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Abstract

This work is related to the time integration of
the equations of motion of nonlinear constrained
multibody systems discretized using the finite el-
ement method. The resulting system of nonlin-
ear differential-algebraic equations is prone to
high frequency oscillations and instabilities of a
purely numerical origin. A time-discontinuous
Galerkin scheme is used to obtain the transient
responses of the system. The scheme is cast in
a predictor-multicorrector form, which provides
unconditional stability, third order accuracy and
high frequency numerical dissipation. The total
energy of the system, which monitors the sta-
bility characteristics of the response, is used as
error measure and a time step adaptation algo-
rithm is employed. The scheme is not sensitive
to configuration singularities that may occur dur-
ing the motion of the structural system. Some of
the results presented, compared to their analytical
counterparts, showed excellent agreement. Kine-
matic constraints are satisfied at the order of ma-
chine accuracy. The algorithm may be fully im-
plemented on existing structural dynamic com-
puter codes requiring minor modifications on the
routines. Already implemented nonlinear struc-
tural finite element libraries do not need to be

rewritten. However, the finite element formula-
tion of the mechanical joints has to be done ac-
cordingly and then included into the code’s li-
brary of elements.

1 Introduction

This work is related to the use of numerical al-
gorithms employed on the design and analysis of
complex structural systems that can be modelled
by the finite element method. More specifically,
it addresses the study of direct time integration
schemes used on the solution of the equations of
motion of multibody systems. In today’s indus-
trial reality great emphasis has been placed on
designing high-speed, lightweight precision sys-
tems which turns evident the extreme importance
of the coupling between rigid and nonlinear elas-
tic displacements as well as the vibrations of each
structural member of the system. These are very
important details that have to be taken into ac-
count when developing an algorithm to solve the
equations of motion of such systems.

Multibody systems usually present general
and complex topologies. In order to accurately
model such systems one has to carefully address
factors such as the type of coordinate systems to
be used; the formulation of elastic members; the
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modelling of kinematic constraints, which repre-
sent the joints used to connect each body to one
another; and the parametrization of finite rota-
tions, since large displacements and large rota-
tions will develop during the motion of the struc-
ture. Thus, different methodologies result from
the way such factors are addressed.

This work concerns mainly the development
of numerical algorithms to be used in general pur-
pose computer codes. It aims the modelling and
analysis of nonlinear constrained multibody sys-
tems discretized using the finite element method.
Due to its generality, low degree of nonlinear-
ity and independence on the topology of the sys-
tem, the formulation employs Cartesian coordi-
nates to represent the position of each body with
respect to an inertial frame. Clearly, the proper
parametrization of the finite rotations is funda-
mental to this approach. An augmented Lagrange
multiplier technique is used to enforce the kine-
matic constraints among the various bodies. Al-
though this approach does not involve the min-
imum set of coordinates [1], it allows a modu-
lar development of finite elements to represent
a variety of kinematic constraints, so that gen-
eral multibody configurations can effectively be
modeled. The resulting nonlinear differential-
algebraic systems of equations are stiff due to the
presence of high frequencies associated with the
nonlinear motion of the elastic members. Such
a condition is worsen by the fact that kinematic
constraints introduce “infinite frequencies” into
the system, since no mass is associated with the
Lagrange multipliers resulting in algebraic equa-
tions coupled to the differential equations of the
system. These high frequency contents result in
numerical oscillations and instabilities that may
forbid the time integration procedure when a di-
rect time integration scheme is used to solve
the equations of motion of the structural system.
Geradin [2] shows the destabilizing effect of the
kinematic constraints on the time integration. Fi-
nite difference techniques are extremely popu-
lar and the well known Newmark method [3] is
probably the most widely used time integration
scheme for structural dynamic problems. It is
known that its weak instability [2, 4] makes the

Newmark scheme not good a choice for time in-
tegrating the equations of motion of constrained
multibody systems. In order to circumvent such
instability problems it is common practice to rely
on artificially added numerical dissipation [5].
Although the added numerical dissipation mini-
mizes the high frequency related numerical oscil-
lations it also causes a reduction in the scheme’s
accuracy. Some direct time integration schemes
present such large an amount of numerical dis-
sipation that even real physical instabilities may
not be detected during the time integration pro-
cess.

The study herein presented describes the use
of a time integration formulation that gener-
ates time integration schemes that intrinsically
present numerical dissipation, i.e., there is no
need to artificially add numerical damping in
order to control numerical instabilities. More-
over, the resulting scheme is unconditionally sta-
ble, presents third order accuracy and very sim-
ple modifications must be performed on existing
software architecture in order to have the algo-
rithm fully implemented.

2 Direct Time Integration on Nonlinear
Structural Dynamics

In structural dynamic analyses of nonlinear con-
strained multibodies, the problem of solving for
the transient response of the systems deals with
matrix dynamic equilibrium equations written in
the form

Mü(x; t)+N[u(x; t); u̇(x; t)] = P[u(x; t); t]

(1)

associated with kinematic constraints

Q[u(x; t)] = 0 ; (2)

and initial conditions u(x; t0) = u0 and u̇(x; t0)] =
v0. M is the consistent finite element integrated
mass matrix, N is the nonlinear internally resist-
ing forces in the structure, which may depend on
displacements and velocities, and P is the exter-
nally applied forces that vary in time, generally,
but which may also depend on the displacements.
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The quantities u(x; t), u̇(x; t)] and ü(x; t)] repre-
sent the displacements, velocities, and accelera-
tions vectors, respectively. The mechanical joints
that connect each body to one another are repre-
sented by constraints, as in Eq. (2), where Q is
a set of holonomic, or more specifically, sclero-
nomic or stationary, equality constraints.

A Newton-type iteration, standard or modi-
fied, along with a time integration scheme based
on a time-discontinuous Galerkin formulation, is
used on the solution of the final system of equa-
tions associated with Eqs. (1,2). The scheme is
unconditionally stable, third order accurate, and
inherently presents high frequency numerical dis-
sipation.

3 A Time-Discontinuous Galerkin Integra-
tion Scheme

Using the natural framework of the second-order
hyperbolic equations of elastodynamics, instead
of relying on converting the equations to a first-
order symmetric hyperbolic form, which is actu-
ally not always possible, Hulbert [8] developed
time and space-time discontinuous Galerkin fi-
nite element methods to solve the equations of
motion associated with structural dynamics and
elastodynamics problems.

Hulbert [8] has developed schemes for single-
and two-field formulations. A single-field formu-
lation that uses quadratic functions to interpolate
the displacements in time generates a time inte-
gration scheme which is third order accurate, un-
conditionally stable, but do not present high fre-
quency numerical dissipation. However, as pre-
viously explained, the resulting system of equa-
tions will be solved in a predictor-multicorrector
form, which then generates a scheme presenting
high frequency numerical damping. Therefore,
with the use of a single-field quadratic formula-
tion, along with a predictor-multicorrector form,
a scheme with excellent algorithmic damping and
frequency error characteristics is obtained. The
presence of high frequency numerical dissipation
is inherent to the formulation, and the resulting
systems of equations are smaller than the ones
obtained with a two-field formulation.

The statement [8] of the time-discontin-
uous Galerkin finite element method for the
single-field formulation, applied to the ordi-
nary differential equations associated with the
semidiscrete form of linear elastodynamics is:
Find uh

2 Sh such that for all wh
2W h

Z t�n

t+n�1

[ẇh
� (Müh +Cu̇h +Kuh

�F)]dt +

ẇh(t+n�1) �M[u̇h(t+n�1)� u̇h(t�n�1)] + (3)

wh(t+n�1) �K[uh(t+n�1)�uh(t�n�1)] = 0:

In Eq. (3), n = 1;2; � � � ;N, where N is the num-
ber of time intervals. Variables uh and wh are,
respectively, displacements and weighting func-
tions, u̇h and üh are, respectively, velocities and
accelerations. The last two terms on the left-hand
side weakly enforce the initial conditions for each
time interval. These jump terms are stabilizing
operators that have the effect of up-winding in-
formation with respect to time [8]. Also, M, C
and K are the mass, damping and stiffness matri-
ces, respectively, and F is the force vector. Since
the displacements are interpolated as quadratic
functions, the resulting system of equations is
three times larger than the ones solved by com-
monly used semidiscrete methods.

4 The Adaptive Time-Stepping Procedure

The response of constrained multibody systems
often rapidly varies in time, indicating the need
for an automated time step size adaptation pro-
cedure. Moreover, in modern structural dynamic
analysis, in general, it is convenient that a time
integration scheme allows automatic time step
size control.

An adaptive time-stepping procedure, based
on a time-discontinuous Galerkin scheme, for se-
lecting the proper time step size is presented in
[9], which uses a two-field formulation, namely
the P1-P1 formulation [8], to interpolate dis-
placements and velocities as piecewise linear
functions.

In the study herein developed a single-field
formulation is used with displacements approxi-
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mated as a quadratic function. The resulting sys-
tems of equations are smaller than the ones re-
sulting from a two-field formulation with the ad-
vantage of improved accuracy characteristics [8].

The time adaptive algorithm presented in [9]
is herein applied to constrained nonlinear multi-
body systems. For the automatic time step size
control the relative error at a time tn is defined as

εn =

����E(tn)�E(t)
E(t)

���� (4)

where E is the total energy, E(�) = K(�)+V(�),
i.e., the sum of kinetic and potential energies, and
E(t) is a reference energy of the system. It is ex-
pected that the relative errors satisfy the condi-
tion

εn � εtol
; (5)

where εtol is a specified error tolerance. If re-
quirement in Eq. (5) is not satisfied, a time step
refinement is performed. The corresponding so-
lution is rejected and given that the convergence
rate for the algorithm is O(∆t3), the new time step
size that will satisfy the error tolerance criterion
is calculated, [9, 10], as

∆ttol
n =

�
θt εtol

εn

�1=3

∆tn ; (6)

where θt � 1:0 is a reducing factor used to avoid
the new predicted time step size being rejected.
On the contrary, if the calculated error is much
smaller than the tolerance εtol , i.e.,

εn < γ εtol (7)

the solution is accepted but the time step size may
be increased according to Eq. (6) when the crite-
rion in Eq. (7) is satisfied for a certain successive
number of time steps. In Eq. (7) γ is a number
much smaller than 1:0.

5 Numerical Examples

5.1 Simple Pendulum

Consider a simple pendulum problem modeled
as a point mass m and a massless rigid link of

length `. Two degrees of freedom ux and uy, re-
spectively, vertical and horizontal displacements,
describe the position of the mass m. Only grav-
ity acts upon the system. The constraint Q =
u2

x + u2
y � `

2 = 0, that guarantees the constant
length ` of the pendulum is added to the system
through an augmented Lagrange multiplier tech-
nique. Such a constraint introduces an infinite
frequency into the system of equations, which
then becomes prone to numerical instabilities and
oscillations of a purely numerical origin. Car-
dona & Geradin [4] have shown the impossibil-
ity of solving this problem with the Newmark
time integration scheme. Nevertheless, the time-
discontinuous Galerkin scheme efficiently solves
this nonlinear constrained problem as shown by
Damilano [6].

Despite the reduced number of degrees of
freedom and its rigid body nature, this problem
is studied aiming the possibility of applying the
technique herein described to more representa-
tive multibody systems, e.g., problems with large
number of degrees of freedom, several kinematic
constraints and nonlinear elastic members. For
the present study m = 1:0 kg, `= 0:5 m, g = 9:81
m/s2, and the initial conditions are ux = 0:5 m,
uy = u̇x = 0:0, u̇y = �1:695 m/s. The solution is
calculated for 50 seconds and the numerical re-
sults are in excellent agreement with their ana-
lytical counterparts. A conventional analysis of
the scheme based on the characteristics of the
amplification matrix [7], for linear systems, re-
sults the period elongation ∆T=T =ω4∆t4

=270+
O(ω6∆t6), and the algorithmic damping ζ =
ω3∆t3

=72+O(ω5∆t5), where ω2 = k=m. Thus,
the scheme is third-order accurate. However,
there is no guarantee the same accuracy will be
observed with nonlinear constrained systems. To
assess the order of accuracy of the scheme ap-
plied to the nonlinear pendulum, the results at
time t = 10 seconds were used to calculate the
errors of the solution as functions of the time
step size. The results indicated that, in fact, the
scheme is third-order accurate. The time adaptive
algorithm predicts the solution for two different
error tolerances, 1:0x10�05 and 1:0x10�04, with
θt = 0:95 and γ= 0:6 for both cases. Figure (1)
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Fig. 1 Horizontal accelerations for the simple
pendulum.
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Fig. 2 Error in energy for the simple pendulum.

shows the smooth results for horizontal accelera-
tions at the first second of calculations. There are
no high frequency numerical oscillations present
in the response. The solution obtained without
time adaptivity falls on top of its analytical coun-
terpart. The estimated errors in energy for the
initial 10 seconds of computation are presented
in Fig. (2). It is important to remember that the
numerical dissipation inherently present in the
scheme results a total energy decay. Evidently,
it turns out to be impossible for the algorithm to
use the same reference energy E(t) in Eq. (4),
throughout the entire computation of the solution.
Thus, the calculation of the response starts using
E(t) equal to the initial total energy of the system.
Then, if at a given time step the convergence cri-
terion in Eq. (5) is not satisfied the time step size
will be reduced. At each time step that ∆t has to
be reduced, this process goes on up to a maxi-
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Fig. 3 Time step size variation for the simple
pendulum.

mum number of repetitions, or until ∆t reaches a
specified minimum value. In either case the solu-
tion is accepted but the new energy of reference
is the average between the reference energy at the
previous time step and the energy computed at
the present time step. Results for both analyses
show the energy errors bounded by their respec-
tive limits. In both cases, the maximum value
allowed for the time step size is ∆t = 5:0x10�02.
A spectral analysis of the solution for constant ∆t
showed that ∆t = 3:7x10�02 is the largest time
step size that could accurately integrate the equa-
tions of motion. Figure (3) shows that the al-
gorithm keeps the time step size within the nec-
essary limit for accuracy. During the entire pe-
riod of the computations the kinematic constraint,
which guarantees the constant length of the pen-
dulum, is satisfied at the order of machine accu-
racy, i.e., 1:0x10�15, as shown in Fig. (4). The
solution without adaptivity runs with 10000 time
steps. The adaptive algorithm with the error tol-
erance 1:0x10�05 used 57% of the computation
time required to obtain the solution with a con-
stant ∆t and reduced the number of time steps to
4341. Relaxing the error tolerance to 1:0x10�04

results a reduction in time of computation to 36%
of the computation time for a constant ∆t, further
reducing the number of time steps to 2195.
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Fig. 4 The kinematic constraint for the simple
pendulum.

5.2 Slider Crank Mechanism

In order to assess the capability of the algo-
rithm to overcome problems with singularities,
a slider crank mechanism is analyzed. Figure
(5) shows the mechanism, which consists of two
equal masses m1 = m2 = 1:0 kg, connected by
means of two massless rods of equal length `1 =
`2 = ` = 1:0 m. Mass m2 is constrained to fric-
tionlessly move on a horizontal line such that the
distance d remains equal to zero, which is the
kinematic constraint imposed onto the system.
The only force acting upon the system is gravity
g = 9:81 m/s2. The kinematic constraint is ex-
pressed as d = `[cosθ1 + cos(θ1 +θ2)]. An aug-
mented Lagrange multiplier technique is used to
enforce the constraint upon the system.

Fig. 5 Slider crank mechanism.

For specific geometric configurations, and
depending on the solution scheme to be used,
singularities may rule out the numerical calcula-
tions. For instance, if the method of coordinate
partitioning is to be used, coordinates θ1 and θ2

are related as

tanθ1 =
1

tan θ2
2

: (8)

Evidently, for specific positions of the masses,
such as when θ1 = 180 deg. and θ2 =�180 deg.,
and θ1 = 0 deg. and θ2 = 180 deg., the solution
will break down since Eq. (8) cannot be solved
for such configurations. With initial conditions
θ1 = 45 deg., θ2 = 90 deg., and θ̇1 = θ̇2 = 0, the
numerical results are not sensitive to the singular-
ities and do not present any sort of high frequency
vibration content, falling on top of their analyti-
cal counterparts. Once again, the relative energy
error shows an energy decaying in the response.
This energy decaying characteristic of the time-
discontinuous Galerkin scheme results from its
capability of dissipating any spurious high fre-
quencies that may artificially be introduced into
the system. As shown in the literature [4] accel-
erations of constrained systems are the responses
most sensitive to spurious high frequencies oscil-
lations and instabilities. Accelerations for masses
m1 and m2 coincide with the analytical solutions
and, as in the previous example, the infinite fre-
quencies introduced into the system by the kine-
matic constraint, are completely dissipated. The
error tolerance in energy for the analysis is εtol =
1:0x10�05. Since the limit tolerances are 1:1 εtol

and 0:6 εtol , respectively for the maximum and
minimum tolerances, Fig. (6) shows the relative
energy error oscillating between the bounds de-
fined by such limits. Finally, the variation in time
step size along the time integration process is pre-
sented in Fig. (7). The maximum size allowed
for ∆t is 2:0x10�01. It is clear, from Fig. (7), that
the adaptive algorithm takes that value for ∆t, af-
ter the first few steps of calculation. However,
it rapidly comes back to a much smaller value
and oscillates within the limits for accurately ob-
taining the response for the system. It can still
be seen that the smallest values for ∆t coincide,
in time, with the regions where the accelerations
curves present the steepest gradients. The vari-
ation in time step size emphasizes the accuracy
characteristics of the algorithm, in the sense that
it reduces the time step size where needed and
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Fig. 6 Relative energy error for the slider crank mechanism with εtol = 1:0x10�05.
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Fig. 7 Temporal time step size for the slider crank mechanism.

enlarges it otherwise.

5.3 Cantilever Elastic Beam under a Tip
Load

The last example deals with a cantilever beam un-
der a tip load F(t). The beam is 2:40 m long
modeled with 4 4–noded beam elements. The
physical characteristics of the beam are: axial
stiffness EA = 146:2 MN, bending stiffnesses
EIyy = 736:6 kN.m2, EIzz = 211:7 kN.m2, tor-
sional stiffness GJ = 6:0 kN.m2, and mass per
unit span m = 5:41 kg/m. Axis x is considered
along the length of the beam, whereas axes y and
z lay on the cross section of the beam. Gravity
loads are neglected. The load F(t), applied at the
tip of the beam in the positive direction of the axis

y, has the following time history

F(t) = F̄ �
� t1

T̄

�

= F̄ �
�

2:0�
t2
T̄

�
(9)

where F̄ = 5:0 x 10+04 N, T̄ = 0:25 s, 0 � t1 �
0:25 s, 0:25 < t2 � 0:50 s. Also, for t > 0:50 s
the load F(t) = 0. Such a load is large enough
to bring the structure to a nonlinear state of de-
formation, as the displacements at the tip of the
beam are larger than 1/3 of its length, as depicted
in Fig. 8.

During the period in which the load is being
applied the time step size is kept constant, even
when the time adaptive algorithm is on. In this
initial analysis the time adaptive algorithm is off.
As can be observed in Fig. 8 after t = 0:5 s, since
there are no loads acting on the beam, it vibrates
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Fig. 8 Time history of transverse displacements
at the beam tip.

around the equilibrium configuration at zero dis-
placements. It is clear from Fig. 8 that the tip
displacements oscillate between �0:15 m. Ac-
celerations in the direction of the applied load are
represented in Fig. 9. Although of small ampli-
tudes, a high content of vibrations occur in the
beam since there are considerable excitations on
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Fig. 9 Time history of transverse accelerations at
the beam tip.

practically all frequencies up to 600 Hz, as can
observed in Fig. 10. Also, from Fig. 10 it is clear
that a small time step size should be used in the
simulation in order to accurately obtain the re-
sponses of the structure. If one assumes that up to
400 Hz there are excitations with significant am-
plitudes, the corresponding period of 2:5 x 10�03

should be divided in 20 points, at least, to run
the simulation with accuracy. Instead, for rea-
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Fig. 10 Spectra of transverse accelerations of the
beam tip.

sons beyond the scope of this work, a constant
∆t = 5:0 x 10�04 was used in the analysis. Since
the scheme is unconditionally stable, the simula-
tion was not prevent from running. However, as
would be expected, a loss in accuracy of the re-
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Fig. 11 Time history of energies.

sponses did occur, as can be observed in Fig. 11,
which shows a total energy dissipation of around
20 % during the last 0:5 seconds of the simula-
tion when there are no loads acting on the beam.
Evidently, for an exact solution no energy dis-
sipation should take place. During these calcu-
lations the time step size was kept constant and
the nonlinear equations of motions were solved
with an error tolerance of 1:0 x 10�06. Follow-
ing, the time adaptive algorithm was tested. In
order to compare the results with those of the
simulation already described, it was assumed that
a maximum total energy dissipation of 20 % (as

465.8



NONLINEAR ELASTIC CONSTRAINED MULTIBODY SYSTEMS – AN ADAPTIVE
TIME–STEPPING ALGORITHM BASED ON THE TIME–DISCONTINUOUS GALERKIN SCHEME

0.5 0.6 0.7 0.8 0.9 1.0

Time (s)

0.0E+0

2.0E-4

4.0E-4

6.0E-4

8.0E-4

1.0E-3

1.2E-3

1.4E-3

1.6E-3

T
i
m

e
S
t
e
p

S
i
z
e
(
s
)

Fig. 12 Time history of the time step size.

occurred in the previous case) could take place.
Time adaptivity was allowed only when there was
no load on the structure. The initial time step size
∆t = 5:0 x 10�04 was maintained and minimum
and maximum limits were set as 5:0 x 10�06 s
and 1:2 x 10�03 s, respectively. The time history
of the time step size, during the period in which
it occurs, is depicted in Fig. 12. Obviously, the
large error allowed in energy dissipation does not
require time step sizes smaller than 2:0 x 10�04

as shown in the figure, whereas the maximum
limit of 1:2 x 10�03 is sufficiently small to satisfy
such an accuracy at certain periods.

6 Conclusions

A time integration scheme based on the time-
discontinuous Galerkin formulation is used on
the solution of nonlinear constrained multibody
systems. The system of differential-algebraic
equations resulting from the modelling of non-
linear constrained multibody systems are prone
to high frequency oscillations and instabilities of
a purely numerical origin. The inherent high fre-
quency numerical dissipation of the scheme ob-
tained with a time-discontinuous Galerkin formu-
lation completely eliminates these undesired in-
stabilities. A single-field formulation of the time-
discontinuous Galerkin finite element scheme us-
ing quadratic interpolation functions produces
coupled systems of equations that are three times
larger than the original ones. The resulting
systems are solved in a predictor-multicorrector

form, which alleviates the high computational
cost of solving the fully coupled systems, and im-
proves the scheme’s characteristics of accuracy
and high frequencies numerical dissipation. The
total energy of the system, which monitors the
stability characteristics of the response, is used
as error measure and a time step adaptation rou-
tine is employed. The scheme is not sensitive to
configuration singularities that may occur during
the motion of the structural system. Kinematic
constraints are satisfied at the order of machine
accuracy, which confirms the high order of pre-
cision of the scheme and the efficiency of the al-
gorithm as well. The algorithm may be fully im-
plemented on existing structural dynamic com-
puter codes requiring minor modifications on the
routines. Already implemented nonlinear struc-
tural finite element libraries do not need to be
rewritten. The finite element formulation of the
mechanical joints has to be done accordingly and
then included into the code’s library of elements.
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