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Abstract

The Neal-Smith criteria for assessing handling
qualities of highly augmented aircraft have been
transformed into an H ∞ -mixed-sensitivity norm.
The norm features a control rate related term to
account for the roll-off characteristic of the
human pilot. The pitch attitude control is
formulated as a mixed-sensitivity problem, which
is solved by the model matching technique to
yield H ∞ -optimal pilot models. It is shown that
the H ∞ -optimal pilot models well characterize
the human pilot’s linear control behavior, and
the resulting complementary sensitivity function
meets the Neal-Smith criteria satisfactorily.
Based on this result, a method is proposed to
correlate the pilot rating data of the Neal-Smith
flight test with the pilot compensation efforts
manifested by the H ∞ -optimal pilot model. It is
shown that a pair of measures from the H ∞ -
optimal pilot model, maximum gain gradient and
phase at the bandwidth frequency, can clearly
divide the experimental pilot ratings into three
levels.

1.  Introduction

There exist several methods for evaluating the
short-term small-amplitude pitch response
demonstrated by highly augmented aircraft1.
Above all, the Neal-Smith method2is the
benchmark with which other methods are
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compared. The method is based on the Neal-
Smith criteria stating that pilot rating is
primarily a function of the pilot’s compensation
required to achieve good low-frequency
performance and the closed-loop oscillatory
tendencies that result. In the method, the pilot
compensation that meets the criteria is found
either graphically2 or analytically by solving an
optimization problem3 with the use of an
assumed simple pilot model. Thus, the method
has incurred difficulties in uniquely
determining the pilot compensation efforts
exerted by a realistic pilot in charge of control.
Employing the optimal control approach to
modeling the pilot loop closures is one way to
cope with the difficulties. In this approach, the
Neal-Smith criteria are reflected in the resulting
optimal control model (OCM) of the pilot4,
while the performance index itself is not a
manifestation of the criteria.

In an attempt at forming a performance
index out of the Neal-Smith criteria, and
thereby finding a unique pilot model and pilot
compensation, Ref.5 proposes the H ∞ -
modeling technique, in which the Neal-Smith
criteria are transformed into a mixed-sensitivity
norm in the framework of the H ∞ -control
theory. Minimization of the norm yields the
H ∞ -optimal pilot model, which in turn is used
to define the pilot compensation efforts for the
task. It is shown in  Refs.5 and 6  that a pair of
measures manifested by the H ∞ -optimal pilot
model, maximum gain gradient within the
frequency range of interest and the phase
compensation at the bandwidth frequency,
correlates well with experimental pilot ratings
in terms of level division for pitch attitude
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tracking single-loop tasks such as those in the
Neal-Smith flight test. It is pointed out in Ref.5,
however, that the H ∞ -optimal pilot model
developed there is not strictly indicative of the
human pilot behavior, particularly in that it does
not show the first-order roll-off characteristic in
a high-frequency range that is inherent in human
pilots. The H ∞ -modeling approach needs to be
improved and tested against measured pilot
control behavior.

Therefore, the primary objective of this
paper is to refine the H ∞ -norm so that its
minimization yields H ∞ -optimal pilot models
that are more indicative of the human pilot
behavior. Then, the correlation of the H ∞ -
optimal pilot compensation with experimental
pilot ratings is discussed in terms of the
aforementioned two measures in comparison
with the result of Ref.5.

2.  Improved H ∞ -Norm

The pitch attitude tracking feedback system
under consideration is shown in Fig.1, where
Yp(s) denotes the pilot transfer function, H(s)
does the aircraft transfer function from an
elevator stick force Fs to the pitch attitude θ
response including a flight control system (FCS),
and s is the Laplace transform parameter. Define
the closed-loop transfer functions as

ceS θθ=  : sensitivity function           (1)
and

cT θθ=  : complementary sensitivity function.
                                  (2)

Using T, the Neal-Smith criteria can be itemized
as follows:
(a) Define the task-dependent bandwidth

frequency bω , where

           deg90−=∠ T .             (3)

 (b) Minimize the low-frequency droop of T, or
desirably

           |T| ≥ -3dB  for  bωω ≤ .      (4)

(b) Minimize the resonant peak in the high-
   frequency range, or

  minimize |T|max  for bωω ≥ .    (5)

The low-frequency requirement (b) is
concerned with the tracking performance. If the
performance is interpreted as the mean square
value of eθ  to the mean square value of a
random input cθ , the performance is bounded
by 2|)(|sup ωω jS . Therefore, the criterion (b) is
replaced here by

       minimize |S|max  for bωω ≤ .      (6)

Because the criterion (6) does not
guarantee the minimization of the droop,
shaping of |T| is taken into consideration
through the related weighting function to be
described later.

In addition to the requirements of (5) and
(6), an improvement to be made here is the
inclusion in the performance index of a control
rate related term which the standard OCM
approach contains in order to account for the
human pilot’s neuromuscular lag. This type of
control rate term is also included in the H ∞ -
norm of Ref.7 succeeding in obtaining a good
match with experimental describing functions
as well as conventional OCMs. Note that this
paper’s approach differs from that of Ref.7 in
that frequency-shaped weighting functions are
used in order to well represent the Neal-Smith
criteria.

Putting together the requirements (5) and
(6) and the control rate related term, an
improved H ∞ -performance index can be
defined here as
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)(  : closed-loop control rate
               transfer function,       (9)

and λ  is the optimal value of the performance
index which should be smaller than 1. )( ωjV ,

)( ωjW  and )( ωµ j  are suitably chosen
weighting functions having the roles of shaping
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S, T and 
•
Q , respectively. The problem of finding

the optimal controller in the sense of Eq.(7) can
be reduced to a model matching problem8 as
described in Appendix.

3.  Weighting Functions

Because the weighting functions )( ωjV and
)( ωjW  have to express the implications of the

Neal-Smith criteria, they must be chosen
carefully. In explicit terms, they are required to
shape S and T in such a way that

  DjVjS ≤≤ − )()( 1 ωω  for bωω ≤   (10)

  )()( 1 ωω jWjT −≤    for bωω ≥ .    (11)

In inequality (10), the upper bound D is set
here as a constant such that the resulting pilot
model has a reasonable low-frequency gain
level. Minimizing the droop is taken care of by
shaping T through the weighting function W. The
weighting function )(sµ  should be designed so
that )(ssµ  be proper as shown in Appendix.

The choice of the weighting functions
compatible with these conditions is not unique.
Referring to Ref.5, and as a result of testing
several combinations of the weighting functions5,

9, the following forms are selected here:
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from the condition that bω  be the boundary
frequency that distinguishes between a low-
frequency range and a high-frequency range. The
employment of the first-order form of )(sW  in
Eq.(13) instead of the second-order form in
Ref.5 is due to the realization of the –20dB/dec
roll-off characteristic of the human pilot in a
high-frequency range. The value of D dB in
inequality (10) together with that of Wκ  is
adjusted so that the resulting H ∞ -optimal pilot

models have about 5dB low-frequency gain
levels. Note, however, that this way of gain
adjustment is not essential in correlating pilot
compensation efforts with pilot ratings. Actual
values of D and Wκ  used in the analysis are

        1.2≅D  dB                              (16)
        .10 2030−=Wκ                               (17)

Following Ref.5, the value of 1Vτ  is determined
by

        b
D

V ωτ 210 20
1

= .                              (18)

Note that the condition (10) is stricter in
this work than in Ref.5 where D=3dB is set.
The constant g in Eq.(14) is determined
iteratively in the analysis so that the condition
that deg90−=∠ T  at bωω =  can be attained, while
the time constant µτ  is allotted a very small

value of 10-5, because the role of )(sµ  is merely
to make )(ssµ proper. The bandwidth frequency

bω  is treated in this work as a variable, which is
adjusted in such a way that the roll-off starts at
around 10.0 rad/s. Although in the original
work by Neal and Smith2 the bandwidth
frequency is given a fixed-value that depends
on the indicated airspeed, it is in actuality a
variable internally set by the pilot in each task
so that he or she can keep a high-gain control to
attain a good low-frequency performance.
Summarizing, determination of the weighting
function-related parameters is made along the
iterative procedure to follow:

Step1 : Start computation with an arbitrary set
of ( bω , g), and change g up until

deg90−≅∠ bT ω .

Step2 : Change bω  so that the roll-off starts at
around 10 rad/s.

Step3 : Readjust g so that deg90−=∠ bT ω .

Step4 : Go back to Step2 to check the roll-off
condition.

It turns out that a few cycles of the iteration are
enough for the parameter values to converge to
those shown in Table 1 which also summarizes
the Neal-Smith test parameters.

Two remarks are in order for the actual
analysis of the H ∞ -optimal problem. First, the
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condition on the model matching technique that
the plant H(s) be free of poles or zeros on the
imaginary axis is approximately satisfied by
perturbing them slightly to the left-half plane of s
: the pole s=0 of H(s) in Fig.1 is replaced by

ε−=s  (ε >0,small). Second, the time delay term,
se τ− , inherent in the pilot transfer function Yp(s),

is first regarded as part of the plant H(s). After
finding an H ∞ -optimal controller G(s) exclusive
of the delay term, it is recombined with the delay
term to make up Yp(s), as implied by the
following open-loop transfer function :

  )())(()()()( sHesGsHsYsL s
p

τ−==
                )()(

~

sHsG=          (19)

where

          sesHsH τ−= )()(
~

.
In the analysis, the transcendental term is
replaced by the Pade approximation, and the
delay time τ  is fixed at the same value as is used
in Ref.2 ; that is,

          )
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          s3.0=τ .                 (21)
Rigorous handling of the delay term is

possible9. It turns out, however, that the effect of
the Pade approximation is very small in the
frequency range of interest.

4.  H ∞ -Pilot Models

The aircraft transfer function treated here is
given by

   )()()( sHsHsH FΘ=                (22)
where the constant-speed transfer function of the
pitch attitude to stick force is
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Sets of the parameters in Eqs.(23) and (24) and
the flight configuration number assigned to each
set are summarized in Table 1 together with the

pilot rating data of the Neal-Smith flight test
and the H ∞ -optimal values of bω , g and λ  that
have resulted from this work.

Using the weighting functions of Eqs.(12),
(13) and (14) and the computational procedure
described in the previous section, H ∞ -optimal
pilot models have been computed for all of the
flight configurations of Table 1. In Fig.2 are
shown representative H ∞ -optimal S and T ;
Fig.2a is for the configuration 2D which is
rated almost the best in Table 1, and Fig.2b is
for 5C which is given one of the worst ratings.
Although these H ∞ -optimal S and T depend on
the configuration because the bandwidth
frequency bω  and the constant g are variables
here unlike Ref.5 which employs fixed sb 'ω
and lacks the g-related term in the H ∞ -norm,
Fig.2 shows that the Neal-Smith criteria are
well satisfied. A resonant peak can be noticed
in T of Fig.2b. Noting, however, that the peak
value is below 0dB, it can rather be said that a
high-frequency droop has come about. This
feature can be found for the configurations of
poor pilot ratings such as 2I and 5A~5E.

Figure 3 shows typical examples of the
H ∞ -optimal pilot models : those for the flight
configurations 1F, 2D, 3A, and 5C of Table 1.
Except for the roll-off characteristic beyond 10
rad/s, they exhibit similar features to those
shown in Ref.5. These results can be itemized
as follows :

1. Neal-Smith criteria can be well satisfied by
the   weighting functions, Eqs.(12), (13) and
(14).

2. High-frequency roll-off characteristic of the
human    pilot can be well represented by the
control rate term in the performance index.

3. Inclusion of the control rate term in the
performance index makes little difference in
the low-frequency features of the H ∞ -
optimal pilot models.

4. However, inclusion of the roll-off
characteristic brings a lowering of the
bandwidth frequency.

5.  Correlation with Pilot Ratings

Drawing on the above-mentioned results, it is
attempted here to divide the pilot rating data of
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Table 1 into three levels with the use of the same
two measures concerning the pilot compensation
efforts as are introduced in Ref.5 ; i.e. , the phase
compensation of the H ∞ -optimal pilot model at
the bandwidth frequency including the time
delay term

       deg|)( bP jY ωω∠               (25)

and the maximum gain gradient of the H ∞ -
optimal pilot model within the frequency range
of interest

      [ ]ω∆∆ log||max pY  dB/dec.     (26)

Inclusion of the time delay term for evaluating
Eq.(25) is due to the reason that bω  differs from
task to task, and therefore the phase lag due to
the delay term depends on the specific bω . The
frequency range of interest for getting Eq.(26) is
specified as below 10 rad/s for the series 1~7 and
below 16.5 rad/s (= spω ) for the series 8 of Table
1. Figure 4 shows the result of the level division.
In Fig.4, each pilot rating is the arithmetic mean
of all of the ratings given to the particular
configuration. Note that the boundary between
levels 1 and 2 is the same as that in Ref.5, while
the level 2 region is expanded toward a greater
maximum gradient. In essence, taking into
account the roll-off characteristic of the human
pilot has little effect on the pilot’s low-frequency
compensation efforts, and therefore the two
measures of Eqs.(25) and (26) work
satisfactorily to divide the pilot rating data into
three levels.

6.  Conclusion

The H ∞ -norm based on the Neal-Smith criteria
has been improved so that it includes a control
rate related term to account for the roll-off
characteristic in a high-frequency range of the
human pilot. The H ∞ -optimal problem is solved
by the model matching technique with the
bandwidth frequency and the weight on the
control rate term in the H ∞ -norm as variables to
yield H ∞ -optimal pilot models for the Neal-
Smith flight test configurations. The H ∞ -
optimal complementary sensitivity function
meets the Neal-Smith criteria so well that the

task difficulty is exhibited solely by the H ∞ -
optimal pilot models. It is demonstrated that the
use of two measures from the H ∞ -optimal pilot
model, phase compensation at the bandwidth
frequency and maximum gain gradient within
the frequency range of interest, is successful in
dividing experimental pilot ratings into three
levels. This H ∞ -modeling technique is to be
applied to other flight test results than the Neal-
Smith’s.
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Table 1  Neal-Smith flight test configuration summary
and H ∞ -pilot model parameters

Pilot H∞-model parameters
Configuration 1/τ1 1/τθ2 1/τ2 ωsp/ζsp ωε/ζε rating ωb g λ

1A 0.5 1.25 2.0 2.2/0.69 63.0/0.75 2~6 2.18 0.042 0.995
1B 2.0 1.25 5.0 2.2/0.69 63.0/0.75 3~3.5 2.20 0.023 0.995
1C 2.0 1.25 5.0 2.2/0.69 16.0/0.75 2~5 2.20 0.013 0.9998
1D ∞ 1.25 ∞ 2.2/0.69 75.0/0.67 3~5 2.30 0.008 0.995
1E ∞ 1.25 5.0 2.2/0.69 63.0/0.75 6 2.30 0.002 0.996
1F ∞ 1.25 2.0 2.2/0.69 63.0/0.75 8 2.25 0.001 0.996
1G ∞ 1.25 0.5 2.2/0.69 63.0/0.75 8.5 2.20 0.0003 0.996
2A 2.0 1.25 5.0 4.9/0.7 63.0/0.75 4~4.5 2.20 0.1 0.997
2B 2.0 1.25 5.0 4.9/0.7 16.0/0.75 2.5~6 2.20 0.057 0.996
2C 5.0 1.25 12.0 4.9/0.7 63.0/0.75 3 2.20 0.077 0.996
2D ∞ 1.25 ∞ 4.9/0.7 75.0/0.67 2.5~3 2.20 0.05 0.9996
2E ∞ 1.25 12.0 4.9/0.7 63.0/0.75 4 2.20 0.025 0.997
2F ∞ 1.25 5.0 4.9/0.7 63.0/0.75 3 2.20 0.014 0.9998
2G ∞ 1.25 5.0 4.9/0.7 16.0/0.75 7 2.20 0.006 0.997
2H ∞ 1.25 2.0 4.9/0.7 63.0/0.75 5~6 2.20 0.0056 0.995
2I ∞ 1.25 2.0 4.9/0.7 16.0/0.75 8 2.20 0.0026 0.999
2J ∞ 1.25 0.5 4.9/0.7 63.0/0.75 6 2.20 0.0015 0.999
3A ∞ 1.25 ∞ 9.7/0.63 75.0/0.67 4~5 1.90 0.199 0.997
3B ∞ 1.25 12.0 9.7/0.63 63.0/0.75 4.5 1.90 0.135 0.996
3C ∞ 1.25 5.0 9.7/0.63 63.0/0.75 3~4 1.90 0.085 0.998
3D ∞ 1.25 2.0 9.7/0.63 63.0/0.75 4 2.20 0.0177 0.994
3E ∞ 1.25 0.5 9.7/0.63 63.0/0.75 4 2.20 0.0045 0.993
4A ∞ 1.25 ∞ 5.0/0.28 75.0/0.67 5~5.5 2.20 0.068 0.998
4B ∞ 1.25 12.0 5.0/0.28 63.0/0.75 7 2.20 0.032 0.997
4C ∞ 1.25 5.0 5.0/0.28 63.0/0.75 8.5 2.20 0.016 0.994
4D ∞ 1.25 2.0 5.0/0.28 63.0/0.75 8~9 2.20 0.007 0.996
4E ∞ 1.25 0.5 5.0/0.28 63.0/0.75 7.5 2.20 0.0018 0.997
5A ∞ 1.25 ∞ 5.1/0.18 75.0/0.67 5~7 2.20 0.077 0.99998
5B ∞ 1.25 12.0 5.1/0.18 63.0/0.75 7 2.20 0.035 0.997
5C ∞ 1.25 5.0 5.1/0.18 63.0/0.75 7~9 2.20 0.018 0.997
5D ∞ 1.25 2.0 5.1/0.18 63.0/0.75 8.5~9 2.20 0.0075 0.996
5E ∞ 1.25 0.5 5.1/0.18 63.0/0.75 8 2.20 0.002 0.999
6A 0.8 2.4 3.3 3.4/0.67 63.0/0.75 5~6 2.20 0.05 0.995
6B 3.3 2.4 8.0 3.4/0.67 63.0/0.75 1~4 2.20 0.025 0.993
6C ∞ 2.4 ∞ 3.4/0.67 75.0/0.67 2.5~5 2.20 0.014 0.998
6D ∞ 2.4 8.0 3.4/0.67 63.0/0.75 5.5 2.20 0.005 0.995
6E ∞ 2.4 3.3 3.4/0.67 63.0/0.75 5.5~8.5 2.20 0.0025 0.998
6F ∞ 2.4 0.8 3.4/0.67 63.0/0.75 6~10 2.20 0.00059 0.995
7A 3.3 2.4 8.0 7.3/0.73 63.0/0.75 2~5 2.10 0.094 0.9999
7B 8 2.4 19.0 7.3/0.73 63.0/0.75 3 2.10 0.074 0.999
7C ∞ 2.4 ∞ 7.3/0.73 75.0/0.67 1.5~4 2.10 0.055 0.997
7D ∞ 2.4 19.0 7.3/0.73 63.0/0.75 5.5 2.10 0.038 0.995
7E ∞ 2.4 8.0 7.3/0.73 63.0/0.75 5~6 2.10 0.025 0.994
7F ∞ 2.4 3.3 7.3/0.73 63.0/0.75 3~7 2.20 0.009 0.992
7G ∞ 2.4 2.0 7.3/0.73 63.0/0.75 5~6 2.20 0.006 0.996
7H ∞ 2.4 0.8 7.3/0.73 63.0/0.75 5 2.20 0.0025 0.998
8A ∞ 2.4 ∞ 16.5/0.69 75.0/0.67 4~5 2.20 0.086 0.9999
8B ∞ 2.4 19.0 16.5/0.69 63.0/0.75 3.5 1.90 0.105 0.994
8C ∞ 2.4 8.0 16.5/0.69 63.0/0.75 3~3.5 1.95 0.07 0.992
8D ∞ 2.4 3.3 16.5/0.69 63.0/0.75 2~4 2.00 0.035 0.999
8E ∞ 2.4 0.8 16.5/0.69 63.0/0.75 2.5~5 2.00 0.0095 0.989
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Fig.1 Pitch attitude tracking feedback system.

Fig.2a  H ∞ -optimal results for configuration 2D;
             : T, S ,            : W-1, V-1.

Fig.2b  H ∞ -optimal results for configuration 5C;
               : T, S ,           : W-1, V-1.
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Fig.3  Bode diagrams of H ∞-optimal pilot models for configurations 1F, 2D, 3A, and 5C.
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Fig.4  Neal-Smith data in the plane of the H ∞-pilot model’s

       maximum gain gradient vs. phase compensation at bω .
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Appendix

The mixed-sensitivity problem of Eq.(7) can be
reduced to a model matching problem.

According to Eq.(19), )(
~

sH  first undergoes the
coprime factorization as

       )()()(
~

sMsNsH =             (A1)

∞∈ RHsNsM )(),( (stable, proper, real-rational
functions).

The controller G(s) that achieves internal
stability is given by the Youla parametrization

     )()()( NQYMQXsG −+=        (A2)

where ∞∈ RHYX ,  are the solutions to the Bezout
equation
     1)()()()( =+ sYsMsXsN ,        (A3)

and Q(s) is an unknown parameter to be
determined so as to be H ∞ -optimal. Using
Eq.(A2), the H ∞ -norm of Eq.(7) reduces to

 
∞

++− 22 |)(||)(| MQXNWNQYVM µ  (A4)

where

      
NN

MM
ssWWWW µµµµ +=       (A5)

           )()( sAsA −= .
Taking into consideration the condition required
for the model matching method that

       ∞∈ RHNNMMWW µµ ,        (A6)

the simplest form of )(sµ  can be Eq.(14). Further
arrangement of Eq.(A4) reduces the performance
index of Eq.(7) finally to
      minimize 121 <−

∞
QTT          (A7)

      ∞∈ RHTT 21 , .
This is a model matching problem, the solving
procedure of which is well developed8, 10.
To test the validity of this H ∞ -approach, where
a control rate related term is included in the
performance index, H ∞ -optimal pilot models are
fitted to experimental pilot  describing

functions11. The controlled element dynamics
used for this comparison are basic three kinds :
H(s)=1, 1/s, and 1/s2. The procedure of obtaining
the H ∞ -optimal pilot models is the same as is
described in the text. However, the best fittings
are attained by employing weighting functions
that are different in relative order from those in
the text, basically due to the consideration that
the H ∞ -optimal model features the roll-off
characteristic of –20dB/dec in a high-frequency
range. The results are shown in Figs.A1, A2, and
A3. Weighting functions and parameter values
for each controlled element are as follows :
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Fig.A1 H ∞ -optimal vs. measured
        pilot describing functions :
        H(s)=1.

Fig.A2 H ∞ -optimal vs. measured
        pilot describing functions :
        H(s)=1/s.

Fig.A3 H ∞ -optimal vs. measured
        Pilot describing functions :
        H(s)=1/s2.
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