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Abstract

This  study is concerned with the application of
the basic and a modified simulated annealing
algorithm for optimizing aerodynamic objective
functions representing transonic airfoil shape
optimization problems and which are computed
using an explicit finite volume multi-stage and
a multi-grid method for solving the
compressible Navier-Stokes equations. Airfoil
shapes are represented by parametric functions
to define the design variables which are altered
during the optimization process.  Integration of
the optimization method, geometric definition
and CFD to achieve feasible optimal shapes
are demonstrated for the problem of inverse
airfoil design and to the problem of
maximizing the lift to drag ratio at a given
flight condition. The study shows that the
proposed approach is feasible in obtaining
optimal aerodynamic shape, that the efficiency
of the optimization process can be enhanced by
modifying the basic simulated annealing and
leads to improved designs than could be
obtained using deterministic methods.

1  Introduction

Problems concerning the design of transonic
airfoil shapes to satisfy desired aerodynamic
behaviour can be classified as constrained and
unconstrained design optimization problems
which require a baseline airfoil configuration to
initiate the design process. The optimization of
selected aerodynamic parameters such as
aerodynamic lift, drag or pitching-moment
subject to some imposed design constraints
generally belong to the class of constrained
optimization problems.  An example of
unconstrained design problem is the inverse
design method which attempts to solve the
inverse problem of determining the airfoil

shape that will support a specified (target)
airfoil surface pressure distribution i.e. the
airfoil shape is determined by minimizing the
discrepancy between the target and the
evolving airfoil surface pressure distribution.
Advances in computational fluid dynamics
(CFD) techniques for solving the Navier-Stokes
equations of viscous compressible fluid motion
have strong implications for their use in
evaluating objective functions which are to be
optimized in the computational design
environment. One significant implication is the
coupling of these techniques with appropriate
numerical optimization algorithms to develop
efficient and robust computational methods for
the optimum design of fluid machinery and
aerodynamic components as outlined in
Labrujere and Sloof [1].

The present study is focused on the
application of basic and modified simulated
annealing (SA), a stochastic optimization
method for inverse and constrained
aerodynamic design of transonic airfoil shapes
in which a compressible Navier-Stokes flow
solver is used to evaluate the objective
function. SA as outlined in Kirkpatrick et al [2]
and in Corona et al [3] is a stochastic global
optimization method which has proven to be a
good tool for complex nonlinear optimization
problems and has been applied to a variety of
problems. Aly et al [4] has applied it for the
design of optimal aerodynamic shape of
axisymmetric forebody for minimum drag
where SA is used as the outer optimization loop
and calls the flow solver to evaluate the
objective function. SA has the advantage of
yielding a global minimum and in overcoming
the limitations of deterministic gradient-based
search methods  such as in Eyi and Lee[5]
which have a tendency of getting trapped in
local minima.
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2 Formulation

2.1 Parametric Representation of Airfoil
Shape and Definition of Design Variables
The design process is initiated by defining design
variables controlling the airfoil shape. This is
achieved by an approximate representation of the
airfoil shape which will evolve during the design
cycle. In order to maintain control over the size
of the design space, a baseline airfoil is first
chosen and the steady flow field around it for a
specific Mach number and angle of attack is
computed for starting the design cycle iterations.
The airfoil shape is updated by adding a smooth
perturbations )x(yk∆ defined as a linear
combination of a family of smooth curves over
the range 10 << x  as follows:

∑
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where x is the normalized chord-wise position of
the coordinates defining the airfoil contour, kδ
are the design variables which will change during
the design iterations and K is the number of basis
functions  )x(f k  , one form of which is defined
in Hicks and Henne[6] as follows:

x. )x(x)x(f 20250
1 1 −−=  ;

)x(sin)x(f )k(t
k π= 3  k>1; 0<x<1      (2)

where )x/(log).(log)k(t k50=  and kx  represents
the location of the maximum values of )x(f k .
When these functions are distributed over the
entire airfoil chord on both the upper and lower
surfaces, they admit a large possible design
space. Other basis functions such as Wagner
functions outlined in Ramamoorthy and
Padmavathi [7] can also be used in place of
Hicks-Henne functions to represent the airfoil
shape and to restrict the design space.

For inverse design problems a typical
objective function  J(X) to be minimized is
defined as follows:
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where 
mtP is the pressure distribution of the target

airfoil that we are seeking, 
mbP is the pressure

distribution of the designed airfoil which evolves
after each design iteration, mS∆  is the length of
the airfoil surface element and the summation is
done for the M coordinate points defining the
airfoil contour. For constrained aerodynamic
design problems such as  the minimization of
drag  the objective functions such as drag
coefficient are evaluated by the flow solver for
each design iteration along with additional
constraints which are handled by way of penalty
functions to augment the constraints with the
objective function to create a modified objective
function which is optimized so that the additional
terms associated with the constraints will vanish
as soon as global minima is reached or by
eliminating infeasible designs by appropriate
barrier functions. This class of design
optimization problems is known as direct
numerical optimization or design by optimization
and generally  has a higher level of automation
than that for inverse design. A typical
constrained design problem is to obtain an airfoil
shape which produces maximum aerodynamic
efficiency, i.e. the ratio of aerodynamic lift (L)
over drag (D) at a specified flight condition while
maintaining the lift at the original level. As this a
design problem that maximizes its objective
function, it is necessary to reverse the sign of the
objective function in the minimization algorithm
used in the inverse design. The aerodynamic
drag, lift and efficiency are computed using the
Navier-Stokes CFD solver for each iterated
design shape. Two inequality constraints are
imposed on the design process to ensure that the
aerodynamic lift and cross-sections area of the
airfoil do not decrease during the optimization
process. In mathematical form the problem is
defined as follows:
:
Maximize:   
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where X is the vector of  k design variables kδ ,

lC  and dC  are the aerodynamic lift and drag
coefficients respectively, A  is the airfoil area,

0A  is the area of the baseline airfoil and 0lC

denotes the initial value of the lift coefficient
which has to be maintained.

2.2 CFD Analysis for Evaluating Objective
Function
The flow analysis module used to evaluate the
objective function is based on the finite volume
formulation of the unsteady Navier-Stokes
equations for two-dimensional viscous flow. In
Cartesian coordinate system, the integral form for
a region A with a bounded surface B takes the
form:

sFsFw dddxdy
t B vB cA

•=•+
∂
∂

∫∫∫∫        (4)

where jic

!!
gfF += and jiv

!!
GFF += , w is the

vector of the conservative dependent variables, f
and g and are the convective flux vectors, F and
G are the viscous flux vectors and these are
functions of p, ρ , u, v, w, E and T which are the
pressure, density, cartesian  x- and y- velocity
components, and specific total energy and local
temperature.  The pressure is obtained from the
equation of state for a perfect gas. A structured
grid is used to discretize the physical domain into
a large number of quadrilateral cells whose cell
centers are labelled by the subscript indices (i,j)
along the ξ  and η  coordinate directions. The
application of the integral law of Eq.(4)
separately to each cell results in a system of
ordinary differential equations of the form

0=−+ j,ij,ij,i DQ)hw(
dt
d            (5)

where j,ih  is the area of the quadrilateral cell,

j,iQ  is the estimate of the net convective and

viscous flux out of the boundaries of the cell and
j,iD  is the adaptive artificial dissipation terms

which is a blend of second and fourth differences
in the flow variables and which are explicitly
added for shock capturing and numerical stability
purposes. The equations are advanced from a set
of initial conditions to steady state solutions for
the desired flow conditions by a multi-stage time-

stepping scheme. Several convergence
acceleration strategies such as local time-
stepping, implicit residual smoothing and multi-
grid strategies are used to accelerate the
computation of steady state solutions.
Characteristic boundary conditions are imposed
at the far-field boundaries while no-slip condition
is imposed on the airfoil surface which is also
assumed to be adiabatic. A simple algebraic
turbulence model is used to address the
turbulence closure The readers can refer to and
Jameson and co-workers [8-9] and Damodaran
and Lee[10] for specific details of the flow
modeling outlined above.

2.3 Design Optimization using Simulated
Annealing (SA)
The minimization of this objective function could
be accomplished by either deterministic gradient-
based methods or stochastic methods. In this
work  traditional SA as well as a modified
version of it is applied to seek optimum
aerodynamic shape designs for both inverse
design  as well as constrained design problems in
the transonic flow regime. SA  is analogous to
the physical process of annealing of solids by
cooling molten solids from a high temperature to
a lower temperature according to a cooling
schedule. The analogy is used because solids
cooled sufficiently slowly attain a state of
minimum energy. This is a concise optimization
algorithm  which is based on Monte-Carlo
techniques and starts with a high temperature
corresponding to the cycle N=1. The objective
function is calculated based on an initial
(baseline) configuration (defined by a the initial
state of the vector of design variables which
define the baseline airfoil shape) and this is
followed by the random generation of a new
configurations (new vectors of design variables).
New trial points are generated around the current
design vector by applying random moves along
each design coordinate. The new design
coordinate values are uniformly distributed in
intervals centered around the corresponding
coordinate and a step vector is used to guide the
extent of the random moves. The step vector VM

is adjusted periodically through the step
adjustment vector H, NT times to adapt to the
behaviour of the objective function. The new
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configuration is accepted as the current
configuration if this change in the objective
function is less than or equal to zero or if the
change is greater than zero provided  the change
in objective function also satisfies the Metropolis
criterion which measures the acceptance
probability. The random generation of new
design vectors and the satisfaction of the
acceptance criteria is repeated for Ns times till the
Markov chain is completed at a given
temperature. Then the temperature is lowered via
temperature reduction factor RT and a new
sequence of moves generated and the cycle is
repeated till the design vector converges to the
optimum value.  The basic simulated algorithm
consists of several tuning parameters which can
be adjusted to improve the performance of the
optimization method. One drawback of the
traditional simulated annealing method is that it
has a fixed cooling schedule which does not take
into consideration the stage the algorithm is in. It
may be better to use a faster or a slower cooling
rate at a particular stage. To incorporate a degree
of adaptiveness into the method it is possible to
regulate the cooling schedule by introducing a
new parameter Tc which depends on the ratio of
accepted moves RCA to the total number of
moves after NsxNTxN cycles and by setting a
range by user specified values of Rc,high and Rc,low

which are respectively the upper and lower
bounds on this ratio to define the parameter
which can be used to reduce the temperature. If
RAR (ratio of accepted to rejected moves)<Rc,low,

the cooling rate is reduced, otherwise the cooling
rate is kept the same. If RAR > Rc,high the cooling
rate is increased otherwise it is kept the same.
The additional tuning parameters can be
manipulated to boost the efficiency of the
traditional simulated annealing algorithm and the
degree of the boost depends on the  problem
being addressed. Details of the tuning parameters
of SA and SACAR are outlined in Lee [11].

3 Results and Discussions

Computational results are presented and
discussed for the problems of  inverse design of
transonic airfoils and  the constrained design
problem of transonic airfoil lift/drag (L/D)
maximization. The  flow field and objective

functions are computed on a body conforming C-
grid around the airfoil consisting of 128x48 cells
(coarse grid) and 256x64 cells (fine grid).  The
airfoil shape is parameterized using 14 basis
functions- seven of which are used to define the
upper surface of the airfoil and the remaining 7 to
define the lower surface of the airfoil.  This
representation gives rise to 14 design variables
for the parametric representation of the airfoil
shape which are varied during the steps of the
design cycle so as to estimate the perturbations in
the design variables which will minimize the
objective function defined by Eqn (3.1) and
which enables the modification of the airfoil
contour as well as the computational grid. CFD
analysis is used to calculate the airfoil surface
pressure distribution for the baseline airfoil shape
as well as each subsequent shape of the designed
airfoil. During each design cycle the flow
solution corresponding to the previous design
flow analysis is used as initial conditions so as to
reduce computational time for evaluating the
objective function using CFD. Where possible
comparisons will be made with results obtained
for selected transonic airfoil design problems
using deterministic methods  in Lee and Eyi [12]
and Eyi et al [13] for the same problems
considered in this paper.

3.1 Inverse Design of Transonic Airfoils
In order to demonstrate the application of
stochastic optimization methods for inverse
design of transonic airfoils, the target pressure
distribution which is the desirable goal of the
design is chosen to correspond with the pressure
distribution around a RAE 2822 (target airfoil)
immersed in transonic flow at a Mach number M
= 0.730,  angle of attack α =2.78º and Reynolds
Number Re = 6.5x106. In order to initiate the
design process to seek the airfoil shape which
will correspond to the target pressure distribution
an initial guess  for the airfoil shape has to be
made and this initial shape (baseline airfoil) is
chosen to correspond to the NACA-0012 airfoil
at the same flow conditions. Since the target
pressure distribution has been defined to
correspond to that of a well known airfoil shape
i.e. RAE 2822, the quality of the final design
shape achieved by the optimization process can
be compared to the shape of the RAE 2822 to
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make an assessment on the robustness, accuracy
and effectiveness of the optimization scheme.
The optimization process employed stringent
terminating criteria in order to achieve a fully
optimized design. For the calculations shown in
this section, all SA runs terminate if 4 successive
local optimum obtained after 4 temperature
reductions differ by less than a specified
tolerance, i.e. 10-4. In general one could specify
different tolerance limits that are more stringent
than this value but it will be at the expense of
higher computational costs. Numerous design
optimization runs using SA have been attempted
with different sets of values for the SA tuning
parameters. The values of the SA tuning
parameters employed for this investigation are
RT=0.1 VM=0.001, H=2.0, NS=10, NT=5.The
value of the objective function based on the
baseline airfoil is 0.11420.  Figure 1.1 shows the
variation of the value of the objective function
from the initial value to the final optimized value
by the SA algorithm.
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Fig 1.1 Objective function Convergence (SA)

The objective function reduced to a value of
0.00249  during the minimization process by SA.
The number of function evaluations (NEVA)  to
achieve this reduction is about 7000. The
geometric shape and surface pressure coefficient
distribution of the baseline airfoil, the target
airfoil and the designed airfoil are compared in
Figures 1.2 and 1.3.
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Fig 1.2 Initial, design and target airfoil shapes
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Fig 1.3 Initial, design and target  airfoil surface
pressure coefficient distributions

Figures 1.4 and 1.5 show the variation of the 14
design variables and their corresponding step
length parameter with the number of function
evaluations.

It can be seen from these figures that the
steepest drop in the objective function occurs
during the first 2000 iterations beyond which
the rate of decrease of the objective function
becomes marginal. The intermittent increases
in objective function during the first 2000
iterations are due to the fact that SA
randomly allows the degradation of solution
to avoid getting trapped in local minima.
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Fig 1.4 Convergence of  the 14 design variables
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Fig 1.4 Convergence of  the 14 design variables
(Continued)
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Fig 1.5 Variation of Vm  for the 14 design variables

Since the probability of such random
degradation depends on the annealing
temperature as well as the magnitude of
degradation, most of these degradations tend to
occur in the initial stage of the optimization
process i.e. first 2000 iterations. As the
temperature drops further, a decrease in the
number of occurrences of degradation as well as
the magnitude of degradation allowed is
observed. This accounts for the relatively flat
portion of the convergence curve after 2000
iterations.

Figure 1.4 shows no large oscillatory
behavior. This suggests that the initial step length
is sufficiently small. It can also be seen that  most
of the variation in the value of the design
variables occurs during the first 4000 iterations
with the most significant variations occurring
during the first 2000 iterations. This observation
correlates with the observation made from the
convergence history of the objective function.
Fig. 1.5 shows that the step length increases
sharply from the initial value for the first 1800
iterations before decreasing sharply. The sharp
increase corresponds with the significant changes
in the objective function whereby most of the
trial solutions are accepted i.e. acceptance ratio is
greater than 0.5. Subsequent decrease in step
length indicates that the acceptance ratio drops
below 0.5 as the optimization process approaches
the global minimum. It can also be seen that the
variation of the design variables for the lower
airfoil surface are larger than those of upper
airfoil surface. The evolving airfoil shape
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requires a careful grid adjustment so as to
facilitate the flow calculation using CFD
analysis.

 3.2 Maximization of Airfoil L/D Ratio
The application of SA to the problem of
transonic airfoil aerodynamic efficiency
maximization is considered next. The test case
chosen is that of transonic flow past a RAE2822
airfoil at Mach number 0.730 and angle of attack
2.46o. The Reynolds number is 6.5x106. This is
an example in which constraints are applied.
Constraints have been handled  by using barrier
functions and also by way of augmenting the
constraints with the objective function with
penalty functions.  The change in the order of
magnitude of the objective function requires a
corresponding adjustment in the initial annealing
temperature To in order to maintain the same
order of magnitude of the Metropolis criteria
computation that will provide flexibility in
overcoming local optima and searching for
global optimum. The values of the SA tuning
parameters employed for this investigation are
RT=0.1 VM=0.001, H=1.0, NS=20, NT=5.All
computations terminate when the successive
local optima obtained after four temperature
reductions differ by less than a specified
tolerance, i.e. 1 x 10-8.

The initial value of Cl/Cd obtained using
CFD analysis was 36.448.The final design value
obtained from this optimization process and CFD
analysis was 45.549.The change in lift coefficient
was much less than 1% while the change in the
drag coefficient was around 20%. The computed
results show that the airfoil designs obtained
from the SA algorithm yield an increase in Cl/Cd

by about 30 % while having marginal increases
(less than 1 %) in both Cl and area. It can be seen
that the increase in Cl/Cd is mainly due to the
significant reduction in the aerodynamic drag and
the increase in the aerodynamic lift are marginal
in view of the imposed constrained.

Fig. 2.1 shows the variation of the value of
the objective function  from the initial value to
the final optimized value as the objective
function increased by SA vs. the number of
function evaluations (NEVA). The figure shows
that the variation flattens beyond the value of

NEVA = 1000, indicating that the global
optimum has been obtained.

Fig 2.1: Convergence of Objective Function

A comparison of the geometric shape of the
baseline airfoil which is the standard RAE 2822
airfoil used as the initial guess for the
optimization process and the designed airfoil is
shown in Figure 2.2.
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Fig 2.2 : Airfoil Shape: Baseline vs Designed

The comparison of the airfoil surface
pressure coefficient distribution corresponding to
the baseline airfoil and the designed airfoil is
shown in Fig 2.3.

It can be seen from these figures that the
drag reduction that contributed to the increase in
aerodynamic efficiency is achieved by altering
the airfoil shape to weaken the strong shock
wave on the upper surface of the baseline airfoil.
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The weakening of shock waves on the surface of
airfoil generally reduced the wave drag and gives
rise to an overall aerodynamic efficiency.
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Fig 2.3 : Distribution of Airfoil Surface Pressure
Coefficient: Baseline vs Designed

Fig. 2.4 shows the contours of local Mach
number in the vicinity of the initial or baseline
airfoil.
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Fig 2.4: Mach Number Contours
corresponding to baseline airfoil

2
2

3

3

4
45

5
66

6 77

7
7

8

8

8

8
8

8

8

9

9

9

9

A

A

A

C

evel MAC  

E 1.25

1.15

C 1.05

0.95

A 0.85

9 0.75

8 0.70

7 0.60

6 0.50

5 0.40

4 0.30

3 0.20

2 0.10

1 0.00

Fig 2.5: Mach Number Contours coresponding to
designed airfoil

By comparing this with the contours of local
Mach number  in the vicinity of the designed
RAE 2822 airfoil as shown in Fig. 2.5, the
diffused shock wave on the upper surface of the
designed airfoil can be seen as the contributing
factor to reduced drag and increased efficiency
while maintaining the same lift coefficient.

Fig. 2.6  shows the variation of the step
length Vm  which exhibits a sharp rise during the
initial stages of the optimization before
decreasing rapidly. Fig. 2.7 shows the variation
of two design variables (For sake of clarity, only
two design variables that exhibit large variations
are presented) which are used for the parametric
representation of the airfoil using Hicks-Henne
functions with the number of function
evaluations (NEVA). From the convergence
history of the objective functions, the
convergence history of the design variables and
the variation in the step length, it can be seen that
the objective function exhibits large fluctuations
before settling down early in the optimization
process. The optimum airfoil contour is obtained
after about 2000 iterations which have resulted in
greater fluctuations in the value of the objective
function and a greater disparity with respect to
the initial RAE 2822 airfoil.
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Fig 2.6: Variation of step-length Vm
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2.7: Convergence of  Selected Design Variables during

the Optimization Process

4 Conclusions

In this study the feasibility of applying global
stochastic optimization methods such as
simulated annealing to both inverse design of
airfoil  and the constrained design problem of
aerodynamic efficiency maximisation has been
successfully  demonstrated. The use of Navier-
Stokes equations improves the level of
confidence in the design results as compared to
simpler flow models used by earlier researchers.
It has also been found that by using global
optimization methods it is possible to obtain
optimum configurations better than optimal
solutions obtained by deterministic methods. As

demonstrated, with the continuous advances in
computational capability, the stochastic
optimisation is affordable even though high-level
physics are used.
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