

Abstract

The use of software-based systems for safety-
critical applications within civil aviation stead-
ily increases, e.g. flight control functions today
are to a large extent realized as software. Be-
cause of the criticality of these avionic systems,
best quality and high safety is demanded for
such software components. In order to guaran-
tee the observance of these requirements, the
development process is subject to consequential
regulations and standards.

This paper introduces a new approach for
a model-based development process for safety
critical applications in civil aviation which is
conform to the requirements of the RTCA/DO-
178B document. This process called Qualified
System Development Process (QSDP) was de-
fined by DaimlerChrysler Research. The focus
of the QSDP is the software development by
modeling and code generation using the com-
mercial available tools Matlab and SCADE.

1. Introduction

The use of software-based systems for safety-
critical applications within civil aviation steadily
increases, e.g. flight control functions today are
to a large extent realized as software. Growing

function scope, increasing complexity of sys-
tems and interconnections between various sys-
tem components introduce new requirements for
development processes and tool support. Fur-
thermore, tight limitations of resources (time,
market, people) require more efficient and cost-
effective ways for software development.

Because of the criticality of avionic sys-
tems, best quality and high safety is demanded
for the embedded software components. In order
to guarantee the observance of these require-
ments, the development process is subject to
consequential regulations and standards. Espe-
cially the standard RTCA/DO-178B has to be
observed in the field of software development
within civil aviation.

The current development of embedded
software applies various techniques with low
interaction. In order to describe the systems
various different notations and tools are used.
This leads to time consuming and error-prone
transfers which usually occur manually. Errors
in the realized software are often detected very
late in the development process, usually during
the HW/SW integration phase. Removing errors
will then become very time and cost consuming.

Approaches for model-based development
with the code generation based upon it offer

MODEL-BASED SOFTWARE DEVELOPMENT AND CODE
GENERATION FOR AVIONIC SYSTEMS

Ines Fey*, Matthias Hoffmann*, Dieter Reiners#,

 *DaimlerChrysler AG, Research and Technology #DaimlerChrysler AG, Research and Technology
 Software Technology Research Lab Power Electronics and Actuators Research Lab

 Alt-Moabit 96A, D-10559 Berlin, Germany Goldsteinstr. 235, D-60528 Frankfurt, Germany

{Ines.Fey | Matthias.Hoffmann | Dieter.Reiners@DaimlerChrysler.com }

Keywords: model-based development, code generation, certification, SCADE, Matlab, RTCA/DO-178B

Minggang Mo
ICAS 2000 CONGRESS

Minggang Mo
645.1

Ines Fey, Matthias Hoffmann, Dieter Reiners

good opportunities for cutting down costs and
ensuring software quality. Tools like Matlab[1]
or MATRIXX[2] which are widely used in the
field of embedded controller development, how-
ever, do not meet the entire requirements of
RTCA/DO-178B for code generators. That is
why it was necessary to search for a new solu-
tion.

This paper contains the concept of the
Qualified System Development Process (QSDP)
which has been specified to satisfy the devel-
opment constraints demanded by the
RTCA/DO-178B. QSDP has been developed
within a national research program by Daimler-
Chrysler Research in collaboration with Dasa
Airbus.

The QSDP concept is based on the use of
model-based specifications and on the use of a
qualified automatic coding mechanism. It thus
supports automated generation of certifiable
software on the basis of executable specifica-
tions with clearly reduced expenses for the im-
plementation and testing and for the certification
of this software according to aviation regula-
tions.

The main focus of the QSDP is the soft-
ware development. Nevertheless, considering
the integration of the software development into
the overall system development process the in-
terfaces between software and system develop-
ment were defined as well as the organization of
processes accompanying tasks like requirements
and configuration management.

The QSDP complies with the specific re-
quirements of DASA Airbus and is focused on
the design of systems of high criticality. It can
therefore be concluded that the process – tai-
lored to the respective requirements – can be
applied for software development for different
prospective projects for the development of avi-
onics systems, independent of the respective
software criticality.

To assure an efficient software develop-
ment process and simultaneously sufficiently
take into consideration the aspects of safety, all
steps within this process have to be optimized
and supported by adequate tools. During the

QSDP project different scenarios for an auto-
mation of this process were discussed. In this
context a Qualified System Development Envi-
ronment(QSDE) has been specified and
prototypically implemented.

The core of this environment is the task of
modeling, simulation, and code generation using
the commercial tools Matlab and SCADE. The
transfer of the models from one tool to another
is an essential part of the approach. Adequate
translation mechanisms have helped to reach a
consistent modeling support for this application.
Furthermore, several special QSDP tools sup-
port the wide automation of the development
steps.

Chapter 2 of this paper offers an overview
of the advantages and constraints of model-
based development and code generation. Chap-
ter 3 refers to the constraints regarding Software
development which have to be complied with
according to RTCA/DO-178B. Chapter 4 de-
scribes the QSDP process. The paper concludes
with a summary and outlook on further work in
this context.

2. Model-based Code Generation

Controllers for software-based systems are in-
creasingly defined in a graphical environment
and are validated with simulation capabilities
which are provided by development tools. Such
a model-based software development for em-
bedded systems is more and more recognized.

The precise description of the behavior and
of the functional contexts with models offers
with the help of data flow diagrams and state
automatons extensive support for the developer,
which is needed especially for very complex
contexts like primary or secondary flight con-
trol.

Beside to the more precise, comprehensible
and structured description of the function scope
the approach of a model-based development
offers a further two substantial advantages

• model-based function validation by ap-
plying the simulation capability and

• model-based code generation.

Minggang Mo
645.2

MODEL-BASED SOFTWARE DEVELOPMENT AND CODE GENERATION FOR AVIONIC SYSTEMS

The simulation ability facilitates an early test of
the functionality. By applying simulations for
model testing it is possible to obtain faster feed-
back on the modeled functionality and in so
doing changes can be introduced with low ex-
penditure of costs and time. Because those er-
rors in the functionality of the software which
are detected when it is integrated into the hard-
ware cause higher costs than insufficiencies
found early in the development process with the
help of simulations. In this way the overall de-
velopment cycle can be broken up into several,
shorter cycles (see Fig. 1), making them more
efficient [8].

The utility of simulations at the early de-
velopment stage is evident for systems which
require special hardware. This hardware is often
developed parallel to the software and is thus
only available late in the development process.
In that case the controller software can be exe-
cuted in a simulated environment which repre-
sents the hardware behavior.

However, simulations do not completely
replace the later testing activities because sev-
eral errors are hardware-dependent and only

affect the system in the actual run-time envi-
ronment. For example, whether non-functional
requirements have been fulfilled (e.g. response
times) can only be tested in the target hardware.

Model-based code generation means to
automate the manual step from graphical func-
tion description to implementation. Based on the
functional description the coding can be done by
code generators which are supplied by the
simulation tools. Erroneous and time consuming
manual coding thus becomes redundant. Source
code is generated within a couple of minutes.
Hence the cycle times for changes are consid-
erably shortened because the elimination of er-
rors can directly be graphically performed in the
model and code can be generated from the
changed model by simply pressing a button.
Prerequisite for the appropriate application of
the advantages of code generation is a model
whose functionality has already been suffi-
ciently and systematically tested with the help of

simulations and which is valid for the code gen-
erator.

Fig. 1: V-shaped development process

real system
executable

model

system
specification

subsystem

component

validation

validation

verification

separation,
autocoding

refinement integration

integration

detailed design

Short development cycles

Overall development cycle

Minggang Mo
645.3

Ines Fey, Matthias Hoffmann, Dieter Reiners

A further aspect of using code generation is
the reduction of the testing effort. If it is as-
sumed that the generated code represents the
identical function as the model, those tests that
have already been considered in the form of
model simulations become redundant as soft-
ware tests. Considering that the test takes up up
to 50% of the overall development effort this
offers considerable options for cost reduction.

Model-based development and code generation
are supported by various tools. Norms and stan-
dards in the field of civil aviation, however,
introduce additional requirements which have to
be fulfilled by the development process as well
as by the applied tools. The tools are rarely spe-
cialized for development of civil aircraft appli-
cations and do not completely comply with
aviation specific regulations. The aim during the
design of the QSDP was to utilize the herein
before mentioned advantages of model-based
development and code generation in the civil
aviation context especially for the use within
Dasa Airbus.

3. Certification Aspects

The development of systems for civil aviation
application is subject to various regulations, e.g.
JAR25[7] and RTCA/DO-178B[10]. RTCA/
DO-178B is of particular importance for the
software development because it represents as-
pects of authorization for flying systems and
equipment with regard to the applied software.

The RTCA/DO-178B describes all soft-
ware development activities. These are assigned
to the various processes - Planning Process, In-
tegral Processes, SW Development Processes -
into which the overall development process is
subdivided. The standard specifies all precondi-
tions, aims, and results for the processes. It also
recommends which activities serve the
achievement of these objectives and thus the
certification of the systems.

The main focus of that document is prede-
termining aims and results that are to be
achieved in the development process. It is there-

fore of major importance for the definition of a
Qualified System Development Process.

The specific methods and tools needed for
achieving the ends are not specified. The ad-
vantages of the tool application according to
RTCA/DO-178B are the possibility to test
automatically, the guaranteed adherence to stan-
dards, the avoidance of error sources through
automatic generation, and the implementation of
error tolerance strategies [5]. It has to be en-
sured, however, that the aim of the processes is
not compromised by the tool application. The
usage of tools in certain areas therefore needs to
be certified in the form of tool qualification.

The qualification of a tool is necessary if
the error behavior of the tool can lead to an uni-
dentified error in the software[10]. This can
happen if the output of the tool won't be tested
and the tool either generates or tests parts of the
software product. An example instanced by the
RTCA/DO-178B is a tool which automatically
generates the source code from low-level re-
quirements. If the source code in that case is not
tested or only partly tested, the generation tool
has to be qualified.

Therefrom independent the source code in
general is subject to certain safety-relevant re-
quirements regarding consistency, the accor-
dance to low-level requirements and software
architecture, verifiableness, conformity to cod-
ing standards, traceability, and correctness.
Some of these requirements (e.g. accordance to
low-level requirements and conformity to cod-
ing standards) can be automatically secured
from the generation process and need not be
verified by later tests if the code generator is
qualified.

Hence, in order to properly benefit from the
options of reducing the costs of implementation
and test activities, a qualified code generator has
to be used.

All these requirements regarding modell-
based code generation show exemplarily the
necessity of considering the RTCA/DO-178B
standards when planning and structuring the
Qualified System Development Process. Only
then it is possible to ensure that the developed

Minggang Mo
645.4

MODEL-BASED SOFTWARE DEVELOPMENT AND CODE GENERATION FOR AVIONIC SYSTEMS

software will be approved together with the avi-
onic system. For a complete overview about
QSDP relevant regulations and requirements
regarding the use of qualified tools refer to [9]
and [10].

4. Qualified System Development Process

The aim of developing the Qualified System
Development Process (QSDP) was to define a
process which is based on the approaches of
model-based development and code generation
and which also complies with the RTCA/DO-
178B as well as with specific requirements of
the application field within Dasa Airbus.

Within the research project QSDP Daim-
lerChrysler Research together with Dasa Airbus
evaluated the constraints for this process, de-
fined it and prototypically provided a possible
tool environment. Further constraints like com-

patibility to Airbus partners and the need of tool
support by approved and commercial tools re-
sulted from the potential application field within
Dasa Airbus.

Though the definition of QSDP includes
the concrete steps of software development as
well as the embedding of the procedure into the
system development, the following will con-
centrate mainly on the software development
activities.

development and
simulation tool

(DST)

Data Dictionary
Editor

models, constraints,
design goals

restrictions for
statecharts

„wrapper“
generator

Data Dictionary

QSDP Library

Code Generator
(SCADE)

operator library
(LUSTRE)

generated source code
(C-Code)

SCADE Editor

DST-to-SCADE
Translator

Code Generator
(SCADE)

transformed model
(SCADE format)

executable model
(DST format)

Operator Library
(C code)

Commercial Tools

QSDP Tools

Data

Fig. 2: Idea of the QSDP

Minggang Mo
645.5

Ines Fey, Matthias Hoffmann, Dieter Reiners

4.1. Definition of the QSDP
The most important prerequisite for software
development with code generation and the utili-
zation of automating this function (also see
chapter 3) is the application of a qualified code
generator. Since the qualification of tools ac-
cording to RTCA/DO-178B is very complex, it
is only the SCADE code generator which fulfills
this prerequisite. That is why the SCADE code
generator has to be considered a central element
in the QSDP.

The SCADE tool [4] does offer the possi-
bility of a dataflow-oriented function descrip-
tion, however, due to a different approach it
does not provide the function scope which de-
velopers are familiar with thinking of tools like
Matlab and MATRIXX. Especially the used time
model [3] and the restricted simulation features
do not support the function devised for the
QSDP [6]. Otherwise, the tight restrictions re-
garding implementation relevant data like value
domains and data types of signals offer a suit-
able basis for the generation of reliable code.
Summarizing the features of SCADE it is a
capable tool for the detailed software specifica-
tion and code generation. But analysis and de-
sign of continuous control components are not
supported. Since latter is an integral element of
the development of avionic control systems a
second development tool has been introduced
into the QSDP workflow which closes this gap.

 Therefore two tools are applied in a com-
bined manner during the QSDP. On the one
hand a so-called development and simulation
tool (DST) is applied in order to provide the
necessary analysis and simulation capabilities.
Tools like Matlab or MATRIXX can be used as
DST. On the other hand the above mentioned
specification facility of SCADE is used for the
definition of implementation relevant data and
finally for the code generation. The functional
overlapping when applying these tools should,
however, be kept as low as possible.

In order to realize this concept a tool envi-
ronment Qualified System Development Envi-

ronment (QSDE) was defined. Core of this envi-
ronment are modeling, simulation, and code
generation using the commercial tools Matlab
and SCADE. So as to ensure a far reaching
automation of these development phases some
separate process steps have to be supported by
QSDP specific tools. For those functions that
are not covered by available commercial sys-
tems special tools have been specified within
the scope of the project. Fig. 2 shows the idea of
the Qualified System Development Process and
the interconnection of the commercial tool
families. The most important components and
the workflow of the QSDP are presented in the
following sections.

4.2. Tool Environment
Two components have been identified as indis-
pensable for this environment: a development
and simulation tool (DST) and a code generator
which enables the generation of certifiable soft-
ware. Various tools are available for the DST.
These, however, differ in their functionality [6].
For the prototypical realization of the QSDE
Matlab/Simulink/Stateflow (Matlab) was used
as development and simulation tool and SCADE
was applied as the code generation tool. Fur-
thermore, an editor for ASCII-based files is
needed in the QSDE.

Next to these commercially available tools
additional tool support is needed for an exten-
sive automation of the process. Especially the
translation of the models from the Matlab envi-
ronment to SCADE is performed by special
QSDE tools. Fig. 3 gives an overview of the
Qualified System Development Environment.
The gray components represent the QSDP spe-
cific parts of this tool set.

Essentially three components are needed
for automating the transformation of a Matlab
model according to SCADE format (compare
fig. 2): the "Wrapper" Generator, the DST-to-
SCADE-Translator and a Data Dictionary. The
latter is used for exchanging information be-
tween the named tools as well as for storing
additional user information.

Minggang Mo
645.6

MODEL-BASED SOFTWARE DEVELOPMENT AND CODE GENERATION FOR AVIONIC SYSTEMS

Most important for the acceptance of the
process is the integration of that newly devel-
oped tools with the current commercial ones in

such a manner that an automated environment
for the development of safety-critical software
becomes available. The separate tools and their
application in the QSDP will be described in the
following.

4.2.1 Development and Simulation Tool (DST)
The development and simulation tool, in this
case Matlab, is an efficient tool for modeling

and simulation activities which supports block
oriented as well as state-chart oriented notations.
Extensive functions for the simulation of differ-
ent system components like continuous control
and discrete state control are also supplied.

Development and
Simulation Tool

(DST)

model (DST specific format)

Data Dictionary
Editor

Parameter Dictionary

models, constraints,
design goals

restrictions for
statecharts

operator library
(C code)

„Wrapper“
Generator

statecharts block diagrams

Structure Dictionary

Interface Dictionary

Data Dictionary

model (SCADE format)

statecharts block diagrams
SCADE Checker

(Syntax/Semantics)

Code Generator
SCADE

operator library
(LUSTRE)

generated code (C code)SCADE Editor

QSDP Library

other
libraries

operator library
(external operators)

DST-Statechart
Parser

Block Diagram-to-
SCADE Translator

DST-Block Diagram
Parser

model (intermediate format)

statecharts block diagrams

Statechart -to-
SCADE Translator

Translator
to SCADE

Code Generator
SCADE

Commercial Tools

QSDP Tools

Data

Fig. 3: Details of the Qualified System Development Environment (QSDE)

Minggang Mo
645.7

Ines Fey, Matthias Hoffmann, Dieter Reiners

During the QSDP the complete modeling
and simulation is performed in the Matlab envi-
ronment. The following constraints have to be
considered when modeling the component
which is later on used for code generation

• only elements from the special QSDP
library can be used for modeling the
controller

• parameters have to be defined explicitly
using the Data Dictionary

• a QSDP naming convention for signals
has to be observed.

This ensures that the code generation can fol-
low.

All other model parts which are needed for
the simulation like the environment model can
be generated by utilizing the complete Matlab

functionality.
The function description can then be vali-

dated with the help of the simulation possibili-
ties. From the graphical description a separate
ASCII-file (.mdl-file) is generated for the con-
troller component which in turn can be further
processed by the QSDE tools.

4.2.1 The DST-to-SCADE-Translator
The DST-to-SCADE-Translator converts the
ASCII-file created by Matlab into the SCADE
format in two steps.

First the Matlab model is converted into an
intermediate format and then based on this de-
scription the SCADE format of the model is
created. During the translation process the data
dictionary information is used to complete the
SCADE model.

4.2.2 SCADE
Mainly the code generator and the syntax
checker from SCADE[4] are used during the
QSDP. The code generator is applied for gener-
ating source code from those models that have
been transformed into SCADE format. These
models can be checked by the syntax checker
prior to this activity. In exceptional cases the
SCADE editor can also be used, e.g. if the op-
erator library (see 4.2.4) is to be extended.

4.2.3 Text Editor
An additional editor is also needed which edits
ASCII files within the normal development en-
vironment. This editor will at first be used as
Data Dictionary Editor. Based on the experience

gained from the first evaluation examples a spe-
cial QSDE Data Dictionary Editor can be devel-
oped and realized which facilitates the specifi-
cation of the needed data via a suitable GUI and
also executes syntax checks.

4.2.4 The "Wrapper“-Generator
The "Wrapper“-Generator is an automatic
translation program which converts LUSTRE
operators and user libraries in SCADE format
in such a way that they can be used within the
DST environment as external operators. The
interface dictionary is created during this trans-
formation. It contains all information about the
interface of the original SCADE operators
which would otherwise get lost during the
translation process (e.g. input and output data
types). The idea of the wrapping mechanism is

Fig. 4: Generating external operators for Simulink using the QSDP-Wrapper

6&$'(

2SHUDWRU

�/8675(�

6&$'(

2SHUDWRU

�&�

6LPXOLQN

([WHUQDO

2SHUDWRU

'DWD 'LFWLRQDU\

�,QWHUIDFH 'HVFULSWLRQ

(QWULHV�

&RGH *HQHUDWRU :UDSSHU

Minggang Mo
645.8

MODEL-BASED SOFTWARE DEVELOPMENT AND CODE GENERATION FOR AVIONIC SYSTEMS

shown in Fig. 4. The external operators are pro-
vided by a specialSimulink library so-called
QSDP-Library.

4.2.3 The Data Dictionary
The Data Dictionary is used for saving addi-
tional information which is not directly included
in the DST model but needed for the code gen-
eration with SCADE. These data are assigned to
the following groups with respect to their con-
tent and source:

• Interface information
• Information on the modeling structure
• Information on model parameters.

The Data Dictionary (Fig. 5) thus consists of
three parts: Interface Dictionary, Data Diction-
ary and Structure Dictionary. Fig. 3 shows
which tools access these dictionaries, either by
reading or writing. It has to be noted that the
Parameter Dictionary and the Structure Diction-
ary can be directly altered by the user with a
Data Dictionary Editor. The Interface Diction-
ary, however, contains the information that has
to be automatically determined.

The QSDP tool environment comprises com-
mercial systems used in practice as well as tools
especially designed for QSDP. In this way the
integration gap between the "modeling and

simulation" phase and the "detailed specification
and code generation" phase can be closed with
the help of the QSDP-specific tools. The devel-
oper thus obtains a tool environment adapted to
the QSDP concept for the efficient generation of
safety critical software.

5. Summary and Outlook

A number of standards apply for the develop-
ment of avionic software whose requirements
bear upon the criticality of the systems.

Aim of the Qualified System Development
Process and the QSDP tool environment is to
provide far reaching conceptual tool support for
the development of certifiable avionic software.
The focus of this environment is the construc-
tive work in software development from mod-
eling the software system to code generation.

With the help of this approach software can
be developed by using state-of-the art tech-
niques (e.g. functional descriptions in the form
of data-flow and state chart models). The quality
of the overall process increases.

The tool environment designed during the
project offers the necessary devices for auto-
mating the operations, in this way relieving the
developer of time consuming manual transla-
tions between tools. No typos or more severe
inconsistencies between the different model
notations will weaken the quality assurance. The
code generated with the SCADE Code Genera-
tor is certifiable according to RTCA/DO-178B.
This approach can therefore also be used for
applications of the highest criticality.

Within the scope of the QSDP project the
application of the concept has been demon-
strated using the example of a water ballast sys-
tem. Therefore a prototype of the Qualified
System Development Environment has been
implemented. On the basis of experiences from
this application the tool chain implementation
can now be adjusted.

6. References

[1] Using Simulink. The MathWorks Inc., Natick, MA,
(1997)

'DWD 'LFWLRQDU\

,QWHUIDFH 'HVFULSWLRQ

HVSHFLDOO\ 'DWD 7\SHV RI

WKH 6&$'(2SHUDWRUV

,QWHUIDFH 'LFWLRQDU\

0RGHO 3DUDPHWHUV

LQFOXGLQJ 9DOXH

DQG 'DWD 7\SH

3DUDPHWHU 'LFWLRQDU\

5HSUHVHQWDWLRQ RI WKH

,QWHUIDFH DQG WKH

+LHUDUFK\ RI WKH

6LPXOLQN 0RGHO

6WUXFWXUH 'LFWLRQDU\

Fig. 5: Parts of the data dictionary

Minggang Mo
645.9

Ines Fey, Matthias Hoffmann, Dieter Reiners

[2] 'Introducing MATRIXX Version 6.0'. Integrated Sys-
tems Inc., 1997

[3] SAO+/DF Language Reference Manual, Version
1.3.2. Verilog SA, Paris, 1996

[4] SCADE Release Note, Version 2.1. Verilog SA, Paris,
1998

[5] Fett,A,, Rumprecht, B. Stand der Technik bei der
Qualifizierung von Werkzeugen zur Software-
Entwicklung, Technical Report No. F3S-97-005,
Daimler-Benz AG, Berlin, 1997

[6] Fey, I., Hoffmann, M., Janning, J., John, G.
Werkzeugbetrachtung: Spezifikations- und Simula-
tionswerkzeuge, internal Project Report, Daimler-
Benz AG, Berlin, 1997

[7] JAR 25 - Joint Airworthiness Requirements. Part 25:
Large Aeroplanes, Change 13. Joint Airworthiness
Authorities, 1990

[8] Reiners, D., Fey, I., Thomas, C., Autocoding sicher-
heitsrelevanter Software in der Luftfahrt. Proceedings
DGLR conference, Berlin, 1999

[9] Thomas, C., Munk, J.-P. Anforderungsanalyse: Zu-
lassungsaspekte. internal Project Report, 1997

[10] RTCA/DO-178B: Software Considerations in Air-
borne Systems and Equipment Certification. Re-
quirements and Technical Concepts for Aviation
(RTCA) Inc., 1992

Minggang Mo
645.10

