321230373871072

468201595511000040
8 ...

....
diagQ

"

"

(15)

Thus, the matrix obtained was negative definite.
The corresponding feedback gain matrix was:
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78065530000110671327144500240

153075220000380933242460060
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K

(16)

The closed-loop eigenvalues obtained were
identical to the specified set. The corresponding
step response from the controlled HST is shown
in Figure 8. This figure shows the effect of the
short period mode on all the step responses. The
short period oscillation can be seen clearly in
the first 50 seconds after the command was
initiated; however, the magnitude of oscillation
is not large.

Another choice of closed-loop eigenvalues
such as that shown in Table 4.

Note that a higher value of damping ratio
for the short period motion  has been chosen
compared to that in Table 3. By choosing this
higher damping ratio, the effect of the short

period oscillation on the step responses will be
reduced.

Using the same matrix, G, the matrix, Q,
was found to be:









×

−−
= − 02491037961001048

76575551530260820350
7 ...

....
diagQ

"

"

(17)

which is negative definite.
The resulting feedback gain matrix was

found to be:
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66757158400060452459202198020

36209465000750853528160130180
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.......

K

(18)

Using this matrix, K, the closed-loop
eigenvalues were found to be identical to those
specified in Table 4. The large values of gain
were a consequence of choosing a very high
value of damping ratio for the bending motion.
Figure 9 illustrates the response of the aircraft
subjected to commanded step change in height
of 1000 ft.

The method of finding the required state-
weighting matrix, Q, proposed by Luo and Lan,
provides AFCS designers with sufficient
freedom to find an appropriate matrix, Q, and
hence a corresponding feedback gain matrix, K,
to obtain any specified stable set of closed-loop
eigenvalues. The choice of control weighting
matrix, G, is restricted only to a rule which
requires that the matrix be positive definite. The
biggest problem found during this work was
how to find an efficient solution to the set of
non-linear algebraic equations. Using Maple,
the equations were solved using Newton's
method, but involved much iteration, and took a
considerable time to converge to a satisfactory
solution.

The most unusual aspect of using the
method of Luo and Lan is that the resulting Q
matrix is often negative definite, even though
much of the literature on optimal control insists
that to obtain an optimal feedback control law
(which will guarantee closed-loop stability) the
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state weighting matrix must be at least positive
semidefinite. Notwithstanding the statements in
the literature, however, it is possible to secure
stable, optimal closed-loop response with the
use of a negative definite Q matrix. There are
occasions when the use of such a matrix will fail
and no stabilizing  feedback control can be
found which means that the set of desired
eigenvalues cannot be achieved using linear full
state variable feedback. The condition which
has to be satisfied is that the performance index
should be positive, i.e.

0>′+′ uGuxQx

Thus a negative definite Q matrix can be used
provided uGuxQx ′<′ .

uGu′ is always positive, since G is always
positive definite, since it must be non-singular.
In this work it was unnecessary therefore to
adopt the procedure proposed by Luo and Lan
that the negative elements of the Q matrix
should be forced to zero to ensure that the Q
matrix was positive semidefinite. The result of
this procedure is to ensure that the eigenvalues
of the closed-loop system do not match the
defined set.

A concern with any AFCS design, but
particularly for an HST, where the magnitude of
aerodynamic control surface deflections should
not be large, is the extent of the activity
involved in the closed-loop control action. The
response of δF , corresponding to the step
response shown in Figure 9, is shown in Figure
10. The maximum  negative value required
using G, the identity control matrix, was 1.95º
and the maximum positive value was 0.5º.

Neither value is unacceptably large. By
altering the penalties on the use of the other
controls, such as choosing as the control
weighting matrix, G3, where

G3 = diag [1   5   9] (19)

there is a small effect on the increased use of δF.
See Figure 10.

The AFCS has been designed on the basis
of linear analysis, although the dynamics of the

propulsion system have been shown in section
2.1 to be non-linear. To determine the effect of
these non-linear dynamics on the performance
of the linear AFCS the closed-loop system was
simulated to incorporate the dynamics of the
propulsion system characterized in Figures 3–6
inclusive. The arrangement is shown in Figure
11. As expected, there was no difference
observed in the response of the AFCS for Mach
8.0 at height 85000 ft, since the fixed values
resulted in the same situation. However, when
the investigation was extended to consider other
flight conditions, the effects of the engine
dynamics became more evident, chiefly in the
slowing of the overall dynamic response.

4 Conclusions

Although the basic flying qualities of any
proposed HST will be unacceptable, since it will
be both statically and dynamically unstable, it is
possible to design an effective AFCS using all
the available control inputs in a feedback
control law. The optimal control theory known
as LQR can be used with confidence since there
is a procedure to obtain the necessary state and
control weighting matrices which will ensure
that the eigenvalues of the optimally-controlled
HST will match a set defined by the designer to
ensure that desirable flying qualities are
provided. In this work, this set of eigenvalues
was determined from the flight response of the
SR-71 flying at above the same height, but at
only half the Mach number. If the HST is to be
studied for different flight conditions, involving
different Mach numbers and/or heights, then the
non-linear nature of the dynamics of the
propulsion system needs to be modelled, as
shown in section 2.2.

This paper has described a design which
provides the designer with considerable freedom
to adjust to account for different constraints on
the flying qualities criteria or control input
activity, and produces effective, stabilizing
control.
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Table 1. The coefficient matrices, A and B, of the state equation for the HST aircraft flying at Mach 8.0
and at a height of 85000 ft

Eigenvalues

  λ1,2 = -0.00189 ± j0.0578

  λ3,4 = -0.55 ± j16.4

  λ5 = -2.49

  λ6 = 2.33

  λ7 → 0

Table 2. Eigenvalues of the HST at Mach 8.0 and at a height of 85000 ft
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Desired eigenvalues Natural
frequency (rad/s)

Damping ratio Motion
represented

σ1,2 = -0.9±j17.9775 18.0 0.05 Structural
bending

σ3,4 = -0.06±j1.91 1.91 0.0314 Short period

σ5,6 = -0.04±j0.012 0.0418 0.958 Phugoid

σ7 = -10.0 – – Height

Table 3. Desired eigenvalues for HST aircraft flying at Mach 8 and at a height of 85000 ft

Desired eigenvalues Natural
frequency (rad/s)

Damping ratio Motion
represented

σ1,2 = -5±j18 18.7 0.268 Structural
bending

σ3,4 = -40±j12 41.8 0.958 Short period

σ5,6 = -0.04±j0.012 0.0418 0.958 Phugoid

σ7 = -10 – – Height

Table 4. Another set of specified closed-loop eigenvalues for HST aircraft
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